Skip to main content

Genetic Polymorphism of Milk Proteins

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

With the advent of genome analysis and developments in proteomic tools, search for milk protein polymorphisms has exploded and progressively moved from qualitative to quantitative aspects. A great diversity of alleles have been discovered at the six main milk protein loci and significant advances made in understanding the relationship between nucleotide polymorphisms and protein structure and expression. Some demonstrative examples, taken in cattle and goats, will be addressed to illustrate how mutations responsible for polymorphisms at the genomic level can influence milk protein composition, both qualitatively and quantitatively. Although milk fat globule membrane-associated proteins account for only 1–2 % of total milk proteins, evidence that these proteins possess techno-functional and nutritional properties is accumulating and data on their genetic polymorphisms are becoming more consistent. A part of this chapter is also devoted to this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ådnøy, T., Vegarud, G., Devold, T.G., Nordbø, R., Colbjørnsen, I., Brovold, M., Markovic, B., Roseth, A. and Lien, S. (2003). Effects of the 0- and F- alleles of alpha S1-casein in two farms of Northern Norway. Proceedings of the International Workshop on Major Genes and QTL in Sheep and Goat, INRA Toulouse France, communication no. 2–20, December 8–11, pp. 1–5.

    Google Scholar 

  • Alexander, L.J., Hayes, G., Pearse, M.J., Beattie, C.W., Stewart, A.F., Willis, I.M. and McKinlay, A.G. (1989). Complete sequence of the bovine beta-lactoglobulin cDNA. Nucleic Acids Res. 17, 6739.

    Google Scholar 

  • Ali, S., McClenaghan, M., Simons, J.P. and Clark, A.J. (1990). Characterisation of the alleles encoding ovine b-lactoglobulins A and B. Gene, 91, 201–207.

    Google Scholar 

  • Amigo, L., Recio, I. and Ramos, M. (2000). Genetic polymorphism of ovine milk proteins: Its influence on technological properties of milk—A review. Int. Dairy J. 10, 135–149.

    Google Scholar 

  • Andersson, L. and Georges, M. (2004). Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5(3), 202–212.

    Google Scholar 

  • Angiolillo, A., Yahyaoui, M.H., Sanchez, A., Pilla, F. and Folch, J.M. (2002). Characterization of a new genetic variant in the caprine κ-casein gene. J. Dairy Sci. 85, 2679–2680.

    Google Scholar 

  • Angulo, C., Diaz Carrillo, E., Munoz, A., Alonso, A., Jimenez, I. and Serradilla, J.M. (1994). Effect of electrophoretic goat’s k-casein polymorphism on milk yield and main components. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, University of Guelph, Guelph, 7–12 August 1994, pp. 333–336.

    Google Scholar 

  • Armirotti, A. and Damonte, G. (2010). Achievements and perspectives of top-down proteomics. Proteomics 10, 3566–3576.

    Google Scholar 

  • Aschaffenburg, R. (1961). Inherited casein variants in cow’s milk. Nature 192, 431–432.

    Google Scholar 

  • Aschaffenburg, R. and Drewry, J. (1957). Genetics of the β-lactoglobulins of cows’ milk. Nature 180, 376–378.

    Google Scholar 

  • Aschaffenburg, R., Sen, A. and Thompson, M.P. (1968). Genetic variants of casein in Indian and African zebu cattle. Comp. Biochem. Physiol. 25, 177–184

    Google Scholar 

  • Ballabio, C., Chessa, S., Rignanese, D., Gigliotti, C., Pagnacco, G., Terracciano, L., Fiocchi, A., Restani, P. and Caroli, A.M. (2011). Goat milk allergenicity as a function of αS1-casein genetic polymorphism. J. Dairy Sci. 94, 998–1004.

    Google Scholar 

  • Balteanu V.A., Vlaic A., Pop F.D., Rusu A.R., Martin P., Miranda G. and Creanga S. (2008). Characterization at protein level of the new αs1-casein allele irv discovered in Romanian grey steppe cattle breed moldavian variety. Lucrări stiinŃifice Zootehnie si Biotehnologii, vol. 41 (1), Timisoara.

    Google Scholar 

  • Balteanu V.A., Vlaic A., Suteu M. and Carsai T.C. (2010). A comparative study of major milk protein polymorphism in six romanian cattle breeds. Bulletin UASVM Animal Science and Biotechnologies. 67(1–2), 345–350

    Google Scholar 

  • Barbieri, M.E., Manfredi, E., Elsen, J.M., Ricordeau, G., Bouillon, J., Grosclaude, F., Mahé, M.F. and Bibé, B. (1995). Effet du locus de la caséine as1 sur les performances laitières et les paramètres génétiques des chèvres Alpine. Genet Select. Evol. 27, 437–450.

    Google Scholar 

  • Barello, C., Garoffo, L.P., Montorfano, G., Zava, S., Berra, B., Conti, A. and Giuffrida, M.G. (2008). Analysis of major proteins and fat fractions associated with mare’s milk fat globules. Mol. Nutr. Food Res. 52, 1448–1456.

    Google Scholar 

  • Beja-Pereira, A., Erhardt, G., Matos, C., Gama, L. and Ferrand, N. (2002). Evidence of a geographical cline of casein haplotypes in Portuguese cattle breeds. Anim. Genet. 33, 295–300.

    Google Scholar 

  • Bell, K. and McKenzie, H.A. (1967). The whey proteins of ovine milk: β-Iactoglobulins A and B. Biochim. Biophys. Acta 147, 123–134.

    Google Scholar 

  • Bell, K., McKenzie, H.A., Murphy, W.H. and Shaw, D.C. (1970). β-Lactoglobulin Droughtmaster: a unique protein variant. Biochim. Biophys. Acta 214, 427–436.

    Google Scholar 

  • Bell, K., Hopper, K.E. and McKenzie, H.A. (1981b) Bovine α-lactalbumin C and αs1-, β-, and κ-caseins of Bali (Banteng) cattle, Bos (Bibos) javanicus. Aust. J. Biol. Sci. 34, 149–159.

    Google Scholar 

  • Bell, K., McKenzie, H.A. and Shaw, D.C. (1981a). Bovine β-lactoglobulin E, F and G of Bali (Banteng) Cattle, Bos (Bibos) javanicus. Aust. J. Biol. Sci. 34, 133–147.

    Google Scholar 

  • Bernard, H., Meisel, H., Creminon, C. and Wal, J.M. (2000). Post-translational phosphorylation affects the IgE binding capacity of caseins. FEBS Lett. 467, 239–244.

    Google Scholar 

  • Bevilacqua, C., Martin, P., Candalh, C., Fauquant, J., Piot, M., Roucayrol, A.M., Pilla, F. and Heyman, M. (2001). Goats’ milk of defective as1-casein genotype decreases intestinal and systemic sensitization to beta-lactoglobulin in guinea pigs. J. Dairy Res. 68, 217–227.

    Google Scholar 

  • Bevilacqua, C., Ferranti, P., Garro, G., Veltri, C., Lagonigro, R., Leroux, C., Pietrolà, E., Addeo, F., Pilla, F., Chianese, L. and Martin, P. (2002). Interallelic recombination is probably responsible for the occurrence of a new αS1-casein variant found in the goat species. Eur. J. Biochem. 269, 1293–1303.

    Google Scholar 

  • Bevilacqua, C., Helbling, J.C., Miranda, G., Martin, P. (2006). Translational efficiency of casein transcripts in the mammary tissue of lactating ruminants. Reprod. Nutr. Dev. 46, 567–578.

    Google Scholar 

  • Bhattacharya, S.D., Roychoudhury, A.K., Sinha, N.K. and Sen. A. (1963). Inherited α-lactalbumin and β-lactoglobulin polymorphism in Indian Zebu cattle. Comparison of Zebu and buffalo α-lactalbumins. Nature 197, 797–799.

    Google Scholar 

  • Bhattacharya, T.K., Misra, S.S., Sheikh, F.D., Dayal, S., Vohra, V., Kumar, P. and Sharma, A. (2004). Variability of milk fat globule membrane protein gene between cattle and riverine buffalo. DNA Sequence 15, 326–331.

    Google Scholar 

  • Bhattacharya, T.K., Sheikh, F.D., Sukla, S., Kumar, P. and Sharma, A. (2007). Differences of ovine butyrophilin gene (exon 8) from its bovine and bubaline counterpart. Small Rumin. Res. 69, 198–202.

    Google Scholar 

  • Bitman, J. and Wood, D.L. (1990). Changes in milk fat phospholipids during lactation. J. Dairy Sci. 73(5), 1208–1216.

    Google Scholar 

  • Boettcher, P.J., Caroli, A., Chessa, S., Budelli, E., Stella, A., Canavesi, F., Ghiroldi, S. and Pagnacco, G. (2004). Effects of casein haplotypes on production traits in Italian Holstein and Brown Cattle. J. Dairy Sci. 87, 4311–4317.

    Google Scholar 

  • Boichard, D., Grohs, C., Bourgeois, F., Cerqueira, F., Faugeras, R., Neau, A., Rupp, R., Amigues, Y., Boscher, M. and Leveziel, H. (2003). Detection of genes influencing economic traits in three French dairy cattle breeds. Genet Select. Evol. 35, 77–101.

    Google Scholar 

  • Boisnard, M. and Petrissant, G. (1985). Complete sequence of ovine αS2-casein messenger RNA. Biochimie 67, 1043–1051.

    Google Scholar 

  • Boisnard, M., Hue, D., Bouniol, C., Mercier, J.C. and Gaye, P. (1991). Multiple mRNA species code for two non-allelic forms of ovine αS2-casein. Eur. J. Biochem. 201, 633–641.

    Google Scholar 

  • Boulanger, A. (1976). Etude biochimique et génétique des protéines du lait de chèvre (Capra hircus). Thesis, University of Paris VII, France.

    Google Scholar 

  • Boulanger, A., Grosclaude, F. and Mahé, M.F. (1984). Polymorphisme des caséines αs1 et αs2 de la chèvre (Capra hircus). Génét. Sél. Evol. 16(2), 157–176

    Google Scholar 

  • Bouniol, C. (1993). Sequence of the goat alpha s2-casein-encoding cDNA. Gene. 125, 235–236.

    Google Scholar 

  • Bouniol, C., Printz, C. and Mercier, J.C. (1993a). Bovine αS2-casein D is generated by exon VIII skipping. Gene. 128, 289–293.

    Google Scholar 

  • Bouniol, C., Brignon, G., Mahé, M.-F. and Printz, C. (1993b). Characterization of goat allelic as2-caseins A and B: further evidence of the phosphorylation code of caseins. Protein Seq. Data Anal. 5, 213–218.

    Google Scholar 

  • Bouniol, C., Brignon, G., Mahé, M.F. and Printz, C. (1994). Biochemical and genetic analysis of variant C of caprine αs2-casein (Capra hircus). Anim. Genet. 25, 173–177.

    Google Scholar 

  • Braunitzer, G., Chen, R., Schrank, B. and Stangl, A. (1973). Die Sequenzanalyse des beta-Lactoglobulins. Hoppe Seylers Z. Physiol. Chem. 354, 867–878.

    Google Scholar 

  • Braunschweig, M.H. (2007). Short communication: duplication in the 5′-flanking region of the beta-lactoglobulin gene is linked to the BLG A allele. J. Dairy Sci. 90, 5780–5783.

    Google Scholar 

  • Braunschweig, M.H. and Leeb, T. (2006). Aberrant low expression level of bovine beta-lactoglobulin is associated with a C to A transversion in the BLG promoter region. J. Dairy Sci. 89(11), 4414–4419.

    Google Scholar 

  • Brew, K., Castellino, F.J., Vanaman, T.C. and Hill, R.L. (1970). The complete amino acid sequence of bovine alpha-lactalbumin. J. Biol. Chem. 245, 4570–4582.

    Google Scholar 

  • Brignon, G., Ribadeau Dumas, B. (1973). Localization of the Glu-Gln substitution differentiating B and D genetic variants in the peptide chain of bovine beta lactoglobulin. FEBS Lett. 33, 73–76.

    Google Scholar 

  • Brignon, G., Ribadeau Dumas, B., Mercier, J.-C., Pelissier, J.-P. and Das, B.C. (1977). The complete amino acid sequence of bovine αS2-casein. FEBS Lett. 76, 274–279.

    Google Scholar 

  • Brignon, G., Mahé, M.F., Grosclaude, F. and Ribadeau Dumas, B. (1989). Sequence of caprine αS1-casein and characterization of those of its genetics variants which are synthesized at high level αS1-cnA, B and C. Protein Seq. Data Anal. 2, 181–188.

    Google Scholar 

  • Brignon, G., Mahé, M.F., Ribadeau Dumas, B., Mercier, J.C. and Grosclaude, F. (1990). Two of the three genetic variants of goat αS1-casein which synthesized at a reduced level have an internal deletion possibly due to altered RNA splicing. Eur. J. Biochem. 193, 237–241.

    Google Scholar 

  • Calvo, J., Vaiman, D., Saïdi-Mehtar, N., Beattie, A., Jurado, J. and Serrano, M. (2002). Characterization, genetic variation and chromosomal assignment to sheep chromosome 2 of the ovine heart fatty acid-binding protein gene (FABP3). Cytogenet. Genome Res. 98, 270–273.

    Google Scholar 

  • Calvo, J.H., Marcos, S., Jurado, J.J. and Serrano, M. (2004). Association of the heart fatty acid-binding protein (FABP3) gene with milk traits in Manchega breed sheep. Anim. Genet. 35(4), 347–349.

    Google Scholar 

  • Caravaca, F., Carrizosa, J., Urrutia, B., Baena, F., Jordana, J., Amills, M., Badaoui, B., Sánchez, A., Angiolillo, A. and Serradilla, J.M. (2009). Effect of αS1-casein (CSN1S1) and κ-casein (CSN3) genotypes on milk composition in Murciano-Granadina goats. J. Dairy Sci. 92, 2960–2964.

    Google Scholar 

  • Carles, C., Huet, J.C. and Ribadeau Dumas, B. (1988). A new strategy for primary structure determination of proteins: Application to β-casein. FEBS Lett. 229, 265–272.

    Google Scholar 

  • Caroli, A. and Erhardt, G. (2004). High polymorphism in the κ-casein (CSN3) gene from wild and domestic caprine species revealed by DNA sequencing. J. Dairy Res. 71, 188–195.

    Google Scholar 

  • Caroli, A., Jann, O., Budelli, E., Bolla, P., Jäger, S. and Erhardt, G. (2001). Genetic polymorphism of goat κ-casein (CSN3) in different breeds and characterization at DNA level. Anim. Genet. 32, 226–230.

    Google Scholar 

  • Caroli, A., Chiatti, F., Chessa, S., Rignanese, D., Bolla, P. and Pagnacco, G. (2006). Focusing on the goat casein complex. J. Dairy Sci. 89, 3178–3187.

    Google Scholar 

  • Caroli, A.M., Chessa, S. and Erhardt, G.J. (2009). Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. J. Dairy Sci. 92, 5335–5352.

    Google Scholar 

  • Caroli, A., Rizzi, R., Lühken, G. and Erhardt, G. (2010). Short communication: milk protein genetic variation and casein haplotype structure in the Original Pinzgauer cattle. J. Dairy Sci. 93(3), 1260–1265.

    Google Scholar 

  • Cases, B., García-Ara, C., Boyano, M.T., Pérez-Gordo, M., Pedrosa. M., Vivanco, F., Quirce, S. and Pastor-Vargas, C. (2011). Phosphorylation reduces the allergenicity of cow casein in children with selective allergy to goat and sheep milk. J. Investig. Allergol. Clin. Immunol. 21(5), 398–400.

    Google Scholar 

  • Cebo, C., Lopez, C., Henry, C., Beauvallet, C., Bevilacqua, C., Caillat, H. and Martin, P. Goat’s as1-casein genotype affects milk fat globules physico-chemical properties and the composition of milk fat globule membrane. J. Dairy Sci. (in press).

    Google Scholar 

  • Cebo, C., Caillat, H., Bouvier, F. and Martin, P. (2010). Major proteins of the goat milk fat globule membrane. J. Dairy Sci. 93, 868–876.

    Google Scholar 

  • Cebo, C. and Martin, P. (2012) Inter-species comparison of milk fat globule membrane proteins highlights the molecular diversity of lactadherin. Int. Dairy J. 24, 70–77.

    Google Scholar 

  • Cebo, C., Rebours, E. Henry, C., Makhzami, S., Cosette, P. and Martin, P. (2012 ) Identification of major milk fat globule membrane proteins from pony mare’s milk highlights the molecular diversity of lactadherin across species. J. Dairy Sci. 95, 1085–1098.

    Google Scholar 

  • Cerbulis, J. and Farrell, H.M., Jr. (1975). Composition of milks of dairy cattle. I. Protein, lactose, and fat contents and distribution of protein fraction. J. Dairy Sci. 58, 817–827.

    Google Scholar 

  • Ceriotti, G., Chessa, S., Bolla, P., Budelli, E., Bianchi, L., Duranti, E. and Caroli, A. (2004). Single nucleotide polymorphisms in the ovine casein genes detected by polymerase chain reaction-single strand conformation polymorphism. J. Dairy Sci. 87, 2606–2613.

    Google Scholar 

  • Ceriotti, G., Chiatti, F., Bolla, P., Martini, M. and Caroli, A. (2005). Genetic variability of the ovine αS1-casein. Ital. J. Anim. Sci. 4, 64–66.

    Google Scholar 

  • Chanat, E., Martin, P. and Ollivier-Bousquet, M. (1999). aS1-casein is required for the efficient transport of beta- and kappa-casein from the endoplasmic reticulum to the Golgi apparatus of mammary epithelial cells. J. Cell Sci. 112, 3399–3412.

    Google Scholar 

  • Chessa, S., Bolla, P., Dario, C., Pieragostini, E., Caroli, A.M. (2003). Genetic milk protein polymorphisms in the Gentile di Puglia ovine breed: monitoring by isoelectric focusing. Sci. Tecn. Latt.-Cas. 54, 191–198.

    Google Scholar 

  • Chessa, S., F. Chiatti, D. Rignanese, G. Ceriotti, A. M. Caroli, and G. Pagnacco. (2008). Analisi in silico delle sequenze caseiniche caprine. Sci. Tecn. Latt. Cas. 59, 71–79.

    Google Scholar 

  • Chessa, S., Rignanese, D., Berbenni, M., Ceriotti, G., Martini, M., Pagnacco, G. and Caroli, A. (2010). New genetic polymorphisms within ovine β- and αS2-caseins. Small Rumin. Res. 88, 84–88.

    Google Scholar 

  • Chianese, L. (1997). The casein variants of ovine milk and the relationships between the as1-casein variants and milk composition, micellar size and cheese yield, in, Caseins and caseinates: Structures, interactions, networks. Hannah symposium. Scotland, United Kingdom.

    Google Scholar 

  • Chianese, L., Garro, G., Addeo, F., Lopez-Galvez, G. and Ramos, M. (1993). Discovery of an ovine αS2-casein variant. J. Dairy Res. 60, 485–493.

    Google Scholar 

  • Chianese, L., Garro, G., Mauriello, R., Laezza, P., Ferranti, P. and Addeo, F. (1996). Occurrence of five αS1-casein variants in ovine milk. J. Dairy Res. 63, 49–59.

    Google Scholar 

  • Chianese, L., Ferranti, P., Garro, G., Mauriello, R. and Addeo, F. (1997a). Occurrence of three novel αS1-casein variants in goat milk. Proceedings IDF Milk Protein Polymorphism Seminar, Palmerston North, New Zealand, pp. 259–267.

    Google Scholar 

  • Chianese, L., Mauriello, R., Ferranti, P., Tripaldi, C., Taibi, L. and Dell’Aquila, S. (1997b). Relationship between αS1-casein variants and clotting capability of ovine milk, in, Milk Protein Polymorphism, International Dairy Federation, Brussels, Belgium, pp. 316–323.

    Google Scholar 

  • Chianese, L., Caira, S., Garro, G., Quarto, M., Mauriello, R. and Addeo, F. (2007a) Occurrence of genetic polymorphism at goat β-CN locus. Proceedings of the 5th international symposium on the challenge to sheep and goats milk sectors (pp. 55–57). Alghero/Sardinia, Italy. International Dairy Federation, Brussels, Belgium.

    Google Scholar 

  • Chianese, L., Caira, S., Garro, G., Lilla, S. and Addeo, F. (2007b). Primary structure of ovine deleted variant αs1-casein E. Proceedings of the 5th international symposium on the challenge to sheep and goats milk sectors (pp. 58–60). Alghero/Sardinia, Italy. International Dairy Federation, Brussels, Belgium.

    Google Scholar 

  • Chiatti, F., Chessa, S., Bolla, P., Cigalino, G., Caroli, A.M. and Pagnacco, G. (2007). Effect of κ-casein polymorphism on milk composition in Orobica goat. J. Dairy Sci. 90, 1962–1966.

    Google Scholar 

  • Chilliard, Y., Rouel, J. and Leroux, C. (2006). Goat’s αs1-casein genotype influences its milk fatty acid composition and delta-9 desaturation ratios. Anim. Feed Sci. Technol. 131, 474–487.

    Google Scholar 

  • Clare, D.A. and Swaisgood, H.E. (2000). Bioactive milk peptides: A prospectus. J. Dairy Sci. 83, 1187–1195.

    Google Scholar 

  • Cohen-Zinder, M., Seroussi, E., Larkin, D.M., Loor, J.J., Wind, A. E.-v. d., Lee, J.-H., Drackley, J. K., Band, M.R., Hernandez, A.G., Shani, M., Lewin, H.A., Weller, J.I. and Ron, M. (2005). Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 15, 936–944.

    Google Scholar 

  • Coll, A., Folch, J.M. and Sanchez, A. (1993). Nucleotide sequence of the goat κ-casein cDNA. J. Anim. Sci. 71, 2833.

    Google Scholar 

  • Conti, A., Napolitano, L., Cantisani, A.M., Davoli, R. and Dall’Olio, S. (1988). Bovine β-lactoglobulin H: isolation by preparative isoelectric focusing in immobilized pH gradients and preliminary characterization. J. Biochem. Biophys. Meth. 16, 205–214.

    Google Scholar 

  • Cosenza, G., Illario, R., Rando, A., Di Gregorio, P., Masina, P. and Ramunno, L. (2003). Molecular characterization of the goat CSN1S101 allele. J. Dairy Res. 70, 237–240.

    Google Scholar 

  • Cosenza, G., Paciullo, A., Colimoro, L., Mancusi, A., Rando, A., Di Berardino, D. and Ramunno, L. (2007). A SNP in the goat CSN2 promoter region is associated with the absence of beta-casein in milk. Anim. Genet. 38, 655–658.

    Google Scholar 

  • Crittenden, R.G. and Bennett, L.E. (2005). Cow’s milk allergy: A complex disorder. J. Am. Coll. Nutr. 24, 582S-591S

    Google Scholar 

  • Cunsolo, V., Galliano, F., Muccilli, V., Saletti, R., Marletta, D., Bordonaro, S. and Foti, S. (2005). Detection and characterization by high performance liquid chromatography and mass spectrometry of a goat β-casein associated with a CSN2 null allele. Rapid Commun. Mass Spectrom. 19, 2943–2949.

    Google Scholar 

  • Cunsolo, V., Muccilli, V., Saletti, R., Marletta, D. and Foti, S. (2006). Detection and characterization by high-performance liquid chromatography and mass spectrometry of two truncated goat alphas2-caseins. Rapid Commun. Mass Spectrom. 20, 1061–1070.

    Google Scholar 

  • Cuollo, M., Caira, S., Fierro, O., Pinto, G., Picariello, G. and Addeo, F. (2010). Toward milk speciation through the monitoring of casein proteotypic peptides. Rapid Commun. Mass Spectrom. 24, 1687–1696.

    Google Scholar 

  • Dagnachew, B.S., Thaller, G., Lien, S. and Ådnøy, T. (2011). Casein SNP in Norwegian goats: additive and dominance effects on milk composition and quality. Genet. Sel. Evol. 43, 31

    Google Scholar 

  • Damiani, G., Florio, S., Budelli, E., Bolla, P. and Caroli, A. (2000). Single nucleotide polymorphisms (SNPs) within Bov-A2 SINE in the second intron of bovine and buffalo κ-casein (CSN3) gene. Anim. Genet. 31, 277–279.

    Google Scholar 

  • Davoli, R., Dall’Olio, S. and Bigi, D. (1987). Una nuova variante di β-lattoglobulina nel latte bovino. Proc. Soc. It. Sci. Vet., Copanello (CZ), Italy 41, 658–662.

    Google Scholar 

  • Dewettinck, K., Rombaut, R., Thienpont, N., Le, T.T., Messens, K. and Van Camp, J. (2008). Nutritional and technological aspects of milk fat globule material. Int. Dairy J. 18, 436–457.

    Google Scholar 

  • Dong, C. and Ng-Kwai-Hang, K.F. (1998). Characterization of a non-electrophoretic genetic variant of β-casein by peptide mapping and mass spectrometric analysis. Int. Dairy J. 8, 967–972.

    Google Scholar 

  • EFSA (2009). Review of the potential health impact of β-casomorphins and related peptides. Scientific Rep. 231, 1–107.

    Google Scholar 

  • Erhardt, G. (1989a). Evidence for a third allele at the β-lactoglobulin (β-Lg) locus of sheep and its occurrence in different breeds. Animal Genet. 20, 197–204

    Google Scholar 

  • Erhardt, G. (1989b). κ-Kasine in rindermilch-nachweis weiterer allels (κ-CN E) in verschiedener rassen. J. Anim. Breed. Genet. 106, 225–231.

    Google Scholar 

  • Farrell, H.M., Jimenez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K., Hicks, C.L., Hollar, C.M., Ng-Kwai-Hang, K.F. and Swaisgood, H.E. (2004). Nomenclature of the proteins of cows’ milk—sixth revision. J. Dairy Sci. 87, 1641–1674.

    Google Scholar 

  • Ferranti, P., Malorni, A., Nitti, G., Laezza, P., Pizzano, R., Chianese, L. and Addeo, F. (1995). Primary structure of ovine αs1-caseins: Localization of phosphorylation sites and characterization of genetic variants A, C and D. J. Dairy Res. 62, 281–296.

    Google Scholar 

  • Ferretti, L., Leone, P. and Sgaramella, V. (1990). Long range restriction analysis of the bovine casein genes. Nucleic Acids Res. 18, 6829–6833.

    Google Scholar 

  • Ferranti, P., Pizzan, R., Garro, G., Caira, S., Chianese, L. and Addeo, F. (2001). Mass spectrometry-based procedure for the identification of ovine casein heterogeneity. J. Dairy Res. 68, 35–51.

    Google Scholar 

  • Fiat, A.M. and Jolles, P. (1989). Caseins of various origins and biologically active casein peptides and oligosaccharides: structural and physiological aspects. Mol. Cell. Biochem. 87, 5–30.

    Google Scholar 

  • Finocchiaro, R., Hayes, B.J., Siwek, M., Spelman, R.J., van Kaam, J.B., Adnøy, T. and Portolano, B. (2008). Comparison of casein haplotypes between two geographically distant European dairy goat breeds. J. Anim. Breed Genet. 125, 68–72.

    Google Scholar 

  • Fong, B.Y., Norris, C.S. and MacGibbon, A.K.H. (2007). Protein and lipid composition of bovine milk-fat-globule membrane. Int. Dairy J. 17, 275–288.

    Google Scholar 

  • Fortunato, D., Giuffrida, M.G., Cavaletto, M., Garoffo, L.P., Dellavalle, G., Napolitano, L., Giunta, C., Fabris, C., Bertino, E., Coscia, A. and Conti, A. (2003). Structural proteome of human colostral fat globule membrane proteins. Proteomics 3, 897–905.

    Google Scholar 

  • Furet, J.P., Mercier, J.C., Soulier, S., Gaye, P., Hue-Delahaie, D. and Vilotte, J.L. (1990). Nucleotide sequence of ovine κ-casein cDNA. Nucleic Acids Res. 18, 5286.

    Google Scholar 

  • Galliano, F., Saletti, R., Cunsolo, V., Foti, S., Marletta, D., Bordonaro, S. and D’Urso, G. (2004). Identification and characterization of a new β-casein variant in goat milk by high-performance liquid chromatography with electrospray ionization mass spectrometry and matrix assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18, 1–11.

    Google Scholar 

  • Ganai, N.A., Bovenhuis, H., van Arendonk, J.A. and Visker, M.H. (2009). Novel polymorphisms in the bovine beta-lactoglobulin gene and their effects on beta-lactoglobulin protein concentration in milk. Anim. Genet. 40, 127–133.

    Google Scholar 

  • Gaye, P., Hue-Delahaie, D., Mercier, J.-C., Soulier, S., Vilotte, J.-L. and Furet, J.-P. (1987). Ovine beta-lactoglobulin messenger RNA: nucleotide sequence and mRNA levels during functional differentiation of the mammary gland. Biochimie 68, 1097–1107.

    Google Scholar 

  • Gendler, S.J., Lancaster, C.A., Taylor-Papadimitriou, J., Duhig, T., Peat, N., Burchell, J., Pemberton, L., Lalani, E.N. and Wilson, D. (1990). Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 265, 15286–15293.

    Google Scholar 

  • Georges, M. (2007). Mapping, fine mapping, and molecular dissection of quantitative trait loci in domestic animals. Annu. Rev. Genomics Hum. Genet. 8, 131–162.

    Google Scholar 

  • Giambra, I.J., Chianese, L., Ferranti, P. and Erhardt, G. (2010a). Molecular genetic characterization of ovine αS1-casein allele H caused by alternative splicing. J. Dairy Sci. 93, 792–795

    Google Scholar 

  • Giambra, I.J., Chianese, L., Ferranti, P. and Erhardt, G. (2010b). Genomics and proteomics of deleted ovine CSN1S1*I. Int. Dairy J. 20, 195–202.

    Google Scholar 

  • Gilad, Y., Pritchard, J.K. and Thornton, K. (2009). Characterizing natural variation using next-generation sequencing technologies. Trends Genet. 25, 463–471.

    Google Scholar 

  • Giuffrida, M.G., Cavaletto, M., Giunta, C., Conti, A. and Godovac-Zimmermann, J. (1998). Isolation and characterization of full and truncated forms of human breast carcinoma protein BA46 from human milk fat globule membranes. J. Protein Chem. 17, 143–148.

    Google Scholar 

  • Goddard, M.E. and Hayes, B.J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Rev. Genet. 10, 381–391.

    Google Scholar 

  • Godovac-Zimmermann, J., Krause, I., Buchberger, J., Weiss, G. and Klostermeyer, H. (1990). Genetic variants of bovine β-lactoglobulin. A novel wild-type β-lactoglobulin W and its primary sequence. Biol. Chem. Hoppe-Seyler 371, 255–260.

    Google Scholar 

  • Godovac-Zimmermann, J., Krause, I., Baranyi, M., Fischer-Frühholz, S., Juszczak, J., Erhardt, G., Buchberger, J. and Klostermeyer, H. (1996). Isolation and rapid sequence characterization of two novel bovine β-lactoglobulins I and J. J. Prot. Chem. 15, 743–750.

    Google Scholar 

  • Gorodetskii, S.I. and Kaledin, A.S. (1987) Analysis of nucleotide sequence of bovine kappa-casein cDNA. Genetika 23, 398–404.

    Google Scholar 

  • Graves, E.L.F., Beaulieu, A.D. and Drackley, J.K. (2007). Factors affecting the concentration of sphingomyelin in bovine milk. J. Dairy Sci. 90, 706–715.

    Google Scholar 

  • Groenen, M.A.M., Dijkhof, R.E.M., Verstege, A.J.M. and van der Poel, J.J. (1993). The complete sequence of the gene encoding bovine αS2-casein. Gene 123, 187–193.

    Google Scholar 

  • Grosclaude, F., Pujolle, J. Garnier, J. and Ribadeau Dumas B. (1965). Déterminisme génétique des caséine k de vache; étroite liaison du locus k-Cn avec les loci as-Cn et b-Cn, C.R. Hebd. Scéances Acad. Sci. 261, 5229–5232.

    Google Scholar 

  • Grosclaude, F., Joudrier, P., Mahé, M.F., (1979). A genetic and biochemical analysis of a polymorphism of bovine αs2-casein. Journal of Dairy Research 46, 211–213.

    Google Scholar 

  • Grosclaude, F. and Martin, P. (1997). Casein polymorphisms in the goat. Proceedings of the International Dairy Federation, Palmerston North, New Zealand, February 1997, pp. 241–253.

    Google Scholar 

  • Grosclaude, F., Mahé, M.F., Mercier, J.C. and Ribadeau Dumas, B. (1972). Caractérisation des variants génétiques des caséines αsl et β bovines. Eur. J. Biochem. 26, 328–337.

    Google Scholar 

  • Grosclaude, F., Mahé, M.F. and Ribadeau Dumas, B. (1973). Structure primaire de la caseine αs1 et de la caseine β-bovine. Eur. J. Biochem 40, 323–324.

    Google Scholar 

  • Grosclaude, F., Mahé, M.F. and Mercier, J.-C. (1974). Comparaison du polymorphisme génétique des lactoprotéines du Zébu et des bovins. Ann Génet. Sél. Anim. 6, 305–329.

    Google Scholar 

  • Grosclaude, F., Ricordeau, G., Martin, P., Remeuf, F., Vassal, L. and Bouillon, J. (1994). Du gène au fromage: le polymorphisme de la caséine αS1 caprine, ses effets, son evolution. INRA Prod. Anim. 7, 3–19.

    Google Scholar 

  • Gupta, S.C., Kumar, D., Pandey, A., Malik, G. and Gupta, N. (2009). New κ-casein alleles in Jakhrana goat affecting milk processing properties. Food Biotechnol. 23, 83–96

    Google Scholar 

  • Haenlein, G.F. (2001). Past, present, and future perspectives of small ruminant dairy research. J. Dairy Sci. 84, 2097–2115.

    Google Scholar 

  • Häggqvist, B., Näslund, J., Sletten, K., Westermark, G.T., Mucchiano, G., Tjernberg, L.O., Nordstedt, C., Engström, U. and Westermark, P. (1999). Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc. Natl. Acad. Sci. USA. 96, 8669–8674.

    Google Scholar 

  • Han, S.K., Shin, Y.C. and Byun, H.D. (2000). Biochemical, molecular and physiological characterization of a new β-casein variant detected in Korean cattle. Anim. Genet. 31, 49–51.

    Google Scholar 

  • Hanayama, R. and Nagata, S. (2005). Impaired involution of mammary glands in the absence of milk fat globule EGF factor 8. Proc. Natl. Acad. Sci. USA. 102, 16886–16891.

    Google Scholar 

  • Hanisch, F.G. (2011). Top-down sequencing of O-glycoproteins by in-source decay matrix-assisted laser desorption ionization mass spectrometry for glycosylation site analysis. Anal. Chem. 83, 4829–4837.

    Google Scholar 

  • Hayes, B., Hagesæther, N., Ådnøy, T., Pellerud, G., Berg, P.R. and Lien, S. (2006). Effects on production traits of haplotypes among casein genes in Norwegian goats and evidence for a site of preferential recombination. Genetics 174, 455–464.

    Google Scholar 

  • Hayes, M., Ross, R.P., Fitzgerald, G.F., and Stanton, C. (2007). Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part I: overview. Biotechnol. J. 2, 426–434.

    Google Scholar 

  • Hayes, B.J., Bowman, P.J., Chamberlain, A.J., Goddard, M.E. (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92, 433–443.

    Google Scholar 

  • Heck, J.M., Schennink, A., van Valenberg, H.J., Bovenhuis, H., Visker, M.H., van Arendonk, J.A., van Hooijdonk, A.C. (2009). Effects of milk protein variants on the protein composition of bovine milk. J. Dairy Sci. 92, 1192–1202.

    Google Scholar 

  • Heid, H.W. and Keenan, T.W. (2005). Intracellular origin and secretion of milk fat globules. Eur. J. Cell Biol. 84, 245–258.

    Google Scholar 

  • Hens, J.R., Rogers, G.W., Huott, M.L. and Patton, S. (1995). Associations of the epithelial mucin, PAS-1, with yield, health, and reproductive traits in Holstein dairy cows. J. Dairy Sci. 78, 2473–2480.

    Google Scholar 

  • Hettinga, K., van Valenberg, H., de Vries, S., Boeren, S., van Hooijdonk, T., van Arendonk, J. and Vervoort, J. (2011). The host defense proteome of human and bovine milk. PLoS ONE 6, e19433.

    Google Scholar 

  • Hu, C., Wu, C., Tsai, H., Chang, S., Tsai, W. and Hsu, P. (2009). Genetic polymorphism in milk fat globule-EGF factor 8 (MFG-E8) is associated with systemic lupus erythematosus in human. Lupus 18, 676–681.

    Google Scholar 

  • Huott, M., Josephson, R., Hens, J., Rogers, G. and Patton, S. (1995). Polymorphic forms of the epithelial mucin, PAS-I (MUC1), in milk of Holstein cows (Bos taurus). Comp. Biochem. Physiol. Part B: Biochem. Molecular Biol. 111(4), 559–565.

    Google Scholar 

  • Huott, M., Josephson, R., Hens, J., Rogers, G. and Patton, S. (1995). Polymorphic forms of the epithelial mucin, PAS-I (MUC1), in milk of Holstein cows (Bos taurus). Comp. Biochem. Physiol. Part B: Biochem. Molecular Biol. 111(4), 559–565.

    Google Scholar 

  • Hurley, W.L. and Schuler, L.A. (1987). Molecular cloning and nucleotide sequence of a bovine α-lactalbumin cDNA. Gene. 61, 119–123.

    Google Scholar 

  • Ibeagha-Awemu, E.M., Prinzenberg, E.-M., Jann, O.C., Lühken, G., Ibeagha, A.E., Zhao, X. and Erhardt, G. (2007). Molecular characterization of bovine CSN1S2B and extensive distribution of zebu specific milk protein alleles in European cattle. J. Dairy Sci. 90, 3522–3529.

    Google Scholar 

  • Ikonen, T., Bovenhuis, H., Ojala, M., Ruottine,n O. and Georges, M. (2001). Associations between casein haplotypes and first lactation milk production traits in Finnish Ayrshire cows. J. Dairy Sci. 84, 507–514.

    Google Scholar 

  • Jann, O., Ceriotti, G., Caroli, A. and Erhardt, G. (2002). A new variant in exon VII of the bovine β-casein gene (CSN2) and its distribution among European cattle breeds. J. Anim. Breed. Genet. 119, 65–68

    Google Scholar 

  • Jann, O., Prinzenberg, E.-M., Luikart, G., Caroli, A. and Erhardt, G. (2004). High polymorphism in the kappa-casein (CSN3) gene from wild and domestic caprine species revealed by DNA sequencing. J. Dairy Res. 71, 188–195.

    Google Scholar 

  • Jansà-Perez, M.J., Leroux, C., Bonastre, A.S. and Martin, P. (1994). Occurrence of a LINE sequence in the 3′ UTR of the goat αS1-casein E-encoding allele associated with reduced protein synthesis level. Gene 147, 179–187.

    Google Scholar 

  • Jiang, X.P., Liu, G.Q., Wang, C., Mao, Y.J., Xiong, Y.Z., (2004). Milk trait heritability and correlation with heterozygosity in yak. J Appl Genet. 45, 215–224.

    Google Scholar 

  • Jollès, J., Schoentgen, F., Hermann, J., Alais, C. and Jollès, P. (1974a) The sequence of sheep kappa-casein: primary structure of para-kappa A casein. Eur. J. Biochem. 46, 127–132.

    Google Scholar 

  • Jollès, J., Fiat, A.M., Schoentgen, F., Alais, C. and Jollès, P. (1974b) The amino acid sequence of sheep κA-casein. II Sequence studies concerning the κA-caseinoglycopeptide and establishment of the complete primary structure of the protein. Biochim. Biophys. Acta 365, 335–343.

    Google Scholar 

  • Kerstens, H.H., Crooijmans, R.P., Dibbits, B.W., Vereijken, A., Okimoto, R. and Groenen, M.A. (2011). Structural variation in the chicken genome identified by paired-end next-generation DNA sequencing of reduced representation libraries. BMC Genomics 12, 94

    Google Scholar 

  • Kim, J.S., Braunschweig, M. and Puhan, Z. (1996). Occurrence of extreme ratio of β-lactoglobulin variants A and B in Swiss Brown cattle quantified by capillary electrophoresis. Milchwissenschaft 51, 435–438.

    Google Scholar 

  • Kiplagat, S.K., Agaba, M., Kosgey, I.S., Okeyo, M., Indetie, D., Hanotte, O. and Limo, M.K. (2010). Genetic polymorphism of kappa-casein gene in indigenous Eastern Africa goat populations. Int. J. Genet. Mol. Biol. 2, 1–5.

    Google Scholar 

  • Kitts, D.D. and Weiler, K. (2003). Bioactive proteins and peptides from food sources: Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 9, 1309–1323.

    Google Scholar 

  • Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. J. Func. Foods 1, 177–187.

    Google Scholar 

  • Lagonigro, R., Pietrosa, E., D’Andrea, M., Veltri, C. and Pilla, F. (2001). Molecular genetic characterization of the goat αS2-casein E allele. Anim. Genet. 32, 391–393.

    Google Scholar 

  • Lenasi, T., Peterlin, B.M. and Dovc, P. (2006). Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1. RNA. 12, 498–507.

    Google Scholar 

  • Leroux, C., Martin, P., Mahé, M.F., Levéziel, H. and Mercier, J.C. (1990). Restriction fragment length polymorphism identification of goat αs1-cnsein alleles: a potential tool in selection of individuals carrying alleles associated with a high level protein synthesis. Anim. Genet. 21, 341–351.

    Google Scholar 

  • Leroux, C., Mazure, N. and Martin, P. (1992). Mutation away from splice site recognition sequences might cis-modulate alternative splicing of goat αs1-casein transcripts. Structural organization of the relevant gene. J. Biol. Chem. 267, 6147–6157.

    Google Scholar 

  • Liao, Y., Du, X. and Lönnerdal, B. (2010). miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells. J Nutr. 140, 1552–1556.

    Google Scholar 

  • Lopez, C., Briard-Bion, V., Menard, O., Rousseau, F., Pradel, P. and Besle, J.-M. (2008). Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. J. Agric. Food Chem. 56, 5226–5236.

    Google Scholar 

  • Lühken, G., Caroli, A., Ibeagha-Awemu, E.M. and Erhardt, G. (2009). Characterization and genetic analysis of bovine αs1-casein I variant. Anim. Genet. 40, 479–485.

    Google Scholar 

  • MacManaman, J. L., Russel, T.D., Schaack, J., Orlicky, D.J. and Robenek, H. (2007). Molecular determinants of milk lipid secretion. J. Mammary Gland Biol. Neoplasia 12, 259–268.

    Google Scholar 

  • Mahé, M.F. and Grosclaude, F. (1982). Polymorphisme de la caséine αs2 des bovins: Characterization du variant C du yak (Bos grunniens). Ann. Genet. Sel. Anim. 14, 401–416.

    Google Scholar 

  • Mahé, M.F. and Grosclaude, F. (1989). αs1-casein D, another allele associated with a decreased synthesis rate at the caprine αs1-casein locus. Génét. Sél. Evol. 21, 127–129.

    Google Scholar 

  • Mahé, M.F. and Grosclaude, F. (1993). Polymorphism of β-casein in the Creole goat of Guadeloupe: evidence for a null allele. Génét. Sél. Evol. 25, 403–408.

    Google Scholar 

  • Mahé, M.F., Queval, R., Bado, A., Zafindrajaona, P.S. and Grosclaude, F. (1999). Genetic polymorphism of milk proteins in African Bos taurus and Bos indicus populations. Characterization of variants αs1-casein H and κ-Cn J. Genet. Sel. Evol. 31, 239–253.

    Google Scholar 

  • Mani, O., Korner, M., Ontsouka, C. E., Sorensen, M.T., Sejrsen, K., Bruckmaier, R.M. and Albrecht, C. (2011). Identification of ABCA1 and ABCG1 in milk fat globules and mammary cells: Implications for milk cholesterol secretion. J. Dairy Sci. 94, 1265–1276.

    Google Scholar 

  • Mariani, P., Summer, A, Anghinetti, A., Senese, C., Di Gregorio, P., Rando, P. and Serventi, P. (1995). Effects of the αsl-CN G allele on the percentage distribution of caseins αs1-, αS2-, β-, and κ- in Italian Brown cows. Ind. Latte 31, 3–13.

    Google Scholar 

  • Marletta, D., Bordonaro, S., Guastella, A.M., Falagiani, P., Crimi, N. and D’Urso, G. (2004). Goat milk with different αs2-casein content: Analysis of allergenic potency by REAST-inhibition assay. Small Rumin. Res. 52, 19–24.

    Google Scholar 

  • Marletta, D., Criscione, A., Bordonaro, S., Guastella, A.M. and D’Urso, G. (2007). Casein polymorphism in goat’s milk. Lait 87, 491–504.

    Google Scholar 

  • Martin, P. and Leroux, C. (1994). Characterization of a further αs1-casein variant generated by exon skipping. Proceedings XXIV International Conference on Animal Genetics, Prague, CZ, Abs E. 43, p. 88.

    Google Scholar 

  • Martin, P., Szymanowska, M., Zwierzchowski, L. and Leroux, C. (2002). The impact of genetic polymorphisms on the protein composition of ruminant milks. Reprod. Nutr. Dev. 42, 433–459.

    Google Scholar 

  • Mather, I.H. (2000). A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci. 83, 203–247.

    Google Scholar 

  • Mather, I.H. and Keenan, T.W. (1998). Origin and secretion of milk lipids. J. Mamm. Gland Biol. Neoplasia 3, 259–273.

    Google Scholar 

  • Meisel, H. and Fitzgerald, R.J. (2003). Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Curr. Pharm. Design 9, 1289–1295.

    Google Scholar 

  • Mercier, J.C., Grosclaude, F. and Ribadeau Dumas, B. (1971). Structure primaire de la caséine αs1 bovine. Sequence complete. Eur. J. Biochem . 23, 41–51.

    Google Scholar 

  • Meuwissen, T.H.E., Hayes, B.J. and Goddard, M.E. (2001). Prediction of total genetic value using genome wide dense marker maps. Genetics 157, 1819–1829.

    Google Scholar 

  • Miranda, G., Anglade, P., Mahé, M.-F. and Erhardt, G. (1993). Biochemical characterization of the bovine genetic kappa-casein C and E variants. Anim. Genet. 4, 27–31.

    Google Scholar 

  • Miranda, G., Mahé, M.F., Leroux, C. and Martin, P. (2004). Proteomic tools to characterize the protein fraction of Equidae milk. Proteomics 4, 2496–2509.

    Google Scholar 

  • Moatsou, G., Mollé, D., Moschopoulou, E. and Gagnaire, V. (2007). Study of caprine b-casein using reversed phase high performance liquid chromatography and mass spectroscopy: identification of a new genetic variant. Protein J. 26, 562–568.

    Google Scholar 

  • Morris, C., Cullen, N., Glass, B., Hyndman, D., Manley, T., Hickey, S., McEwan, J., Pitchford, W., Bottema, C. and Lee, M. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mammal. Genome 18, 64–74.

    Google Scholar 

  • Nagao, M., Maki, M., Sasaki, R. and Chiba, H. (1984). Isolation and sequence analysis of bovine αs1-casein cDNA clone. Agric. Biol. Chem. 48, 1663–1667.

    Google Scholar 

  • Neveu, C., Mollé, D., Moreno, F.J., Martin, P. and Léonil, J. (2002a). Heterogeneity of caprine beta casein elucidated by RP-HPLC/MS: genetic variants and phosphorylations. J. Protein Chem. 21, 557–567.

    Google Scholar 

  • Neveu, C., Riaublanc, A., Miranda, G., Chich, J.F. and Martin, P. (2002b). Is the apocrine milk secretion process observed in the goat species rooted in the perturbation of the intracellular transport mechanism induced by defective alleles at the as1-casein locus? Reprod. Nutr. Dev. 42, 163–172.

    Google Scholar 

  • Ng-Kwai-Hang, K.F. and Grosclaude, F. (1992) Genetic polymorphism of milk proteins, in, Advanced Dairy Chemistry, Vol 1: Proteins, P.F. Fox ed., Elsevier Applied Science, New York, NY, pp. 405–455.

    Google Scholar 

  • Ng-Kwai-Hang, K.F. and Grosclaude, F. (2003). Genetic polymorphism of milk proteins, in, Advanced Dairy Chemistry, Volume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 737–814.

    Google Scholar 

  • Nicolaou, N., Xu, Y. and Goodacre, R. (2011). MALDI-MS and multivariate analysis for the detection and quantification of different milk species. Anal. Bioanal. Chem. 399, 3491–3502.

    Google Scholar 

  • Nilsen, H., Olsen, H.G., Hayes, B., Sehested, E., Svendsen, M., Nome, T., Meuwissen, T. and Lien, S. (2009). Casein haplotypes and their association with milk production traits in Norwegian Red cattle. Genet. Sel. Evol. 41, 24.

    Google Scholar 

  • Norberg, S., O’Connor, P.M., Stanton, C., Ross, R.P., Hill, C., Fitzgerald, G.F. and Cotter, P.D. (2011). Altering the composition of caseicins a and b as a means of determining the contribution of specific residues to antimicrobial activity. Appl. Environ. Microbiol. 77, 2496–2501.

    Google Scholar 

  • Ogg, S. L., Weldon, A.K., Dobbie, L., Smith, A.J. and Mather, I.H. (2006). Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc. Natl. Acad. Sci. USA. 101, 10084–10089.

    Google Scholar 

  • Olsen, H. G., Lien, S.R., Gautier, M., Nilsen, H., Roseth, A., Berg, P.R., Sundsaasen, K.K., Svendsen, M. and Meuwissen, T.H.E. (2005). Mapping of a milk production quantitative trait locus to a 420-kb region on bovine chromosome 6. Genetics 169, 275–283.

    Google Scholar 

  • Olsen, H.G., Nilsen, H., Hayes, B., Berg, P.R., Svendsen, M., Lien, S. and Meuwissen, T. (2007). Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle. BMC Genet. 8, 32.

    Google Scholar 

  • Oshima, K., Aoki, N., Negi, M., Kishi, M., Kitajima, K. and Matsuda, T. (1999). Lactation-dependent expression of an mRNA splice variant with an exon for a multiply O-glycosylated domain of mouse milk fat globule glycoprotein MFG-E8. Biochem. Biophys. Res. Commun. 254, 522–528.

    Google Scholar 

  • Pallesen, L.T., Andersen, M.H., Nielsen, R.L., Berglund, L., Petersen, T.E., Rasmussen, L.K. and Rasmussen, J.T. (2001). Purification of MUC1 from bovine milk-fat globules and characterization of a corresponding full-length cDNA clone. J. Dairy Sci. 84, 2591–2598.

    Google Scholar 

  • Patton, S. (1999). Some practical implications of the milk mucins. J. Dairy Sci. 82, 1115–1117.

    Google Scholar 

  • Patton, S. and Patton, R.S. (1990). Genetic Polymorphism of PAS-I, the mucin-like glycoprotein of bovine milk fat globule membrane. J. Dairy Sci. 73, 3567–3574.

    Google Scholar 

  • Persuy, M.A., Printz, C., Medrano, J.F. and Mercier, J.C. (1996). One mutation might be responsible for the absence of beta-casein in two breeds of goats. Anim. Genet. 27, 96.

    Google Scholar 

  • Persuy, M.A., Printz, C., Medrano, J.F. and Mercier, J.C. (1999). A single nucleotide deletion resulting in a premature stop codon is associated with marked reduction of transcripts from a goat beta-casein null allele. Anim. Genet. 30, 444–451.

    Google Scholar 

  • Peterson, R.F. and Kopfler, F.C. (1966). Detection of new types of β-casein by polyacrylamide gel electrophoresis at acid pH: a proposed nomenclature. Biochem. Biophys. Res. Commun. 22, 388–392

    Google Scholar 

  • Picariello, G., Rignanese, D., Chessa, S., Ceriotti, G., Trani, A., Caroli, A. and Di Luccia, A. (2009a). Characterization and genetic study of the ovine αs2-casein (CSN1S2) allele B. Protein J. 28, 333–340.

    Google Scholar 

  • Picariello, G., Ferranti, P., Caira, S., Fierro, O., Chianese, L. and Addeo, F. (2009b) Fast screening and quantitative evaluation of internally deleted goat αs1-casein variants by mass spectrometric detection of the signature peptides. Rapid Commun. Mass Spectrom. 23, 775–787.

    Google Scholar 

  • Pierre, A., Mollé, D. and Zahoute, L. (2001). Characteri­zation of the casein variants in goat bulk milks using on-line RP-HPLC/ESI-MS. Lait 81, 667–678.

    Google Scholar 

  • Pirisi, A., Piredda, G., Papoff, C.M., Di Salvo, R., Pintus, S., Garro, G., Ferranti, P. and Chianese, L. (1999). Effects of sheep αs1-casein CC, CD and DD genotypes on milk composition and cheesemaking properties. J. Dairy Res. 66, 409–419.

    Google Scholar 

  • Pisano, A., Packer, N.H., Redmond, J.W., Williams, K.L. and Gooley, A.A. (1994). Characterization of O-linked glycosylation motifs in the glycopeptide domain of bovine κ-casein. Glycobiology 4, 837–844

    Google Scholar 

  • Pisanu, S., Ghisaura, S., Pagnozzi, D., Biosa, G., Tanca, A., Roggio, T., Uzzau, S. and Addis, M.F. (2011). The sheep milk fat globule membrane proteome. J. Proteome. 74, 350–358.

    Google Scholar 

  • Prinzenberg, E.M., Hiendleder, S., Ikonen, T. and Erhardt, G. (1996). Molecular genetic characterization of new bovine κ-casein alleles CSN3-F and CSN3-G and genotyping by PCR-RFLP. Anim. Genet. 27, 347–349.

    Google Scholar 

  • Prinzenberg, E.M., Anglade, P., Ribadeau Dumas, B. and Erhardt, G. (1998). Biochemical characterization of bovine αs1-casein F and genotyping with sequence-specific primers. J. Dairy Res. 65, 223–231.

    Google Scholar 

  • Prinzenberg, E. M., Krause, I. and Erhardt, G. (1999). SCCP analysis of the bovine CSN3 locus discriminates six alleles corresponding to known protein variants (A, B, C, E, F, G) and three new DNA polymorphism (H, I, A1). Anim. Biotechnol. 10, 49–62.

    Google Scholar 

  • Prinzenberg, E.-M. and Erhardt, G. (1999). Molecular genetic characterization of ovine β-lactoglobulin C allele and detection by PCR-RFLP. J. Animal Breeding and Genetics. 116, 9–14.

    Google Scholar 

  • Prinzenberg, E.M., Gutscher, K., Chessa, S., Caroli, A. and Erhardt, G. (2005). Caprine κ-casein (CSN3) polymorphism: new developments of the molecular knowledge. J. Dairy Sci. 88, 1490–1498.

    Google Scholar 

  • Prinzenberg, E.-M., Jianlin, H. and Erhardt, G. (2008). Genetic variation in the κ-casein gene (CSN3) of Chinese yak (Bos grunniens) and phylogenetic analysis of CSN3 sequences in the genus Bos. J. Dairy Sci. 91, 1198–1203.

    Google Scholar 

  • Provot, C., Persuy, M.A. and Mercier, J.C. (1989). Complete nucleotide sequence of ovine β-casein cDNA: Inter-species comparison. Biochimie 71, 827–832.

    Google Scholar 

  • Provot, C., Persuy, M.A. and Mercier, J.C. (1995). Complete sequence of the ovine β-casein gene. Gene 154, 259–263.

    Google Scholar 

  • Qu, Y., Liu, Y., Ma, L., Sweeney, S., Lan, X., Chen, Z., Li, Z., Lei, C. and Chen, H. (2010). Novel SNPs of butyrophilin (BTN1A1) and milk fat globule epidermal growth factor (EGF) 8 (MFG-E8) are associated with milk traits in dairy goat. Mol. Biol. Rep. 38, 371–377.

    Google Scholar 

  • Ramunno, L., Mariani, P., Pappalardo, M., Rando, A., Capuano, M., Di Gregorio, P. and Cosenza G. (1995). Un gene a effetto maggiore sul contenuto di caseina β nel latte di capra. Atti XI Congresso Nazionale ASPA. 19–22 Giugno, Grado, Italia, pp. 185–186.

    Google Scholar 

  • Ramunno, L., Longobardi, E., Pappalardo, M., Rando, A., Di Gregorio, P., Conzenza, G., Mariani, P., Pastore, N. and Masina, P. (2001a) An allele associated with a non-detectable amount of αs2-casein in goat milk. Anim. Genet. 32, 19–26.

    Google Scholar 

  • Ramunno, L., Cosenza, G., Pappalardo, M., Longobardi, E., Gallo, D., Pastore, N., Di Gregorio, P. and Rando, A. (2001b) Characterization of two new alleles at the goat CSN1S2 locus. Anim. Genet. 32, 264–268.

    Google Scholar 

  • Ramunno, L., Cosenza, G., Rando, A., Illario, R., Gallo, D., Di Berardino, D. and Masina, P. (2004). The goat αs1-casein gene: gene structure and promoter analysis. Gene 334, 105–111.

    Google Scholar 

  • Ramunno, L., Cosenza, G., Rando, A., Pauciullo, A., Illario, R., Gallo, D., Di Berardino, D. and Masina, P. (2005). Comparative analysis of gene sequence of goat CSN1S1 F and N alleles and characterization of CSN1S1 transcript variants in mammary gland. Gene 345, 289–299.

    Google Scholar 

  • Rando, A., Pappalardo, M., Capuano, M., Di Gregorio, P. and Rammuno, L. (1996). Two mutations might be responsible for the absence of β-casein in goat milk. Anim. Genet. 27(Suppl. 2), 31.

    Google Scholar 

  • Rando, A., Di Gregorio, P., Ramunno, L., Mariani, P., Fiorelle, A., Sense, C., Marletta, D. and Masina, P. (1998). Characterization of the CSN1AG allele of the bovine αs1-casein locus by the insertion of a relict of a long interspersed element. J. Dairy Sci. 81, 1735–1742.

    Google Scholar 

  • Rasero, R., Sacchi, P., Rosati, S., Cauvin, E. and Maione, S. (2002). Molecular analysis of the length polymorphic MUC1 gene in cattle. J. Anim. Breed. Genet. 119, 342–349.

    Google Scholar 

  • Rasero, R., Bianchi, L., Cauvin, E., Maione, S., Sartore, S., Soglia, D. and Sacchi, P. (2007). Analysis of the sheep MUC1 gene: structure of the repetitive region and polymorphism. J. Dairy Sci. 90, 1024–1028.

    Google Scholar 

  • Rasmussen, L.K., Højrup, P. and Petersen, T.E. (1994). Disulphide arrangement in bovine caseins: localization of intrachain disulphide bridges in monomers of k- and αs2-casein from bovine milk. J. Dairy Res. 61, 485–493.

    Google Scholar 

  • Raymond, A., Ensslin, M. and Shur, B. (2009). SED1/MFG-E8: A Bi-Motif protein that orchestrates diverse cellular interactions. J. Cell. Biochem. 106, 957–966.

    Google Scholar 

  • Recio, I., Fernandez-Fournier, A., Martin-Alvarez, P.J. and Ramos, M. (1997a) β-Lactoglobulin polymorphism in ovine breeds. influence on cheesemaking properties and milk composition. Lait 77, 259–265.

    Google Scholar 

  • Recio, I., Perez-Rodriguez, M.L., Ramos, M. and Amigo, L. (1997b) Capillary electrophoretic analysis of genetic variants of milk proteins from different species. J. Chromatogr. A. 768, 47–56.

    Google Scholar 

  • Recio, I., Ramos, M. and Amigo, L. (1997c) Study of the polymorphism of ovine αs1- and αs2-caseins by capillary electrophoresis. J. Dairy Res. 64, 525–534.

    Google Scholar 

  • Reinhardt, T.A. and Lippolis, J. (2006). Bovine milk fat globule membrane proteome. J. Dairy Res. 73, 406–416.

    Google Scholar 

  • Rhodes, D.A., Stammers, M., Malcherek, G., Beck, S. and Trowsdale, J. (2001). The cluster of BTN genes in the extended major histocompatibility complex. Genomics 71, 351–362.

    Google Scholar 

  • Ribadeau Dumas, B., Brignon, G., Grosclaude, F. and Mercier, J.C. (1972). Structure primaire de la caséine β bovine. Eur. J. Biochem 25, 505–514.

    Google Scholar 

  • Richardson, B.C. and Creamer, L.K. (1975). Comparative micelle structure: IV. The similarity between caprine αs-casein and bovine αs3-casein. Biochim. Biophys. Acta (BBA) - Protein Struct. 393, 37–47.

    Google Scholar 

  • Richardson, B.C. and Mercier, J.C. (1979). The primary structure of the ovine beta-caseins. Eur. J. Biochem. 99, 285–297

    Google Scholar 

  • Robenek, H., Hofnagel, O., Buers, I., Lorkowski, S., Schnoor, M., Robenek, M.J., Heid, H., Troyer, D. and Severs, N.J. (2006a) Butyrophilin controls milk fat globule secretion. Proc. Natl. Acad. Sci. USA. 103, 10385–10390.

    Google Scholar 

  • Robenek, H., Hofnagel, O., Buers, I., Robenek, M.J., Troyer, D. and Severs, N.J. (2006b) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J. Cell Sci. 119, 4215–4224.

    Google Scholar 

  • Roberts, B.T., Di Tullio, P., Vitale, J., Hehir, K. and Gordon, K. (1992). Cloning of the goat β-casein coding gene and expression in transgenic mice. Gene 121, 255–262.

    Google Scholar 

  • Robitaille, G., Britten, M., Morisset, J. and Petitclerc, D. (2005). Polymorphism in the bovine kappa-casein (CSN3) gene and the 5’-flanking region: sequence analysis of CSN3 A and B alleles. Anim. Genet. 36, 184–185.

    Google Scholar 

  • Ron, M., Cohen-Zinder, M., Peter, C., Weller, J.I. and Erhardt, G. (2006). Short Communication: A Polymorphism in ABCG2 in Bos indicus and Bos taurus cattle breeds. J. Dairy Sci. 89, 4921–4923.

    Google Scholar 

  • Rout, P.K., Kumar, A., Mandal, A., Laloe, D., Singh, S.K. and Roy, R. (2010). Characterization of casein gene complex and genetic diversity analysis in Indian goats. Anim. Biotechnol. 21, 122–134.

    Google Scholar 

  • Roy, R., Gautier, M., Hayes, H., Laurent, P., Osta, R., Zaragoza, P., Eggen, A. and Rodellar, C. (2001). Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell Genet. 93, 141–142.

    Google Scholar 

  • Roy, R., Ordovas, L., Zaragoza, P., Romero, A., Moreno, C., Altarriba, J. and Rodellar, C. (2006). Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim Genet. 37, 215–218.

    Google Scholar 

  • Russo, V., Davoli, R., Dall’Olio, S. and Tedeschi, M. (1986). Ricerche sul polimorfismo del latte caprino. Zootec. Nutr. Anim. 12, 55–62.

    Google Scholar 

  • Sacchi, P., Macchi, E., Rasero, R. and Fiandra, P. (1995). Two new variants of the bovine PAS-1 glycoprotein. Anim Genet. 26, 197–198.

    Google Scholar 

  • Sacchi, P., Caroli, A., Cauvin, E., Maione, S., Sartore, S., Soglia, D. and Rasero, R. (2004). Analysis of the MUC1 gene and its polymorphism in Capra hircus. J. Dairy Sci. 87, 3017–3021.

    Google Scholar 

  • Sacchi, P., Chessa, S., Budelli, E., Bolla, P., Ceriotti, G., Soglia, D., Rasero, R., Cauvin, E. and Caroli, A. (2005). Casein haplotype structure in five Italian goat breeds. J. Dairy Sci. 88, 1561–1568.

    Google Scholar 

  • Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Google Scholar 

  • Sando, L., Pearson, R., Gray, C., Parker, P., Hawken, R., Thomson, P.C., Meadows, J.R.S., Kongsuwan, K., Smith, S. and Tellam, R.L. (2009). Bovine Muc1 is a highly polymorphic gene encoding an extensively glycosylated mucin that binds bacteria. J. Dairy Sci. 92, 5276–5291.

    Google Scholar 

  • Schennink, A., Bovenhuis, H., Léon-Kloosterziel, K.M., van Arendonk, J.A.M. and Visker, M.H.P.W. (2009). Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Anim. Genet. 40, 909–916.

    Google Scholar 

  • Schmidt, D.V. and Ebner, K.E. (1972). Multiple forms of pig, sheep and goat α-lactalbumin. Biochim. Biophys. Acta. 18, 714–720.

    Google Scholar 

  • Schopen, G.C., Heck, J.M., Bovenhuis, H., Visker, M.H., van Valenberg. H.J., van Arendonk, J.A. (2009). Genetic parameters for major milk proteins in Dutch Holstein-Friesians. J. Dairy Sci. 92, 1182–1191.

    Google Scholar 

  • Schopen, G.C., Visker, M.H., Koks. P.D., Mullaart, E., van Arendonk. J.A., Bovenhuis, H. (2011). Whole-genome association study for milk protein composition in dairy cattle. J. Dairy Sci. 94, 3148–3158.

    Google Scholar 

  • Schroten, H. (1998). The benefits of human milk fat globule against infection. Nutrition 14, 52–53.

    Google Scholar 

  • Senocq, D., Mollé, D., Pochet, S., Léonil, J., Dupont, D. and Levieux, D. (2002). A new bovine β-casein genetic variant characterized by a Met93  >  Leu93 substitution in the sequence A2. Lait 82, 171–180.

    Google Scholar 

  • Shah, H. (2000). Effects of milk-derived bioactives: an overview. Br. J. Nutr. 84, 3–10.

    Google Scholar 

  • Shi, J.L. and Gilbert, G.E. (2003). Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood 101(7): 2628–2636.

    Google Scholar 

  • Shi, J.L., Heegaard, C.W., Rasmussen, J.T. and Gilbert, G.E. (2004). Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim. Biophys. Acta 1667, 82–90.

    Google Scholar 

  • Sodeland, M., Grove, H., Kent, M., Taylor, S., Svendsen, M., Hayes, B.J. and Lien, S. (2011). Molecular characterization of a long range haplotype affecting protein yield and mastitis susceptibility in Norwegian Red cattle. BMC Genet. 12:70.

    Google Scholar 

  • Spicer, A.P., Parry, G., Patton, S. and Gendler, S.J. (1991). Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. J. Biol. Chem. 266, 15099–15109.

    Google Scholar 

  • Stewart, A.F., Willis, I.M. and Mackinlay, A.G. (1984). Nucleotide sequence of bovine αs1- and κ-casein cDNAs. Nucleic Acid Res. 12, 3895–3907.

    Google Scholar 

  • Stewart, A.F., Bonsing, J., Beattie, C.W., Shah, F., Willis, I.M. and Mackinlay, A.G. (1987). Complete nucleotide sequences of bovine αs2- and β-casein cDNAs: Comparisons with related sequences in other species. Mol. Biol. Evol. 4, 231–241.

    Google Scholar 

  • Storch, J. and Thumser, A.E. (2010). Tissue-specific functions in the fatty acid-binding protein family. J. Biol. Chem. 285, 32679–32683.

    Google Scholar 

  • Stranger, B.E., Forrest, M.S., Dunning, M., Ingle, C.E., Beazley, C., Thorne, N., Redon, R., Bird, C.P., Grassi, A.D., Lee, C., Tyler-Smith, C., Carter, N., Scherer, S.W., Tavaré, S., Deloukas, P., Hurles, M.E. and Dermitzakis, E.T. (2007). Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853.

    Google Scholar 

  • Sulimova, G.E., Sokolova, S.S., Semikozova, O.P., Nguet, L.M. and Berberov, E.M. (1992). Analysis of DNA polymorphisms of clustered genes in cattle: casein genes and genes of the major histocompatibility complex (BOLA). Tsitol. I Genet. 26, 18–26.

    Google Scholar 

  • Sulimova, G.E., Badagueva, I.N. and Udina, I.G. (1996). Polymorphism of the κ-casein gene in subfamilies of the Bovidae. Genetika (Moskva) 32, 1576–1582.

    Google Scholar 

  • Tadlaoui Ouafi, A., Babilliot, J.-M., Leroux, C. and Martin, P. (2002). Genetic diversity of the two main Moroccan goat breeds: Phylogenetic relationships with four breeds reared in France. Small Rumin. Res. 45, 225–233.

    Google Scholar 

  • Tantia, M., Vijh, R., Mishra, B., Mishra, B., Kumar, S.T.B. and Sodhi, M. (2006). DGAT1 and ABCG2 polymorphism in Indian cattle (Bos indicus) and buffalo (Bubalus bubalis) breeds. BMC Vet. Res. 2, 32.

    Google Scholar 

  • Taylor, M., Couto, J., Scallan, C., Ceriani, R. and Peterson, J. (1997). Lactadherin (formerly BA46), a membrane-associated glycoprotein expressed in human milk and breast carcinomas, promotes Arg-Gly-Asp (RGD)-dependent cell adhesion. DNA Cell Biol. 16, 861–869.

    Google Scholar 

  • Threadgill, D.W. and Womack, J.E. (1990). Genomic analysis of the major bovine casein genes. Nucleic Acids Res. 18, 6935–6942.

    Google Scholar 

  • Truswell, A.S. (2005). The A2 milk case: a critical review. Eur. J. Clin. Nutr. 59, 623–631.

    Google Scholar 

  • Tulipano, G., Bulgari, O., Chessa, S., Nardone, A., Cocchi, D. and Caroli, A. (2010). Direct effects of casein phosphopeptides on growth and differentiation of in vitro cultured osteoblastic cells (MC3T3-E1). Regul. Pept. 160, 168–174.

    Google Scholar 

  • van Herwaarden, A.E., Wagenaar, E., Merino, G., Jonker, J.W., Rosing, H., Beijnen, J.H. and Schinkel, A.H. (2007). Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol. Cell. Biol. 27, 1247–1253.

    Google Scholar 

  • Visker, M.H., Heck, J.M., van Valenberg, H.J., van Arendonk, J.A. and Bovenhuis H. (2012). Short communication: A new bovine milk-protein variant: a-lactalbumin variant D. J Dairy Sci. 95, 2165–2169.

    Google Scholar 

  • Visser, S., van Rooijen, P.J., Schattenkerk, C. and Kerling, K.E.T. (1976). Peptide substrates for chymosin (rennin). Kinetic studies with peptides of different chain lenght including parts of the sequence 101–112 of bovine κ-casein. Biochim. Biophys. Acta (BBA) - Enzymology. 438, 265–272.

    Google Scholar 

  • Visser, S., Slangen, C.J., Lagerwerf, F.M., van Dongen, W.D. and Haverkamp, J. (1995). Identification of a new genetic variant of bovine β-casein using reversed-phase high-performance liquid chromatography and mass spectrometric analysis. J. Chromatogr. A. 711, 141–150.

    Google Scholar 

  • Voglino, G.F. (1972). A new β-casein variant in Piedmont cattle. Anim. Blood Groups. Biochem. Genet. 3, 61–62.

    Google Scholar 

  • Wal, J.-M. (2004). Bovine milk allergenicity. Ann. Allergy Asthma Immunol. 93, 2–11.

    Google Scholar 

  • Wang, M., Scott, W.A., Rao, K.R., Udey, J., Conner, G.E. and Brew, K. (1989). Recombinant bovine alpha-­lactalbumin obtained by limited proteolysis of a fusion protein expressed at high levels in Escherichia coli. J. Biol. Chem. 264, 21116–21121.

    Google Scholar 

  • Weimann, C., Meisel, H. and Erhardt, G. (2009). Short communication: Bovine κ-casein variants result in different angiotensin I converting enzyme (ACE) inhibitory peptides. J. Dairy Sci. 92, 1885–1888.

    Google Scholar 

  • Wooding, F.B.P., Peaker, M. and Linzell, J.L. (1970). Theories of milk secretion: evidence from the electron microscopic examination of milk. Nature 226, 762–764.

    Google Scholar 

  • Wu, S., Yang, F., Zhao, R., Tolić, N., Robinson, E.W., Camp, D.G., 2nd, Smith, R.D. and Pasa-Tolić, L. (2009). Integrated workflow for characterizing intact phosphoproteins from complex mixtures. Anal. Chem. 81, 4210–4219.

    Google Scholar 

  • Yahyaoui, M.H., Coll, A., Sanchez, A. and Folch, J.M. (2001). Genetic polymorphism of the caprine κ-casein gene. J. Dairy Res. 68, 209–216.

    Google Scholar 

  • Yahyaoui, M.H., Angiolillo, A., Pilla, F., Sanchez, A. and Folch, J.M. (2003). Characterization and genotyping of the caprine κ-casein variants. J. Dairy Sci. 86, 2715–2720.

    Google Scholar 

  • Yamaguchi, H., Fujimoto, T., Nakamura, S., Ohmura, K., Mimori, T., Matsuda, F. and Nagata, S. (2010). Aberrant splicing of the milk fat globule-EGF factor 8 (MFG-E8) gene in human systemic lupus erythematosus. Eur. J. Immunol. 40, 1778–1785.

    Google Scholar 

  • Yan, S.C.B. and Wold, F. (1984). Neoglycoproteins: In vitro introduction of glycosyl units at glutamines in β-casein using transglutaminase. Biochemistry 23, 3759–3765.

    Google Scholar 

  • Yue, W., Fang, X., Zhang, C., Pang, Y., Xu, H., Gu, C., Shao, R., Lei, C. and Chen, H. (2011). Two novel SNPs of the ABCG2 gene and its associations with milk traits in Chinese Holsteins. Mol. Biol. Reports 38, 2927–2932.

    Google Scholar 

  • Zhang, F., Gu, W., Hurles, M.E. and Lupski, J.R. (2009). Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481.

    Google Scholar 

  • Zhang, Z.D., Du, J., Lam, H., Abyzov, A., Urban. A.E., Snyder. M. and Gerstein. M. (2011). Identification of genomic indels and structural variations using split reads. BMC Genomics 12, 375.

    Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of François Grosclaude on his untimely death.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, P., Bianchi, L., Cebo, C., Miranda, G. (2013). Genetic Polymorphism of Milk Proteins. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_15

Download citation

Publish with us

Policies and ethics