Skip to main content

Interspecies Comparison of Milk Proteins: Quantitative Variability and Molecular Diversity

  • Chapter
  • First Online:

Abstract

The primary focus of this chapter will be interspecies comparisons of milk proteins (caseins and major whey proteins but also proteins associated to the milk fat globule membrane) in terms of quantitative and structural (amino acid sequence and posttranslational modifications) variability. Within species variability has been also considered and particular attention paid to defects in the processing of primary transcripts (cryptic splice site usage and exon-skipping events) which contribute to protein diversity and evolution. Finally, developments in analytical tools, including genome sequencing, that have facilitated continued progress in the comprehensive characterization of the milk proteome complexity, and consequences of milk protein diversity in terms of functional properties are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Exon 8 if we adopt, for comparative purposes, a generic exon numbering valid for all species for which CSN1S1 gene sequence is known. Otherwise it is exon 7 in the mice gene.

  2. 2.

    Referring to the mature protein sequence.

  3. 3.

    Refers to tandem repeats of exon 16, using the generic exon numbering valid for all species.

References

  • Aleandri, R., Buttazzoni, L.G., Schneider, J.C., Caroli, A. and Davoli, R. (1990). The effects of milk protein polymorphisms on milk components and cheese-producing ability. J. Dairy Sci. 73, 241–255.

    Article  Google Scholar 

  • Alexander, L.J., Das Gupta, N.A. and Beattie, C.W. (1992). The sequence of porcine αs1-casein cDNA. Anim. Genet. 23, 365–367.

    Article  CAS  Google Scholar 

  • Alexander, L.J., Stewart, A.F., MacKinlay, A.G., Kapelinskaya, T.V., Tkach, T.M. and Gorodesky, S.I. (1988). Isolation and characterization of the bovine kappa-casein gene. Eur. J. Biochem. 178, 395–401.

    Article  CAS  Google Scholar 

  • Baker, E.N. and Baker, H.M. (2009). A structural framework for understanding the multifunctional character of lactoferrin. Biochimie 91, 3–10.

    Article  CAS  Google Scholar 

  • Bal dit Solier, C., Drouet, L., Pignaud, G., Chevallier, C., Caen, J., Fiat A.-M., Izquierdo, C. and Jollès, P. (1996). Effect of kappa-casein split peptides on platelet aggregation and on thrombus formation in the guinea pig. Thromb. Res. 81, 427–437.

    Google Scholar 

  • Baranyi, M., Aszodi, A., Devinoy, E., Fontaine, M.L., Houbedine, L.M. and Bosze, Z. (1996). Structure of the rabbit κ-casein encoding gene: expression of the cloned gene in the mammary gland of transgenic mice. Gene 174, 27–34.

    Google Scholar 

  • Bevilacqua, C., Helbling, J.C., Miranda, G. and Martin, P. (2006). Translational efficiency of casein transcripts in the mammary tissue of lactating ruminants. Reprod. Nutr. Dev. 46, 567–578.

    Article  CAS  Google Scholar 

  • Bhattacharya, T. K., Sheikh, F. D., Sukla, S., Kumar, P. and Sharma, A. (2007). Differences of ovine butyrophilin gene (exon 8) from its bovine and bubaline counterpart. Small Ruminant Res. 69, 198–202.

    Article  Google Scholar 

  • Bingle, L., Cross, S.S., High, A.S., Wallace, W.A., Rassl, D., Yuan, G., Hellstrom, I., Campos, M.A. and Bingle, C.D. (2006). WFDC2 (HE4): a potential role in the innate immunity of the oral cavity and respiratory tract and the development of adenocarcinomas of the lung. Respir. Res. 7, 61–70.

    Article  CAS  Google Scholar 

  • Bleck, G.T. and Bremel, R.D. (1993a). Correlation of the α-lactalbumin (+15) polymorphism to milk production and milk composition of Holsteins. J. Dairy Sci. 76, 2292–2298.

    Article  CAS  Google Scholar 

  • Bleck, G.T. and Bremel, R.D. (1993b). Sequence and single base polymorphisms of the bovine α-lactalbumin 5’ flanking region. Gene 126, 213–218.

    Article  CAS  Google Scholar 

  • Bloomfield, V.A. (1979). Association of protein. J. Dairy Res. 46, 241–252.

    Article  CAS  Google Scholar 

  • Boisnard, M., Hue, D., Bouniol, C., Mercier, J.-C. and Gaye, P. (1991). Multiple mRNA species code for two non-allelic forms of ovine αs2-casein. Eur. J. Biochem. 201, 633–641.

    Google Scholar 

  • Bonsing, J., Ring, J.M., Stewart, A.F. and MacKinlay, A.G. (1988). Complete nucleotide sequence of the bovine beta-casein gene. Aust. J. Biol. Sci. 41, 527–537.

    CAS  Google Scholar 

  • Bouniol, C., Printz, C. and Mercier, J.-C. (1993). Bovine αs2-casein D is generated by exon VIII skipping. Gene 128, 289–293.

    Google Scholar 

  • Braunschweig, M.H. and Leeb, T. (2006). Aberrant low expression level of bovine beta-lactoglobulin is associated with a C to A transversion in the BLG promoter region. J. Dairy Sci. 89, 4414–4419.

    Article  CAS  Google Scholar 

  • Brew, K. (2003). α-Lactalbumin, in, Advanced Dairy Chemistry, Proteins, part A, Vol. 1, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York. pp. 387–419.

    Google Scholar 

  • Brew, K. and Hill, R.L. (1975). Lactose biosynthesis. Rev. Physiol. Biochem. Pharmacol. 72, 105–158.

    Article  CAS  Google Scholar 

  • Brignon, G., Mahé, M.F., Grosclaude, F. and Ribadeau Dumas, B. (1989). Sequence of caprine αs1-casein and characterization of those of its genetic variants which are synthesized at a high level, αs1-CN A, B and C. Protein Seq. Data Anal. 2, 181–188.

    CAS  Google Scholar 

  • Brignon, G., Ribadeau Dumas, B., Mercier, J.C., Pélissier, J.P. and Das, B.C. (1977). Complete amino acid sequence of bovine alpha S2-casein. FEBS Lett. 76, 274–279.

    Article  CAS  Google Scholar 

  • Buchheim, W., Lund, S. and Scholtissek, K. (1989). Comparative studies on the structure and size of casein micelles in the milk of different species, Kieler Milchwirtschaftliche Forschungsberichte 41, 253–266.

    CAS  Google Scholar 

  • Campana, W. M., Josephson, R. V. and Patton, S. (1992). Presence and genetic polymorphism of an epithelial mucin in milk of the goat (Capra hircus). Comp. Biochem. Physiol. 103B, 261–266.

    CAS  Google Scholar 

  • Cebo, C., Caillat, H., Bouvier, F. and Martin, P. (2009). Major proteins of the goat milk fat globule membrane. J. Dairy Sci. 93, 868–876.

    Google Scholar 

  • Ceriotti, G., Chessa, S., Bolla, P., Budelli, E., Bianchi, L., Duranti, E. and Caroli, A. (2004). Single nucleotide polymorphisms in the ovine casein genes detected by polymerase chain reaction-single strand conformation polymorphism. J. Dairy Sci. 87, 2606–2613.

    Article  CAS  Google Scholar 

  • Chanat, E., Martin, P. and Ollivier-Bousquet, M. (1999). Alpha(S1)-casein is required for the efficient transport of beta- and kappa-casein from the endoplasmic reticulum to the Golgi apparatus of mammary epithelial cells. J. Cell Sci. 112, 3399–412.

    CAS  Google Scholar 

  • Chianese, L., Garro, G., Mauriello, R., Laezza, P., Ferranti, P. and Addeo, F. (1996). Occurrence of five αs1-casein variants in ovine milk. J. Dairy Res. 63, 49–59.

    Article  CAS  Google Scholar 

  • Chianese, L., Garro, G., Nicola, M.A., Mauriello, R., Ferranti, P., Pizzano, R., Cappuccio, U., Laezza, P., Addeo, F., Ramunno, L., Rando, A. and Rubino, R. (1993). The nature of β casein heterogeneity in caprine milk. Lait 73, 533–547.

    Google Scholar 

  • Chilliard, Y., Rouel, J. and Leroux, C. (2006). Goat’s alpha s1 casein genotype influences its milk fatty acid composition and delta-9 desaturation ratios. Anim. Feed Sci. Technol. 131, 474–487.

    Article  CAS  Google Scholar 

  • Clare, D.A. and Swaisgood, H.E. (2000). Bioactive milk peptides: a prospectus. J. Dairy Sci. 83, 11871195.

    Article  CAS  Google Scholar 

  • Coll, A., Folch, J.M. and Sanchez, A. (1995). Structural features of the 5’ flanking region of the caprine kappa-casein gene. J. Dairy Sci. 78, 973–977.

    Article  CAS  Google Scholar 

  • Collet, C., Joseph, R. and Nicholas, K.J. (1992). Molecular characterization and in vitro hormonal requirements for expression of two casein genes from a marsupial. Mol. Endocrinol. 8, 13–20.

    Article  CAS  Google Scholar 

  • Condorelli, G., Bueno, R. and Smith, R.J. (1994). Two alternative splice forms of the human insulin-like growth factor I receptor have distinct biological activities and internalization kinetics. J. Biol. Chem. 269, 8510–8516.

    CAS  Google Scholar 

  • Costa, N., Mendes, N., Marcos, N., Reis, C., Caffrey, T., Hollingsworth, M. and Santos-Silva, F. (2008). Relevance of MUC1 mucin variable number of tandem repeats polymorphism in H pylori adhesion to gastric epithelial cells. World J. Gastroenterol. 14, 1411–1414.

    Article  Google Scholar 

  • Cronin, M.A., Stuart, R., Pierson, B.J. and Patton, J.C. (1996). κ-Casein gene phylogeny of higher ruminants (Pecora artiodactyla). Mol. Phylogenet. Evol. 6, 295–311.

    Google Scholar 

  • Dalgleish, D.G., Horne, D.S. and Law, A.J.R. (1989). Size-related differences in bovine casein micelles. Biochim. Biophys. Acta. 991, 383–387.

    Article  CAS  Google Scholar 

  • Dalgleish, D. G., Spagnuolo, P. A. and Goff, H. D. (2004). A possible structure of the casein micelle based on high-resolution scanning electron microscopy. Int. Dairy J. 14, 1025–1031.

    Article  CAS  Google Scholar 

  • Davies, D.T. and Law, A.J.R. (1983). Variation in the protein composition of bovine casein micelles and serum casein in relation to micellar size and milk temperature. J. Dairy Res. 56, 727–735.

    Google Scholar 

  • Dawson, S.P., Wilde, C.J., Tighe, P.J. and Mayer, R.J. (1993). Characterization of two novel casein transcripts in rabbit mammary gland. Biochem. J. 296, 777–784.

    CAS  Google Scholar 

  • Dev, B.C., Sood, S.M., DeWind, S. and Slattery, C.W. (1994). κ-Casein and β-caseins in human milk micelles: structural studies. Arch. Biochem. Biophys. 314, 329–336.

    Article  CAS  Google Scholar 

  • Dewettinck, K., Rombaut, R., Thienpont, N., Le, T.T., Messens, K. and Van Camp, J. (2008). Nutritional and technological aspects of milk fat globule material. Int. Dairy J. 18, 436–457.

    Article  CAS  Google Scholar 

  • Dong, L.-J., Hsieh, J.-C. and Chung A.E. (1995). Two distinct cell attachment sites in entactin are revealed by amino acid substitutions and deletion of the RGD sequence in the cysteine-rich epidermal growth factor repeat 2. J. Biol. Chem. 270, 15838–15843.

    Article  CAS  Google Scholar 

  • Donnelly, W.J., McNeill, G.P., Buchheim, W. and McGann, T.C.A. (1984). A comprehensive study of the relationship between size and protein composition in natural bovine casein micelles. Biochim. Biophys. Acta 789, 136–143.

    Article  CAS  Google Scholar 

  • Dosako, S., Taneya, S., Kimura, T., Ohmori, T., Daikoku, H., Suzuki, N., Sawa, J., Kano, K. and Katayama, S. (1983). Milk of northern fur seal: composition, especially carbohydrate and protein. J. Dairy Sci. 66, 2076–2083.

    Article  CAS  Google Scholar 

  • Edlund, A., Johansson, T., Ledvik, B. and Hansson, L. (1996). Structure of the human kappa-casein gene. Gene 174, 65–69.

    Article  CAS  Google Scholar 

  • Ensslin, M., Vogel, T., Calvete, J.J., Thole, H.H., Schmidtke, J., Matsuda, T. and Töpfer-Petersen, E. (1998). Molecular cloning and characterization of P47, a novel boar sperm-associated zona pellucida-binding protein homologous to a family of mammalian secretory proteins. Biol. Reprod. 58, 1057–1064.

    Article  CAS  Google Scholar 

  • Erhardt, G. (1989). Isolierung und charaktrisierung von caseinfraktionen sowie deren genetische varianten in schweinamilch. Milchwissenschaft 44, 17–20.

    CAS  Google Scholar 

  • Farkye, N.Y. (2003). Other enzymes, in, Advanced Dairy Chemistry, Vol. 1 - Proteins, 3rd edn., part A, P.F. Fox and P.L.H. McSweeney eds., Kluwer Academic/Plenum Publishers, New York. pp. 571–603.

    Google Scholar 

  • Farrell, H.M., Jr., Jimenez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K., Hicks, C.L., Hollar, C.M., Ng-Kwai-Hang, K.F. and Swaisgood, H.E. (2004). Nomenclature of the proteins of cow’s milk - Sixth Revision. J. Dairy Sci. 87, 1641–1674.

    Article  CAS  Google Scholar 

  • Ferranti, P., Lilla, S., Chianese, L. and Addeo, F. (1999). Alternative nonallelic deletion is constitutive of ruminant as1-casein. J. Protein Chem. 18, 595–602.

    Google Scholar 

  • Ferranti, P., Addeo, F., Malorni, A., Chianese, L., Leroux, C. and Martin P. (1997). Differential splicing of pre-messenger RNA produces multiple forms of goat αs1-casein. Eur. J. Biochem. 249, 1–7.

    Google Scholar 

  • Ferranti, P., Malorni, A., Nitti, G., Laezza., P., Pizzano, R., Chianese, L. and Addeo, F. (1995). Primary structure of ovine αs1-casein: localization of phosphorylation sites and characterization of genetic variants. J. Dairy Res. 62, 281–296.

    Google Scholar 

  • Fiat, A.-M. and Jolles, P. (1989). Caseins of various origin and biologically active casein peptides and oligosaccharides: structural and physiological aspects. Mol. Cell. Biochem. 87, 5–30.

    Article  CAS  Google Scholar 

  • Fiat, A.-M., Jolles, J., Aubert, J.-P., Loucheux-Lefèbre, M.-H. and Jolles, P. (1980). Localisation and importance of the sugars part of human casein. Eur. J. Biochem. 111, 333–339.

    Article  CAS  Google Scholar 

  • Folch, J.M., Dovc, P. and Medrano, J.F. (1999). Differential expression of bovine β-lactoglobulin A and B promoter variants in transiently transfected HC11 cells. J. Dairy Res. 66, 537–544.

    Google Scholar 

  • Foster, P.A., Fulcher, C.A., Houghten, R.A. and Zimmerman, T.S. (1990). Synthetic factor VIII peptides with amino acid sequences contained within the C2 domain of factor VIII inhibit factor VIII binding to phosphatidylserine. Blood 75, 1999–2004.

    CAS  Google Scholar 

  • Gatesy, J., Hayashi, C., Cronin, M.A. and Arctander, P. (1996). Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol. Biol. Evol. 13, 954–963.

    Article  CAS  Google Scholar 

  • Geldermann, H., Gogol, J., Kock, M. and Tacea, G. (1996). DNA variants within the 5’ flanking region of bovine milk protein encoding genes. J. Anim. Breed. Genet. 113, 261–267.

    Article  Google Scholar 

  • Gendler, S.J., Lancaster, C.A., Taylor-Papadimitriou, J., Duhig, T., Peat, N., Burchell, J., Pemberton, L., Lalani, E.N. and Wilson, D. (1990). Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 265, 15286–15293.

    CAS  Google Scholar 

  • Ginger, M.R. and Grigor, M.R. (1999). Comparative aspects of milk caseins. Comp. Biochem. Physiol. 124, 133–145.

    CAS  Google Scholar 

  • Giuffrida, M.G., Cavaletto, M., Giunta, C., Conti, A. and Godovac-Zimmermann, J. (1998). Isolation and characterization of full and truncated forms of human breast carcinoma protein BA46 from human milk fat globule membranes. J. Protein Chem. 17, 143–148.

    Article  CAS  Google Scholar 

  • Grabowski, H., Le Bars, D., Chene, N., Attal, J., Malienou-Ngassa, R., Puissant, C. and Houdebine, L.M. (1991). Rabbit whey acid protein concentration in milk, serum, mammary gland extract and culture medium. J. Dairy Sci. 74, 4143–4150.

    Article  CAS  Google Scholar 

  • Graml, R., Weiss, G., Buchberger, J. and Pirchner, F. (1989). Different rates of synthesis of whey protein and casein by alleles of the β-lactoglobulin and αs1-casein locus in cattle. Genet. Sel. Evol. 21, 547–554.

    Google Scholar 

  • Groenen, M.A.M., Dijkhof, R.J.M., Verstege, A.J.M. and van der Poel, J.J. (1993). The complete sequence of the gene encoding bovine alpha-s2-casein. Gene 123, 187–193.

    Article  CAS  Google Scholar 

  • Grosclaude, F., Ricordeau, G., Martin, P., Remeuf, F., Vassal, L. and Bouillon, J. (1994). Du gène au fromage: le polymorphisme de la caséine αs1 caprine, ses effets, son évolution. Product. Anim. 7, 3–19.

    Google Scholar 

  • Grusby, M.J., Mitchell, S.C., Nabavi, N. and Glimcher, L.H. (1990). Casein expression in cytotoxic T lymphocytes. Proc. Natl. Acad., Sci., U.S.A. 87, 6897–6901.

    Google Scholar 

  • Gustafsson, A., Kacskovics, I., Breimer, M.E., Hammarstrom, L. and Holgersson, J. (2005). Carbohydrate phenotyping of human and animal milk glycoproteins. Glycoconjugate J. 22, 109–118.

    Article  CAS  Google Scholar 

  • Hajjoubi, S., Rival-Gervier, S., Hayes, H., Floriot, S., Eggen, A., Piumi, F., Chardon, P., Houdebine, L.M. and Thépot, D. (2006). Ruminants genome no longer contains whey acidic protein gene but only a pseudogene. Gene 370, 104–112.

    Article  CAS  Google Scholar 

  • Hall, L., Laird, J.E., Pascall, J.C. and Craig, R.K. (1984a). Guinea-pig casein A cDNA. Nucleotide sequence analysis and comparison of the deduced protein sequence with that of bovine alpha s2 casein. Eur. J. Biochem. 138, 585–589.

    Article  CAS  Google Scholar 

  • Hall, L., Laird, J.E. and Craig, R.K. (1984b). Nucleotide sequence determination of guinea-pig casein B mRNA reveals homology with bovine and rat alpha s1 caseins and conservation of the non-coding regions of the mRNA. Biochem J. 222, 561–570.

    CAS  Google Scholar 

  • Hallén, E., Wedholm, A., Andrén, A. and Lundén, A. (2008). Effect of beta-casein, kappa-casein and beta-lactoglobulin genotypes on concentration of milk protein variants. J. Anim. Breed Genet. 125, 119–129.

    Article  Google Scholar 

  • Hansson, L., Edlund, A., Johansson, T., Hernell, O., Strömqvist, M., Lindqvist, S., Lönnerdal, B. and Bergström, S. (1994). Structure of the human β-casein gene. Gene 139, 193–199.

    Google Scholar 

  • Hayashi, Y., Ohmori, S., Ito, T. and Seo, H. (1997). A splicing variant of steroid receptor coactivator-1 (SRC-1E): the major isoform of SRC-1 to mediate thyroid hormone action. Biochem. Biophys. Res. Commun. 236, 83–87.

    Article  CAS  Google Scholar 

  • Hayes, H., Petit, E., Bouniol, C. and Popescu, P. (1993). Localisation of the alpha-S2-casein gene (CASAS2) to the homologous cattle, sheep and goat chromosomes 4 by in situ hybridization. Cytogenet. Cell. Genet. 64, 282–285.

    Article  Google Scholar 

  • Hayes, B., Hagesaether, N., Adnøy, T., Pellerud, G., Berg, P.R. and Lien, S. (2006). Effects on production traits of haplotypes among casein genes in Norwegian goats and evidence for a site of preferential recombination.Genetics 174, 455–464.

    Article  CAS  Google Scholar 

  • Heck, J.M., Schennink, A., van Valenberg, H.J., Bovenhuis, H., Visker, M.H., van Arendonk, J.A. and van Hooijdonk, A.C. (2009). Effects of milk protein variants on the protein composition of bovine milk. J. Dairy Sci. 92, 1192–1202.

    Article  CAS  Google Scholar 

  • Hennighausen, L.G. and Sippel, A.E. (1982). Mouse whey acidic protein is a novel member of the family of ‘four-disulfide core’ proteins. Nucleic Acids Res. 10, 2677–2684.

    Article  CAS  Google Scholar 

  • Hennighausen, L.G., Steudle, A. and Sippel, A.E. (1982). Nucleotide sequence of cloned cDNA coding for mouse ε-casein. Eur. J. Biochem. 126, 569–572.

    Google Scholar 

  • Heth, A.A. and Swaisgood, H.E. (1982). Examination of casein micelle structure by a method for reversible covalent immobilization. J. Dairy Sci. 65, 2047.

    Article  CAS  Google Scholar 

  • Hiraoka, Y., Segawa, T., Kuwajima, K., Sugai, S. and Murai, N. (1980). α-Lactalbumin: a calcium metalloprotein. Biochem. Biophys. Res. Commun. 95, 1098–1104.

    Google Scholar 

  • Hobbs, A.A. and Rosen, J.M. (1982). Sequence of rat α- and γ-casein mRNAs: evolutionary comparison of the calcium-dependent rat casein multigene family. Nucleic Acid Res. 10, 8079–8098.

    Google Scholar 

  • Holland, J.W., Deeth, H.C. and Alewood, P.F. (2004a). Proteomic analysis of kappa-casein micro- heterogeneity. Proteomics 4, 743–752.

    Article  CAS  Google Scholar 

  • Holland, J.W., Deeth, H.C. and Alewood, P.F. (2004b). Resolution and characterisation of multiple isoforms of bovine kappa-casein by 2-DE following a reversible cysteine-tagging enrichment strategy. Proteomics 6, 3087–3095.

    Article  CAS  Google Scholar 

  • Holt, C. (1985). The size distribution of bovine casein micelles: A review. Food Microstructure 4, 1–10.

    CAS  Google Scholar 

  • Holt, C. (1992). Structure an stability of bovine casein micelles. Advances Prot. Chem. 43, 63–151.

    Article  CAS  Google Scholar 

  • Holt, C. and Jenness, R. (1987) Interrelationships of constituents and partition of salts in milk samples from eight species. Comp Biochem Physiol A Comp Physiol. 77, 275–282.

    Article  Google Scholar 

  • Holt, C. and Sawyer, L. (1988). Primary and predicted secondary structures of the caseins in relation to their biological functions. Prot. Eng. 2, 251–259.

    Article  CAS  Google Scholar 

  • Hvarregaard, J., Andersen M.H., Berglund, L., Rasmussen, J.T. and Petersen, T.E. (1996) Characterization of glycoprotein PAS-6/7 from membranes of bovine milk fat globules. Eur. J. Biochem. 240, 628–636.

    Article  CAS  Google Scholar 

  • Jenness, R. (1974) Proceedings: biosynthesis and composition of milk. J Invest Dermatol. 63, 109–118.

    Article  CAS  Google Scholar 

  • Jeong, J., Rao, A.U., Xu, J., Ogg, S.L., Hathout, Y., Fenselau, C. and Mather, I.H. (2009) The PRY/SPRY/B30.2 domain of butyrophilin 1A1 (BTN1A1) binds to xanthine oxidoreductase: implications for the function of BTN1A1 in the mammary gland and other tissues. J. Biol. Chem. 284, 22444–22456.

    Article  CAS  Google Scholar 

  • Johnsen, L.B., Rasmussen, L.K., Petersen, T.E. and Berglung, L. (1995) Characterization of three types of human αs1-casein mRNA transcripts. Biochem. J. 309, 237–242.

    Google Scholar 

  • Jollès P. and Fiat, A.-M. (1979) The carbohydrate portions of milk glycoprotein. J. Dairy Res. 46, 187–191.

    Article  Google Scholar 

  • Jollès, P., Loucheux-Lefebvre, M.H. and Henschen, A. (1978) Structural relatedness of kappa-casein and fibrinogen gamma-chain. J. Mol. Evol. 11, 271277.

    Article  Google Scholar 

  • Jolivet, G., Devinoy, E., Fontaine, M.L. and Houdebine, L.M. (1992) Structure of the gene encoding rabbit alpha S1-casein. Gene 113, 257–262.

    Article  CAS  Google Scholar 

  • Jones, W.K., Yu-Lee, L.Y., Clift, S.M., Brown, T.L. and Rosen, J.M. (1985) The rat casein multigene family. Fine structure and evolution of the β-casein gene, J. Biol. Chem. 260, 7042–7050.

    Google Scholar 

  • Kang, J.F., Li, X.L., Zhou, R.Y., Li, L.H., Feng, F.J. and Guo, X.L. (2008) Bioinformatics analysis of lactoferrin gene for several species. Biochem Genet. 46, 312–322.

    Article  CAS  Google Scholar 

  • Kappeler, S., Farah, Z. and Puhan, Z. (1998) Sequence analysis of Camelus dromedarius milk casein. J. Dairy Res. 65, 209–222.

    Article  CAS  Google Scholar 

  • Kawasaki, K. and Weiss, K.M. (2003) Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proc. Natl. Acad. Sci. U.S.A. 100, 4060–4065.

    Google Scholar 

  • Keenan, T.W. and Mather, I.H. (2006) Intracellular origin of milk fat globules and the nature of the milk fat globule membrane, in, Advanced Dairy Chemistry—2. Lipids, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Springer Science+Business Media, LLC, New York. pp. 137–171.

    Google Scholar 

  • Kestler, D.P., Foster, J.S., Macy, S.D., Murphy, C.L., Weiss, D.T. and Solomon, A. (2008) Expression of odontogenic ameloblast-associated protein (ODAM) in dental and other epithelial neoplasms. Mol Med. 14, 318–326.

    Article  CAS  Google Scholar 

  • Koczan, D., Hobom, G. and Seyfert, H.M. (1991) Genomic organization of the bovine αs1-casein gene. Nucleic Acids Res. 18, 5591–5596.

    Google Scholar 

  • Kontopidis, G., Holt, C. and Sawyer, L. (2004) Invited review: beta-lactoglobulin: binding properties, structure, and function. J Dairy Sci. 87, 785–796.

    Article  CAS  Google Scholar 

  • Kvistgaard, A.S., Pallesen, L.T., Arias, C.F., Lopez, S., Petersen, T.E., Heegaard, C.W. and Rasmussen, J.T. (2004) Inhibitory effects of human and bovine milk constituents on rotavirus infections. J. Dairy Sci. 87, 4088–4096.

    Article  CAS  Google Scholar 

  • Lamberet, G., Degas, C., Delacroix-Buchet, A. and Vassal, L. (1996) Effect of characters linked to A and F caprine αs1-casein alleles on goat flavour: cheesemaking with protein-fat exchange. Lait 76, 349–361.

    Article  CAS  Google Scholar 

  • Lear, T.L., Brandon, R., Masel, A., Bell, K. and Bailey, E. (1999) Horse alpha-1-antitrypsin, beta-lactoglobulins 1 and 2, and transferrin map to positions 24q15-q16, 28q18-qter, 28q18-qter and 16q23, respectively. Chromosome Res. 7, 667.

    Article  CAS  Google Scholar 

  • Lefèvre, C.M., Sharp, J.A. and Nicholas K.R. (2009) Characterisation of monotreme caseins reveals lineage specific expansion of an ancestral casein locus in mammals. Reprod Fertil Dev. 21, 1015–1027.

    Article  CAS  Google Scholar 

  • Legrand, D., Pierce, A., Elass, E., Carpentier, M., Mariller, C. and Mazurier, J. (2008) Lactoferrin structure and functions. Adv. Exp. Med. Biol. 606, 163–194.

    Article  CAS  Google Scholar 

  • Lemay, D.G., Lynn, D.J., Martin, W.F., Neville, M.C., Casey, T.M., Rincon, G., Kriventseva, E.V., Barris, W.C., Hinrichs, A.S., Molenaar, A.J., Pollard, K.S., Maqbool, N.J., Singh, K., Murney, R., Zdobnov, E.M., Tellam, R.L., Medrano, J.F., German, J.B. and Rijnkels, M. (2009) The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol. 10(4) R43.

    Article  CAS  Google Scholar 

  • Lenasi, T., Peterlin, B.M., Dovc, P. (2006) Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1. RNA 12, 498–507.

    Article  CAS  Google Scholar 

  • Le Provost, F., Nocart, M., Guerin, G. and Martin, P. (1994) Characterization of the goat lactoferrin cDNA: assignment of the relevant locus to bovine U12 synteny group. Biochem. Biophys. Res. Commun. 203, 1324–1332.

    Article  Google Scholar 

  • Leroux, C. and Martin, P. (1996) The caprine αs1- and β-casein genes are 12-kb apart and convergently transcribed. Anim. Genet. 27, 93.

    Google Scholar 

  • Leroux, C. (1992) Analyse du polymorphisme du gène caprin codant la caséine α s1 et des produits de sa transcription. Application au développement d’une procédure de typage précoce des animaux, PhD. Thesis—Université d’Orsay-Paris XI.

    Google Scholar 

  • Leroux, C., Mazure, N. and Martin, P. (1992) Mutation away from splice site recognition sequences might cis-modulate alternative splicing of goat αs1-casein transcript. Structural organization of the relevant gene. J. Biol. Chem. 267, 6147–6157.

    Google Scholar 

  • Martin, P. (1993) Polymorphisme génétique des lactoprotéines caprines. Lait 73, 511–532.

    Article  CAS  Google Scholar 

  • Martin, P. and Grosclaude, F. (1993) Improvement of milk protein quality by gene technology. Livestock Prod. Sci. 35, 95–115.

    Article  Google Scholar 

  • Martin, P. and Leroux, C. (1992) Exon-skipping is responsible for the 9 amino acid residue deletion occurring near the N-terminal of human β-casein. Biochem. Biophys. Res. Commun. 183, 750–757.

    Google Scholar 

  • Martin, P. and Leroux, C. (1994) Characterization of a further αs1-casein variant generated by exon skipping. Proc. 24 th Int. Soc. Anim. Genet. Conf., Prague, Abstract E43, 88.

    Google Scholar 

  • Martin, P., Brignon, G., Furet, J.-P. and Leroux, C. (1996) The gene encoding αs1-casein is expressed in human mammary epithelial cells during lactation. Lait 76, 523–535.

    Article  CAS  Google Scholar 

  • Martin, P., Ollivier-Bousquet, M. and Grosclaude, F. (1999) Genetic polymorphism of caseins: a tool to investigate casein micelle organization. Int. Dairy J. 9, 163–171.

    Article  CAS  Google Scholar 

  • Martin, P., Szymanowska, M., Zwierzchowski, L. and Leroux, C. (2002) The impact of genetic polymorphisms on the protein composition of ruminants milks. Reprod. Nutr. Dev. 42, 433–459.

    Article  CAS  Google Scholar 

  • Mather, I.H. (2000) A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci. 83, 203–247.

    Article  CAS  Google Scholar 

  • Mather, I.H. and Keenan, T.W. (1998) Origin and secretion of milk lipids. J Mammary Gland Biol. Neopl. 3, 259–273.

    Article  CAS  Google Scholar 

  • McMahon, D.J. and Oommen, B.S. (2008) Supramole­cular structure of the casein micelle. J. Dairy Sci. 91, 1709–1721.

    Article  CAS  Google Scholar 

  • Medrano, J.F. and Aquilar-Cordova, E. (1990) Polymerase chain reaction amplification of bovine β-lactoglobulin genomic sequences and identification of genetic variants by RFLP analysis. Anim. Biotech. 1, 73–77.

    Article  CAS  Google Scholar 

  • Meisel, H. (2005) Biochemical properties of peptides encrypted in bovine milk proteins Curr. Med. Chem. 12, 1905–1919.

    CAS  Google Scholar 

  • Menon, R.S., Chang, Y.F., Jeffers, K.F., Jones, C. and Ham, R. (1992) Regional localization of human β-casein gene (CSN2) to 4pter-q21. Genomics 13, 225–226.

    Article  CAS  Google Scholar 

  • Menon, R.S., Chang, Y.F., Jeffers, K.F. and Ham, R.G. (1992) Exon-skipping in human β-casein. Genomics 12, 13–17.

    Article  CAS  Google Scholar 

  • Mercier, J.-C. (1981) Phosphorylation of casein. Present evidence for an amino acid triplet code post-translationally recognized by specific kinases. Biochimie 63, 1–17.

    CAS  Google Scholar 

  • Mercier, J.-C., Grosclaude, F. and Ribadeau Dumas, B. (1971) Structure primaire de la caséine αs1 bovine. Séquence complète. Eur. J. Biochem. 23, 41–51.

    Google Scholar 

  • Miclo, L., Girardet, J.M., Egito, A.S., Mollé, D., Martin, P. and Gaillard, J.L. (2007) The primary structure of a low-Mr multiphosphorylated variant of beta-casein in equine milk. Proteomics 7, 1327–1335.

    Article  CAS  Google Scholar 

  • Miranda, G., Mahé, M.F., Leroux, C. and Martin, P. (2000) Proteomic tools to characterise the protein fraction of equine milk. Milk Protein Conference, 30th March-2nd April 2000, Vinstra, Norway.

    Google Scholar 

  • Miranda, G., Mahé, M.F., Leroux, C. and Martin, P. (2004) Proteomic tools to characterize the protein fraction of Equidae milk. Proteomics 4, 2496–2509.

    Article  CAS  Google Scholar 

  • Moffatt, P., Smith, C.E., St-Arnaud, R. and Nanci, A. (2008) Characterization of Apin, a secreted protein highly expressed in tooth-associated epithelia. J Cell Biochem. 103, 941–956.

    Article  CAS  Google Scholar 

  • Nagy, E. and Maquat, L.E. (1998) A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199.

    Article  CAS  Google Scholar 

  • Neveu, C., Riaublanc, A., Miranda, G., Chich, J.-F. and Martin, P. (2002) Is the apocrine milk secretion process observed in the goat species rooted in the perturbation of the intracellular transport mechanism induced by defective alleles at the alpha(s1)-Cn locus? Reprod. Nutr. Deve. 42, 163–172.

    Article  CAS  Google Scholar 

  • Nguyen, T., Janssen, M., Gritters, P., te Morsche, R., Drenth, J. van Asten, H., Laheij, R. and Jansen, J. (2006) Short mucin 6 alleles are associated with H pylori infection. Gastroenterology 12, 6021–6025.

    CAS  Google Scholar 

  • Ogg, S.L., Weldon, A.K. Dobbie, L., Smith, A.J. and Mather, I.H. (2006) Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc. Natl. Acad. Sci. U.S.A. 101, 10084–10089.

    Article  Google Scholar 

  • Oshima, K., Aoki, N., Negi, M., Kishi, M., Kitajima, K. and Matsuda, T. (1999) Lactation-dependent expression of an mRNA splice variant with an exon for a multiply O-glycosylated domain of mouse milk fat globule glycoprotein MFG-E8. Biochem. Biophys. Res. Commun. 254, 522–528.

    Article  CAS  Google Scholar 

  • Pallesen, L.T., Andersen, M.H., Nielsen, R.L., Berglund, L., Petersen, T.E., Rasmussen, L.K. and Rasmussen, J.T. (2001) Purification of MUC1 from bovine milk-fat globules and characterization of a corresponding full-length cDNA clone. J. Dairy Sci. 84, 2591–2598.

    Article  CAS  Google Scholar 

  • Pallesen, L.T., Berglund, L., Rasmussen, L.K., Petersen, T.E. and Rasmussen J.T. (2002) Isolation and characterization of MUC15, a novel cell membrane-associated mucin. Eur. J. Biochem. 269, 2755–2763.

    Article  CAS  Google Scholar 

  • Pallesen, L.T., Pedersen, L.R.L., Petersen, T.E., Knudsen, C.R. and Rasmussen, J.T. (2008) Characterization of human mucin (MUC15) and identification of ovine and caprine orthologs. J. Dairy Sci. 91, 4477–4483.

    Article  CAS  Google Scholar 

  • Passey, R.J. and MacKinlay, A.G. (1995) Characterisation of a second, apparently inactive, copy of the bovine β-lactoglobulin gene. Eur J Biochem. 233, 736–743.

    Article  CAS  Google Scholar 

  • Passey, R., Glenn, W. and Mackinlay, A. (1996) Exon skipping in the ovine alpha S1-casein gene. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 114, 389–394.

    Article  CAS  Google Scholar 

  • Patton, S. (1999) Some practical implications of the milk mucins. J. Dairy Sci. 82, 1115–1117.

    Article  CAS  Google Scholar 

  • Patton, S. (2001) MUC1 and MUC-X, epithelial mucins of breast and milk. Adv. Exp. Med. Biol. 501, 35–45.

    Article  CAS  Google Scholar 

  • Pena, R.N., Sánchez, A., Coll, A. and Folch, J.M. (1999) Isolation, sequencing and relative quantitation by fluorescent-ratio PCR of feline β-lactoglobulin I, II, and III cDNAs. Mamm. Genome 10, 560–564.

    Google Scholar 

  • Persuy, M.A., Printz, C., Medrano, J.F. and Mercier, J.C. (1999) A single nucleotide deletion resulting in a premature stop codon is associated with marked reduction of transcripts from a goat beta-casein null allele. Animal Genet. 30, 444–451.

    Article  CAS  Google Scholar 

  • Persuy, M.A., Printz, C., Medrano, J.F. and Mercier, J.C. (1996) One mutation might be responsible for the absence of beta-casein in two breeds of goats. Animal Genet. 27, 96.

    Google Scholar 

  • Persuy, M.A., Legrain, S., Printz, C., Stinnakre, M.G., Lepourry, L., Brignon, G. and Mercier, J.C. (1995) High-level, stage- and mammary-tissue-specific expression of a caprine kappa-casein-encoding minigene driven by a beta-casein promoter in transgenic mice. Gene 165, 291296.

    Article  CAS  Google Scholar 

  • Pettersson-Kastberg, J., Aits, S., Gustafsson, L., Mossberg, A., Storm, P., Trulsson, M., Persson, F., Mok, K.H. and Svanborg, C. (2009) Can misfolded proteins be beneficial? The HAMLET case. Ann. Med. 41, 162–176.

    CAS  Google Scholar 

  • Pierre, A., Michel, F. and Le Graet, Y. (1995) Variation in size of goat milk casein micelles related to casein genotype. Lait 75, 489–502.

    Article  CAS  Google Scholar 

  • Pisano, A., Packer, N.H., Redmond, J.W., Williams, K.L. and Gooley, A.A. (1994) Characterization of O-linked glycosylation motifs in the glycopeptide domain of bovine κ-casein. Glycobiology 4, 837–1994.

    Google Scholar 

  • Provot, C., Persuy, M.-A. and Mercier, J.-C. (1995) Complete sequence of the ovine β-casein-encoding gene and interspecies comparison. Gene 154, 259–263.

    Article  CAS  Google Scholar 

  • Qasba, P. K. and Kumar, S. (1997) Molecular divergence of lysozymes and α-lactalbumin. Crit. Rev. Biochem. Mol. Biol. 32, 255–306.

    Article  CAS  Google Scholar 

  • Rando, A., Pappalardo, M. Capuano, M., Di Gregorio, P. and Ramunno, L. (1996) Two mutations might be responsible for the absence of beta-casein in goat milk. Animal Genet. 27, 31.

    Google Scholar 

  • Ranganathan, S., Simpson, K.J., Shaw, D.C. and Nicholas, K.R. (2000) The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling. J. Mol. Graph. Model. 17, 106–113.

    Article  Google Scholar 

  • Rasero, R., Bianchi, L., Cauvin, E., Maione, S., Sartore, S., Soglia, D. and Sacchi, P. (2007) Analysis of the sheep MUC1 gene: Structure of the repetitive region and polymorphism. J. Dairy Sci. 90, 1024–1028.

    Article  CAS  Google Scholar 

  • Rasmussen, L.K., Johnsen, L.B., Tsiora, A., Sorensen, E.S., Thomsen, J.K., Nielsen, N.C., Jakobsen, H.J. and Petersen, T.E. (1999) Disulphide-linked caseins and casein micelles. Int. Dairy J. 9, 215–218.

    Article  CAS  Google Scholar 

  • Rasmussen, L.K., Due, H.A. and Petersen, T.E. (1995) Human αs1-casein: purification and characterization. Comp. Biochem. Physiol. 111B, 75–81.

    CAS  Google Scholar 

  • Remeuf, F. (1993) Influence du polymorphisme génétique de la caséine αs1 caprine sur les caractéristiques physico-chimiques et technologiques du lait. Lait 73, 549–557.

    Article  CAS  Google Scholar 

  • Reinhardt, T.A. and Lippolis, J. (2006) Bovine milk fat globule membrane proteome. J. Dairy Res. 73, 406–416.

    Article  CAS  Google Scholar 

  • Rhoads, R.E. and Grudzien-Nogalska, E. (2007) Translational regulation of milk protein synthesis at secretory activation. J Mam. Gland Biol. Neopl. 12, 283–292.

    Article  Google Scholar 

  • Rhodes, D. A., Stammers, M., Malcherek, G., Beck, S. and Trowsdale, J. (2001). The cluster of BTN genes in the extended major histocompatibility complex. Genomics 71, 351–362.

    Article  CAS  Google Scholar 

  • Ribadeau Dumas, B. and Brignon, G. (1993) Les protéines du lait de différentes espèces, in: Progrès en Pédiatrie 10. Allergies Alimentaires, J. Navarro and Schmitz, J., eds., Doin, Paris, France. pp. 27–39.

    Google Scholar 

  • Rijnkels, M., Kooiman, P.M., Krimpenfort, P.J.A., de Boer, H.A. and Pieper, F.R. (1995) Expression analysis of the individual bovine beta-, alpha s2- and kappa-casein genes in transgenic mice. Biochem. J. 311, 929–937.

    Google Scholar 

  • Rijnkels, M., Kooiman, P.M., de Boer, H.A. and Pieper, F.R. (1997) Organisation of the bovine casein gene locus. Mamm. Genome 8, 148–152.

    Article  CAS  Google Scholar 

  • Rijnkels, M., Elnitski, L., Miller, W. and Rosen, J.M. (2003) Multispecies comparative analysis of mammalian-specific genomic domain encoding secretory proteins. Genomics 82, 417–432.

    Article  CAS  Google Scholar 

  • Robenek, H., Hofnagel, O., Buers, I., Lorkowski, S., Schnoor, M., Robenek, M.J., Heid, H., Troyer, D. and Severs, N.J. (2006) Butyrophilin controls milk fat globule secretion. Proc. Nat. Acad. Sci. U.S.A. 103, 10385–10390.

    Article  CAS  Google Scholar 

  • Russo, V. and Davoli, R. (1983) Polymorphism of ovine and caprine milk proteins. Proc. of V th National Congress S.I.P.A.O.C. (Italian Society for the Pathology and Rearing of Goats and Ewes) Acireale, 9–11 December, Italy. pp.541–555.

    Google Scholar 

  • Sacchi, P., Caroli, A., Cauvin, E., Maione, S., Sartore, S., Soglia, D. and Rasero, R. (2004) Analysis of the MUC1 gene and its polymorphism in Capra hircus. J. Dairy Sci. 87, 3017–3021.

    Article  CAS  Google Scholar 

  • Saito, T. and Itoh, T. (1992) Variations and distributions of O-glycosidically linked sugar chains in bovine κ-casein. J. Dairy Sci. 75, 1768–1774.

    Article  CAS  Google Scholar 

  • Saito, T., Itoh, T. and Adachi, S. (1988) Chemical structure of neutral sugar chains isolated from human mature milk κ-casein. Biochim. Biophys. Acta 964, 213–220.

    Article  CAS  Google Scholar 

  • Sando, L., Pearson, R., Gray, C., Parker, P., Hawken, R., Thomson, P.C., Meadows, J.R., Kongsuwan, K., Smith, S. and Tellam, R.L. (2009) Bovine Muc1 is a highly polymorphic gene encoding an extensively glycosylated mucin that binds bacteria. J Dairy Sci. 92, 5276–5291.

    Article  CAS  Google Scholar 

  • Sasaki, T., Sasaki, M. and Enami, J. (1993) Mouse γ-casein cDNA: PCR cloning and sequence analysis. Zool. Sci. 10, 65–72.

    CAS  Google Scholar 

  • Sawyer, L. (2003) β-lactoglobulin, in Advanced Dairy Chemistry, Proteins, Part A, Vol. 1, 3rd edn., P.F. Fox and P.L.H.McSweeney, eds., Kluwer Academic/Plenum Publishers, New York. pp. 319–386.

    Google Scholar 

  • Schanbacher, F.L., Goodman, R.E. and Talhouk, R.S. (1993) Bovine mammary lactoferrin: implications from messenger ribonucleic acid (mRNA) sequence and regulation contrary to other milk proteins. J Dairy Sci. 76, 3812–3831.

    Article  CAS  Google Scholar 

  • Schmidt, D.G. (1982) Association of caseins and casein micelle structure, in, Developments in Dairy Chemistry, Vol. 1. P.F. Fox, ed., Applied Science, London. pp. 61–86.

    Google Scholar 

  • Schroten, H. (1998) The benefits of human milk fat globule against infection. Nutrition 14, 52–53.

    Article  CAS  Google Scholar 

  • Sharp, J.A., Cane, K.N., Lefevre, C., Arnould, J.P. and Nicholas, K.R. (2006) Fur seal adaptations to lactation: insights into mammary gland function. Curr. Top Dev. Biol. 72, 275–308.

    Article  CAS  Google Scholar 

  • Sharp, J.A., Lefèvre, C. and Nicholas, K.R. (2007) Molecular evolution of monotreme and marsupial whey acidic protein genes. Evol. Dev. 9, 378–392.

    Article  CAS  Google Scholar 

  • Sharp, J.A., Lefèvre, C. and Nicholas, K.R. (2008) Lack of functional alpha-lactalbumin prevents involution in Cape fur seal and identifies the protein as an apoptotic milk factor in mammary gland involution. BMC Biol. 6, 48.

    Article  CAS  Google Scholar 

  • Simpson, K.J. and Nicholas, K.R. (2002) The comparative biology of whey proteins. J. Mamm. Gland Biol. Neopl. 7, 313–326.

    Article  Google Scholar 

  • Singh, P.K. and Hollingsworth, M.A. (2006) Cell surface-associated mucins in signal transduction. Trends Cell Biol. 16, 467–476.

    Article  CAS  Google Scholar 

  • Slattery, C.W. and Evard, R. (1973) A model for the formation and structure of casein micelles from subunits of variable composition. Biochim. Biophys. Acta 317, 529–538.

    Article  CAS  Google Scholar 

  • Smith, C.W., Chu, T.T. and Nadal-Ginard, B. (1993) Scanning and competition between AGs are involved in 3’ splice site selection in mammalian introns. Mol. Cell. Biol. 13, 4939–4952.

    CAS  Google Scholar 

  • Soulier, S., Sarfati, R.S. and Szabo, L. (1980) Structure of the asialyl oligosaccharide chains of kappa-casein isolated from ovine colostrum. Eur. J. Biochem. 108, 465–472.

    Article  CAS  Google Scholar 

  • Soulier, S. and Gaye, P. (1981) Enzymatic O-glycosylation of κ-caseinomacropeptide by ovine mammary Golgi membranes. Biochimie 63, 619–628.

    Article  CAS  Google Scholar 

  • Spicer, A.P., Parry, G., Patton, S. and Gendler, S.J. (1991) Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. J. Biol. Chem. 266, 15099–15109.

    CAS  Google Scholar 

  • Stewart, A.F., Bonsing, J., Beattie, C.W., Shah, F., Willis, I.M. and MacKinlay, A.G. (1987) Complete nucleotide sequences of bovine αs2- and β-casein cDNAs: comparisons with related sequences in other species. Mol. Biol. Evol. 4, 231–241.

    CAS  Google Scholar 

  • Stinnakre, M.-G., Vilotte, J.-L., Soulier, S. and Mercier, J.-C. (1994) Creation and phenotypic analysis of alpha-lactalbumin-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 91, 6544–6548.

    Article  CAS  Google Scholar 

  • Thépot, D., Devinoy, E., Fontaine, M.-L. and Houdebine, L.-M. (1991) Structure of the gene encoding rabbit β-casein. Gene 97, 301–306.

    Article  Google Scholar 

  • Threadgill, D.W. and Womack, J.E. (1990) Genomic analysis of the major bovine casein genes. Nucleic Acids Res. 18, 6935–6942.

    Article  CAS  Google Scholar 

  • Topcic, D., Auguste, A., De Leo, A.A., Lefèvre, C., Digby, M.R. and Nicholas, K.R. (2009) Characterization of the tammar wallaby (Macropus eugenii) whey acidic protein gene; new insight into the function of the protein. Evol. Dev. 11, 363–375.

    Article  CAS  Google Scholar 

  • Valentine, C.R. (1998) The association of the nonsense codons with exon skipping. Mutation Res. 411, 87–117.

    Article  Google Scholar 

  • van Halbeek, H., Vliegenthart, J.F.G., Fiat, A.-M. and Jollès, P. (1985) Isolation and structural characterisation of the smaller-size oligosaccharide from desialylated human κ-casein. Establishment of a novel type of core for a mucin-type carbohydrate chain. FEBS Lett. 187, 81–88.

    Google Scholar 

  • Voelker, G.R., Bleck, G.T. and Wheeler, M.B. (1997) Single-base polymorphisms within the 5’flanking region of the bovine α-lactoalbumin gene. J. Dairy Sci. 80, 194–197.

    Article  CAS  Google Scholar 

  • Vogan, K.J., Underhill, D.A. and Gros, P. (1996) An alternative splicing event in the Pax-3 paired domain identifies the linker region as a key determinant of paired domain DNA-binding activity. Mol. Cell Biol. 12, 6677–6686.

    Google Scholar 

  • Vogel, H.J., Schibli, D.J., Jing, W., Lohmeier-Vogel, E.M., Epand, R.F. and Epand, R.M. (2002) Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem. Cell Biol. 80, 49–63.

    Article  CAS  Google Scholar 

  • Walstra, P. (1990) On the stability of casein micelles. J. Dairy Sci. 73, 1965–1979.

    Article  CAS  Google Scholar 

  • Ward, P.P., Uribe-Luna, S. and Conneely, O.M. (2002) Lactoferrin and host defense. Biochem. Cell Biol. 80, 95–102.

    Article  CAS  Google Scholar 

  • Warren, W.C., Hillier, L.W., Marshall Graves, J.A., Birney, E., Ponting, C.P., Grützner, F., Belov, K., Miller, W., Clarke, L., Chinwalla, A.T., Yang, S.P., Heger, A., Locke, D.P., Miethke, P., Waters, P.D., Veyrunes, F., Fulton, L., Fulton, B., Graves, T., Wallis, J., Puente, X.S., López-Otín, C., Ordóñez, G.R., Eichler, E.E., Chen, L., Cheng, Z., Deakin, J.E., Alsop, A., Thompson, K., Kirby, P., Papenfuss, A.T., Wakefield, M.J., Olender, T., Lancet, D., Huttley, G.A., Smit, A.F., Pask, A., Temple-Smith, P., Batzer, M.A., Walker, J.A., Konkel, M.K., Harris, R.S., Whittington, C.M., Wong, E.S., Gemmell, N.J., Buschiazzo, E., Vargas Jentzsch, I.M., Merkel, A., Schmitz, J., Zemann, A., Churakov, G., Kriegs, J.O., Brosius, J., Murchison, E.P., Sachidanandam, R., Smith, C., Hannon, G.J., Tsend-Ayush, E., McMillan, D., Attenborough, R., Rens, W., Ferguson-Smith, M., Lefèvre, C.M., Sharp, J.A., Nicholas, K.R., Ray, D.A., Kube, M., Reinhardt, R., Pringle, T.H., Taylor, J., Jones, R.C., Nixon, B., Dacheux, J.L., Niwa, H., Sekita, Y., Huang, X., Stark, A., Kheradpour, P., Kellis, M., Flicek, P., Chen, Y., Webber, C., Hardison, R., Nelson, J., Hallsworth-Pepin, K., Delehaunty, K., Markovic, C., Minx, P., Feng, Y., Kremitzki, C., Mitreva, M., Glasscock, J., Wylie, T., Wohldmann, P., Thiru, P., Nhan, M.N., Pohl, C.S., Smith, S.M., Hou, S., Nefedov, M., de Jong, P.J., Renfree, M.B., Mardis, E.R. and Wilson, R.K. (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453 (7192), 175–183.

    Article  CAS  Google Scholar 

  • Wheeler, T.T., Kuys, Y.M., Broadhurst, M.M. and Molenaar, A.J. (1997) Mammary STAT5 abundance and activity are not altered with lactation state in cows. Mol. Cell. Endocrinol. 133, 141–149.

    Article  CAS  Google Scholar 

  • Wilson, N.L., Robinson, L.J., Donnet, A., Bovetto, L., Packer, N.H. and Karlsson, N.G. (2008). Glycoproteomics of milk: differences in sugar epitopes on human and bovine milk fat globule membranes. J. Proteome Res. 7, 3687–3696.

    Article  CAS  Google Scholar 

  • Winklehner-Jennewein, P., Geymayer, S., Lechner, J., Welte, T., Hanson, L., Geley, S. and Doppler, W. (1998) A distal enhancer region in the human β-casein gene mediates the response to prolactin and glucocorticoid hormones. Gene 217, 127–139.

    Article  CAS  Google Scholar 

  • Zeder, M.A. (2008) Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc. Natl. Acad. Sci. USA. 105, 11597–11604.

    Article  CAS  Google Scholar 

  • Zhang, J., Perez, A., Yasin, M., Soto, P., Rong, M., Theodoropoulos, G., Carothers Carraway, C.A. and Carraway, K.L. (2005) Presence of MUC4 in human milk and at the luminal surfaces of blood vessels. J. Cell. Physiol. 204, 166–177.

    Article  CAS  Google Scholar 

  • Zhang, J., Sun, X., Qian, Y., LaDuca, J.P. and Maquat, L.E. (1998a) At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol. Cell Biol. 18, 5272–5283.

    CAS  Google Scholar 

  • Zhang, J., Sun, X., Qian, Y., LaDuca, J.P. and Maquat, L.E (1998b) Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 4, 801–815.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This chapter was modified from P. Martin, C. Cebo, G. Miranda (2011). Inter-species comparison of milk proteins: quantitative variability and molecular diversity. In Encyclopedia of Dairy Sciences, 2nd Edition, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney (eds). Elsevier, Amsterdam, pp. 821–842, with permission.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, P., Cebo, C., Miranda, G. (2013). Interspecies Comparison of Milk Proteins: Quantitative Variability and Molecular Diversity. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_13

Download citation

Publish with us

Policies and ethics