Skip to main content

The Apical Ectoplasmic Specialization-Blood-Testis Barrier Functional Axis is A Novel Target for Male Contraception

  • Chapter
  • First Online:
Biology and Regulation of Blood-Tissue Barriers

Abstract

The blood-testis barrier (BTB), similar to other blood-tissue barriers, such as the blood-brain barrier and the blood-retinal barrier, is used to protect the corresponding organ from harmful substances (e.g., xenobiotics) including drugs and foreign compounds. More importantly, the BTB allows postmeiotic spermatid development to take place in an immune privileged site at the adluminal (or apical) compartment to avoid the production of antibodies against spermatid-specific antigens, many of which express transiently during spermiogenesis and spermiation. The BTB, however, also poses an obstacle in developing nonhormonal-based male contraceptives by sequestering drugs (e.g., adjudin) that exert their effects on germ cells in the adluminal compartment. The effects of these drugs include disruption of germ cell cycle progression and development, apoptosis, cell adhesion, metabolism and others. Recent studies have demonstrated that there is a functional axis that operates locally in the seminiferous epithelium to co-ordinate different cellular events across the Sertoli cell epithelium, such as spermiation and BTB restructuring during the seminiferous epithelial cycle of spermatogenesis. Components of this functional axis, such as the apical ectoplasmic specialization (apical ES, a testis-specific atypical anchoring junction type) and the BTB, in particular their constituent protein complexes, such as a6ß1-integrin and occludin at the apical ES and the BTB, respectively, can be the target of male contraception. In this chapter, we highlight recent advances regarding the likely mechanism of action of adjudin in this functional axis with emphasis on the use of molecular modeling technique to facilitate the design of better compounds in male contraceptive development.

These authors contribute equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin CW, Anderson RA, Cheng L et al. Potential impact of hormonal male contraception: cross-cultural implications for development of novel preparations. Hum Reprod 2000; 15:637–645.

    Article  CAS  PubMed  Google Scholar 

  2. Glasier AF, Anakwe R, Everington D et al. Would women trust their partners to use a male pill? Hum Reprod 2000; 15:646–649.

    Article  CAS  PubMed  Google Scholar 

  3. Henshaw SK. Abortion incidence and services in the United States. 1995–1996. Fam Plann Perspect 1998; 30:263–270.

    Article  CAS  PubMed  Google Scholar 

  4. de Kretser D, Kerr J. The cytology of the testis. in The Physiology of Reproduction. Vol. 1 (eds. Knobil, E., et al) 837–932 (Raven Press, New York, 1988).

    Google Scholar 

  5. Parvinen M. Regulation of the seminiferous epithelium. Endocr Rev 1982; 3:404–417.

    Article  CAS  PubMed  Google Scholar 

  6. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 1972; 52:198–235.

    Article  CAS  PubMed  Google Scholar 

  7. Hess RA, de Franca LR. Spermatogenesis and cycle of the seminiferous epithelium. In: Molecular Mechanisms in Spermatogenesis. Ed. Cheng, CY, Austin. TX Landes Bioscience/Springer Science+Business Media. LLC 2008; 1–15.

    Google Scholar 

  8. Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747–806.

    Article  CAS  PubMed  Google Scholar 

  9. O’ Donnell L, Meachem SJ, Stanton PG et al. Endocrine regulation of spermatogenesis. In: Neill JD Ed. Physiology of Reproduction, 3rd Edition. Amsterdam, Elsevier. 2006; 1017–1069.

    Google Scholar 

  10. O’ Donnell L, Robertson KM, Jones ME et al. Estrogen and spermatogenesis. Endocr Rev 2001; 22:289–318.

    Article  CAS  Google Scholar 

  11. Carreau S, Hess RA. Oestrogens and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1517–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharpe RM. Regulation of spermatogenesis. In: The Physiology of Reproduction. Knobil E, Neill JD, eds. New York: Raven Press, 1994: 1363–1434.

    Google Scholar 

  13. Mruk DD, Silvestrini B, Cheng CY. Anchoring junctions as drug targets: Role in contraceptive development. Pharmacol Rev 2008; 60:146–180.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng CY, Mruk DD. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev 2002;82:825–874.

    Article  CAS  PubMed  Google Scholar 

  15. O’ Donnell L, Nicholls PK, O’Bryan MK et al. Spermiation: the process of sperm release. Spermatogenesis 2011; 1:14–35.

    Article  Google Scholar 

  16. Cheng CY, Wong EWP, Lie PPY et al. Regulation of blood-testis barrier dynamics by desmosome, gap junction, hemidesmosome and polarity proteins: An unexpected turn of events. Spermatogenesis 2011; 1:105–115 (doi:110.4161/spmg.4161.4162.15745).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cheng CY, Mruk DD. The blood-testis barrier and its implication in male contraception. Pharmacol Rev 2011; (in press).

    Google Scholar 

  18. Gu Y, Liang X, Wu W et al. Multicenter contraceptive efficacy trial of injectable testosterone undecanoate in Chinese men. J Clin Endocrinol Metab 2009; 94:1910–1915.

    Article  CAS  PubMed  Google Scholar 

  19. Brannigan RE. Hormonal male contraception—a goal finally ralized? Nat Rev Urol 2009; 6:409–410.

    Article  CAS  PubMed  Google Scholar 

  20. Roth MY, Amory JK. Pharmacologic development of male hormonal contraceptive agents. Clin Pharmacol Ther 2011; 89:133–136.

    Article  CAS  PubMed  Google Scholar 

  21. Jarow JP, Zirkin BR. The androgen microenvironment of the human testis and hormonal control of spermatogenesis. Ann NY Acad Sci 2005; 1061:208–220.

    Article  CAS  PubMed  Google Scholar 

  22. Turner TT, Jones CC, Howards SS et al. On the androgen microenvironment of maturing spermatozoa. Endocrinology 1984; 115:1925–1932.

    Article  CAS  PubMed  Google Scholar 

  23. Johnson L, Bernard JJ, Rodriguez L et al. Ethnic differences in testicular structure and spermatogenic potential may predispose testes of Asian men to heightened sensitivity to steroidal contraceptives. J Androl 1998; 19:348–357.

    CAS  PubMed  Google Scholar 

  24. Ilani N, Liu PY, Swerdloff RS et al. Does ethnicity matter in male hormonal contraceptive efficacy? Asian J Androl 2011; 13:579–584.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mruk DD. New perspectives in nonhormonal male contraception. Trends Endocrinol Metab 2008; 19:57–64.

    Article  CAS  PubMed  Google Scholar 

  26. Mruk DD, Cheng CY. Delivering nonhormonal contraceptives to men: advances and obstacles. Trends Biotechnol 2008; 26:90–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wong EWP, Mruk DD, Cheng CY. Delivery of contraceptives to men: lesson from other therapeutic drugs. Immun Endocr Metab Agents Med Chem 2008; 8:91–94.

    Article  CAS  Google Scholar 

  28. Cheng CY, Mruk DD, Silvestrini B et al. AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: A review of recent data. Contraception 2005; 72:251–261.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng CY, Mruk DD. New frontiers in nonhormonal male contraception. Contraception 2010; 82:476–482.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mruk DD, Wong CH, Silvestrini B et al. A male contraceptive targeting germ cell adhesion. Nature Med 2006; 12:1323–1328.

    Article  CAS  PubMed  Google Scholar 

  31. Wolgemuth DJ, Roberts SS. Regulating mitosis and meiosis in the male germ line: critical functions for cyclins. Philos Trans R Soc B Biol Sci 2010; 365:1653–1662.

    Article  CAS  Google Scholar 

  32. Bettegowda A, Wilkinson MF. Transcription and posttranscriptional regulation of spermatogenesis. Phil Trans R Soc Lond B Biol Sci 2010; 365:1637–1651.

    Article  CAS  Google Scholar 

  33. Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1663–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pointis G, Gilleron J, Carette D et al. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1607–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hogarth CA, Griswold MD. The key role of vitamin A in spermatogenesis. J Clin Invest 2010; 120:956–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yan HHN, Mruk DD, Wong EWP et al. An autocrine axis in the testis that co-ordinates spermiation and blood-testis barrier restructuring during spermatogenesis. Proc Natl Acad Sci U S A 2008; 105:8950–8955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheng CY, Mruk DD. A local autocrine axis in the testes that regulates spermatogenesis. Nature Rev Endocrinol 2010; 6:380–395.

    Article  CAS  Google Scholar 

  38. Cheng CY, Silvestrini B, Grima J et al. Two new male contraceptives exert their effects by depleting germ cells prematurely from the testis. Biol Reprod 2001; 65:449–461.

    Article  CAS  PubMed  Google Scholar 

  39. Hu GX, Hu LF, Yang DZ et al. Adjudin targeting rabbit germ cell adhesion as a male contraceptive: a pharmacokinetics study. J Androl 2009; 30:87–93.

    Article  PubMed  Google Scholar 

  40. Zhou HY, Hu GX, Hu LF et al. Adjudin targeting dog germ cell adhesion as a male contraception. (Abstract). American Society of Andrology Annual Meeting, Albuquerque, NM 2008 (2008).

    Google Scholar 

  41. Ruwanpura SM, McLachlan RI, Meachem SJ. Hormonal regulation of male germ cell development. J Endocrinol 2010; 205:117–131.

    Article  CAS  PubMed  Google Scholar 

  42. Griswold MD, Heckert L, Linder C. The molecular biology of the FSH receptor. J Steroid Biochem Mol Biol 1995; 53:215–218.

    Article  CAS  PubMed  Google Scholar 

  43. Yan HHN, Mruk DD, Lee WM et al. Ectoplasmic specialization: a friend or a foe of spermatogenesis? BioEssays 2007; 29:36–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Cheng CY, Mruk DD. An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit Rev Biochem Mol Biol 2009; 44:245–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wong EWP, Mruk DD, Cheng CY. Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. Biochem Biophys Acta 2008; 1778:692–708.

    Article  CAS  PubMed  Google Scholar 

  46. Mruk DD, Cheng CY. Cell-cell interactions at the ectoplasmic specialization in the testis. Trends Endocrinol Metab 2004; 15:439–447.

    Article  CAS  PubMed  Google Scholar 

  47. Siu MKY, Cheng CY. Dynamic cross-talk between cells and the extracellular matrix in the testis. BioEssays 2004; 26:978–992.

    Article  CAS  PubMed  Google Scholar 

  48. Siu MKY, Wong CH, Xia W et al. The β1-integrin-p-FAK-p130Cas-DOCK180-RhoA-vinculin is a novel regulatory protein complex at the apical ectoplasmic specialization in adult rat testes. Spermatogenesis 2011; 1:73–86.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Siu MKY, Cheng CY. Interactions of proteases, protease inhibitors and the β1 integrin/laminin γ3 protein complex in the regulation of ectoplasmic specialization dynamics in the rat testis. Biol Reprod 2004; 70:945–964.

    Article  CAS  PubMed  Google Scholar 

  50. Yan HHN, Mruk DD, Cheng CY. Junction restructuring and spermatogenesis: The biology, regulation, and implication in male contraceptive development. Curr Top Dev Biol 2008; 80:57–92.

    Article  CAS  PubMed  Google Scholar 

  51. Silvestrini B, Palazzo G, De Gregorio M. Lonidamine and related compounds. Prog Med Chem 1984; 21:111–135.

    Article  CAS  Google Scholar 

  52. L obl TJ. 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid (DICA), an exfoliative antispermatogenic angent in the rat. Arch Androl 1979; 2:353–363.

    Article  CAS  Google Scholar 

  53. Lobl T, Bardin C, Gunsalus G et al. Effects of lonidamine (AF 1890) and its analogues on follicle-stimulating hormone, testosterone and rat androgen binding protein concentrations in the rat and rhesus monkey. Chemotherapy 1981; (Suppl 2) 27:61–76.

    Article  Google Scholar 

  54. de Martino C, Malcorni W, Bellocci M et al. Effects of AF1312 TS and lonidamine on mammalian testis. A morphological study. Chemotherapy 1981; (Suppl 2) 27:27–42.

    Article  PubMed  Google Scholar 

  55. Grima J, Silvestrini B, Cheng C. Reversible inhibition of spermatogenesis in rats using a new male contraceptive, 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide. Biol Reprod 2001; 64:1500–1508.

    Article  CAS  PubMed  Google Scholar 

  56. Lee NPY, Mruk DD, Conway AM et al. Zyxin, axin and Wiskott-Aldrich syndrome protein are adaptors that link the cadherin/catenin protein complex to the cytoskeleton at adherens junctions in the seminiferous epithelium of the rat testis. J Androl 2004; 25:200–215.

    Article  CAS  PubMed  Google Scholar 

  57. Wong EWP, Mruk DD, Lee WM et al. Par3/Par6 polarity complex co-ordinates apical ectoplasmic specialization and blood-testis barrier restructuring during spermatogenesis. Proc Natl Acad Sci U S A 2008; 105:9657–9662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mok KW, Mruk DD, Lee WM et al. Spermatogonial stem cells alone are not sufficient to re-initiate spermatogenesis in the rat testis following adjudin-induced infertility. Int J Androl 2011 (in press; doi: 10.1111/j.1365-2605.2010.01183.x.).

    Google Scholar 

  59. Siu MKY, Mruk DD, Lee WM et al. Adhering junction dynamics in the testis are regulated by an interplay of β1-integrin and focal adhesion complex (FAC)-associated proteins. Endocrinology 2003; 144:2141–2163.

    Article  CAS  PubMed  Google Scholar 

  60. Siu MKY, Wong CH, Lee WM et al. Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases. J Biol Chem 2005; 280:25029–25047.

    Article  CAS  PubMed  Google Scholar 

  61. Lee NPY, Mruk DD, Lee WM et al. Is the cadherin/catenin complex a functional unit of cell-cell-actin-based adherens junctions (AJ) in the rat testis? Biol Reprod 2003; 68:489–508.

    Article  CAS  PubMed  Google Scholar 

  62. Lee NPY, Mruk DD, Wong CH et al. Regulation of Sertoli-germ cell adherens junction dynamics in the testis via the nitric oxide synthase (NOS)/cGMP/protein kinase G (PRKG)β-catenin (CATNB) signaling pathway: An in vitro and in vivo study. Biol Reprod 2005; 73:458–471.

    Article  CAS  PubMed  Google Scholar 

  63. Lee NPY, Cheng CY. Protein kinases and adherens junction dynamics in the seminiferous epithelium of the rat testis. J Cell Physiol 2005; 202:344–360.

    Article  CAS  PubMed  Google Scholar 

  64. Lui WY, Lee WM, Cheng CY. Sertoli-germ cell adherens junction dynamics in the testis are regulated by RhoB GTPase via the ROCK/LIMK signaling pathway. Biol Reprod 2003; 68:2189–2206.

    Article  CAS  PubMed  Google Scholar 

  65. Lie PPY, Chan AYN, Mruk DD et al. Restricted Arp3 expression in the testis prevents blood-testis barrier disruption during junction restructuring at spermatogenesis. Proc Natl Acad Sci U S A 2010; 107:11411–11416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lie PPY, Mruk DD, Lee WM et al. Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood-testis barrier integrity in the seminiferous epithelium. FASEB J 2009; 23:2555–2567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mok KW, Mruk DD, Lie PPY et al. Adjudin, a potential male contraceptive, exerts its effects locally in the seminifeorus epithelium of mammalian testes. Reproduction 2011; 141:571–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng CY, Mruk DD. Regulation of spermiogenesis, spermiation and blood-testis barrier dynamics: novel insights from studies on Eps8 and Arp3. Biochem J 2011; 435:553–562.

    Article  CAS  PubMed  Google Scholar 

  69. Cheng CY, Lie PPY, Mok KW et al. Interactions of laminin β3 fragment with β1-integrin receptor: a revisit of the apical ectoplasmic specialization-blood-testis-barrier-hemidesmosome functional axis in the testis. Spermatogenesis (in press) 2011.

    Google Scholar 

  70. Kis O, Robillard K, Chan GN et al. The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci 2010; 31:22–35.

    Article  CAS  PubMed  Google Scholar 

  71. Mruk DD, Su L, Cheng CY. Emerging role for drug transporters at the blood-testis barrier. Trends Pharmacol Sci 2011; 32:99–106.

    Article  CAS  PubMed  Google Scholar 

  72. Su L, Mruk DD, Cheng CY. Drug transporters, the blood-testis barrier and spermatogenesis. J Endocrinol 2011; 208:207–223.

    CAS  PubMed  Google Scholar 

  73. Mital P, Hinton BT, Dufour JM. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol Reprod 2011; 84:851–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cheng CY, Wong EWP, Yan HHN et al. Regulation of spermatogenesis in the microenvironment of the seminiferous epithelium: New insights and advances. Mol Cell Endocrinol 2010; 315:49–56.

    Article  CAS  PubMed  Google Scholar 

  75. Chen YM, Lee NPY, Mruk DD et al. Fer kinase/Fer T and adherens junction dynamics in the testis: an in vitro and in vivo study. Biol Reprod 2003; 69:656–672.

    Article  CAS  PubMed  Google Scholar 

  76. Wolski KM, Mruk DD, Cameron DF. The Sertoli-spermatid junctional complex adhesion strength is affected in vitro by adjudin. J Androl 2006; 27:790–794.

    Article  CAS  PubMed  Google Scholar 

  77. Su L, Mruk DD, Lui WY et al. P-glycoprotein regulates blood-testis barrier dynamics via its effects on the occludin-ZO-1 protein complex mediated by FAK. Proc Natl Acad Sci U S A (submitted) 2011.

    Google Scholar 

  78. Su L, Mruk DD, Lee WM et al. Drug transporters and blood-testis barrier function. J Endocrinol 2011; 209:337–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Su L, Cheng CY, Mruk DD. Drug transporter, P-glycoprotein (MDR1), is an integrated component of the mammalian blood-testis barrier. Int J Biochem Cell Biol 2009; 41:2578–2587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee NPY, Cheng CY. Ectoplasmic specialization, a testis-specific cell-cell actin-based adherens junction type: is this a potential target for male contraceptive development. Human Reprod Update 2004; 10:349–369.

    Article  CAS  Google Scholar 

  81. Siu MKY, Cheng CY. Extracellular matrix and its role in spermatogenesis. Adv Exp Med Biol 2008; 636:74–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5:725–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol 1963; 7:95–99.

    Article  CAS  PubMed  Google Scholar 

  84. Xiong JP, Stehle T, Diefenbach B et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001; 294:339–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meng EC, Pettersen EF, Couch GS et al. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics 2006; 7:339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Yan HHN, Cheng CY. Blood-testis barrier dynamics are regulated by an engagement/disengagement mechanism between tight and adherens junctions via peripheral adaptors. Proc Natl Acad Sci U S A 2005; 102:11722–11727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Su L, Cheng CY, Mruk DD. Adjudin-mediated Sertoli-germ cell junction disassembly affects Sertoli cell barrier function in vitro and in vivo. Int J Biochem Cell Biol 2010; 42:1864–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xia W, Wong CH, Lee NPY et al. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat testis can be limited to adherens junctions without affecting the blood-testis barrier integrity: An in vivo study using an androgen suppression model. J Cell Physiol 2005; 205:141–157.

    Article  CAS  PubMed  Google Scholar 

  89. Yan HHN, Mruk DD, Lee WM et al. Cross-talk between tight and anchoring junctions—lesson from the testis. Adv Exp Med Biol 2008; 636:234–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li MWM, Mruk DD, Cheng CY. Gap junctions and blood-tissue barriers. In: Biology and Regulation of Blood-Tissue Barriers. Ed. Cheng C.Y. Austin TX. Landes Bioscience and Springer Science+Business Media (in press, http://landesbioscience.com/curie/chapter4832/. 2011.

    Google Scholar 

  91. Brehm R, Zeiler M, Ruttinger C et al. A Sertoli cell-specific knockout of connexin43 prevents initiation of spermatogenesis. Am J Pathol 2007; 171:19–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carette D, Weider K, Gilleron J et al. Major involvement of connexin 43 in seminiferous epithelial junction dynamics and male fertility. Dev Biol 2010; 346:54–67.

    Article  CAS  PubMed  Google Scholar 

  93. Weider K, Bergmann M, Giese S et al. Altered differentiation and clustering of Sertoli cells in transgenic mice showing a Sertoli cell specific knockout of the connexin 43 gene. Differentiation 2011; 82:38–49.

    Article  CAS  PubMed  Google Scholar 

  94. Sridharan S, Simon L, Meling DD et al. Proliferation of adult Sertoli cells following conditional knockout of the gap junctional protein GJA1 (connexin 43) in mice. Biol Reprod 2007; 76:804–812.

    Article  CAS  PubMed  Google Scholar 

  95. Siu ER, Wong EWP, Mruk DD et al. An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model. Endocrinology 2009; 150:3336–3344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Siu ER, Wong EWP, Mruk DD et al. Focal adhesion kinase is a blood-testis barrier regulator. Proc Natl Acad Sci U S A 2009; 106:9298–9303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Mok, KW. et al. (2013). The Apical Ectoplasmic Specialization-Blood-Testis Barrier Functional Axis is A Novel Target for Male Contraception. In: Cheng, C.Y. (eds) Biology and Regulation of Blood-Tissue Barriers. Advances in Experimental Medicine and Biology, vol 763. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4711-5_17

Download citation

Publish with us

Policies and ethics