Skip to main content

Technology for Enhancing Statistical Reasoning at the School Level

  • Chapter
  • First Online:
Third International Handbook of Mathematics Education

Part of the book series: Springer International Handbooks of Education ((SIHE,volume 27))

Abstract

The purpose of this chapter is to provide an updated overview of digital technologies relevant to statistics education, and to summarize what is currently known about how these new technologies can support the development of students’ statistical reasoning at the school level. A brief literature review of trends in statistics education is followed by a section on the history of technologies in statistics and statistics education. Next, an overview of various types of technological tools highlights their benefits, purposes and limitations for developing students’ statistical reasoning. We further discuss different learning environments that capitalize on these tools with examples from research and practice. Dynamic data analysis software applications for secondary students such as Fathom and TinkerPlots are discussed in detail. Examples are provided to illustrate innovative uses of technology. In the future, these uses may also be supported by a wider range of new tools still to be developed. To summarize some of the findings, the role of digital technologies in statistical reasoning is metaphorically compared with travelling between data and conclusions, where these tools represent fast modes of transport. Finally, we suggest future directions for technology in research and practice of developing students’ statistical reasoning in technology-enhanced learning environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agudo, J. E., Sanchez, H., & Rico, M. (2010). Playing games on the screen: Adapting mouse interaction at early ages. Proceedings of the 10th IEEE International Conference on Advanced Learning Technologies (pp. 493–497), Sousse, Tunisia.

    Google Scholar 

  • Alldredge, J. R., & Som, N. A. (2002). Comparison of multimedia educational materials used in an introductory statistical methods course. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics: Developing a Statistically Literate Society. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/1/6c4_alld.pdf.

  • Australian Curriculum, Assessment and Reporting Authority (ACARA). (2010). The Australian curriculum: Mathematics. Sydney, Australia: Author.

    Google Scholar 

  • Bakker, A. (2002). Route-type and landscape-type software for learning statistical data analysis. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics: Developing a statistically literate society. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/1/7f1_bakk.pdf.

  • Bakker, A. (2004). Design research in statistics education: On symbolizing and computer tools. Utrecht, The Netherlands: CD Beta Press. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/dissertations/04.Bakker.Dissertation.pdf.

  • Bakker, A., Biehler, R., & Konold, C. (2005). Should young students learn about box plots? In G. Burrill & M. Camden (Eds.), Curricular development in statistics education. International Association for Statistical Education (IASE) Roundtable, Lund, Sweden, 28 June–3 July 2004 (pp. 163–173). Voorburg, The Netherlands: International Statistical Institute. http://www.stat.auckland.ac.nz/~iase/publications.php.

  • Bakker, A., & Derry, J. (2011). Lessons from inferentialism for statistics education. Mathematical Thinking and Learning, 13, 5–26.

    Article  Google Scholar 

  • Bakker, A., & Frederickson, A. (2005). Comparing distributions and growing samples by hand and with a computer tool. In W. J. Masalski (Ed.), Technology-supported mathematics learning environments: Sixty-seventh Yearbook of the National Council of Teachers of Mathematics (pp. 75–91). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Bakker, A., & Gravemeijer, K. P. E. (2004). Learning to reason about distribution. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 147–168). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Bakker, A., Gravemeijer, K. P. E., van Velthoven, W. (2001). Statistical Minitools 1 and 2 [revised version based on Cobb, Gravemeijer, Bowers, & Doorman 1997]. Nashville, TN & Utrecht, The Netherlands: Vanderbilt University & Utrecht University.

    Google Scholar 

  • Bakker, A., Kent, P., Noss, R., & Hoyles, C. (2006). Designing statistical learning opportunities for industry. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Voorburg, The Netherlands: International Statistical Institute.

    Google Scholar 

  • Bakker, A., Kent, P., Noss, R., & Hoyles, C. (2009). Alternative representations of statistical measures in computer tools to promote communication between employees in automotive manufacturing. Technology Innovations in Statistics Education, 3(2), Article 1. Retrieved from http://escholarship.org/uc/item/S3b9122r.

  • Becker, R. (1994). A brief history of S. In P. Dirschedl & R. Osterman (Eds.), Computational statistics (pp. 81–110). Heidelberg, Germany: Physica Verlag.

    Chapter  Google Scholar 

  • Ben-Zvi, D. (2000). Toward understanding the role of technological tools in statistical learning. Mathematical Thinking and Learning, 2, 127–155.

    Article  Google Scholar 

  • Ben-Zvi, D. (2006). Scaffolding students’ informal inference and argumentation. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. [CD-ROM]. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/17/2D1_BENZ.pdf.

  • Ben-Zvi, D. (2008). Partners in innovation: Helping teachers to integrate technology in the teaching of statistics. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Proceedings of the Joint ICMI/IASE Study on Statistics Education in School Mathematics: Challenges for Teaching and Teacher Education. Monterrey, Mexico: ITESM.

    Google Scholar 

  • Ben-Zvi, D., & Garfield, J. (Eds.). (2004). The challenge of developing statistical literacy, reasoning, and thinking. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Ben-Zvi, D., Gil, E., & Apel, N. (2007). What is hidden beyond the data? Helping young students to reason and argue about some wider universe. In D. Pratt & J. Ainley (Eds.), Reasoning about informal inferential statistical reasoning: A collection of current research studies. Proceedings of the Fifth International Research Forum on Statistical Reasoning, Thinking, and Literacy (SRTL-5). Warwick, UK: University of Warwick.

    Google Scholar 

  • Ben-Zvi, D., & Sharett-Amir, Y. (2005). How do primary school students begin to reason about distributions? In K. Makar (Ed.), Reasoning about distribution: A collection of current research studies. Proceedings of the Fourth International Research Forum on Statistical Reasoning, Thinking, and Literacy (SRTL–4), [CD-ROM]. Brisbane, Australia: University of Queensland.

    Google Scholar 

  • Biehler, R. (1993). Software tools and mathematics education: The case of statistics. In C. Keitel & K. Ruthven (Eds.), Learning from computers: Mathematics education and technology (pp. 68–100). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Biehler, R. (1994, July). Probabilistic thinking, statistical reasoning, and the search for causes. Do we need a probabilistic revolution after we have taught data analysis? Revised and extended version of a paper presented at the Fourth International Conference on Teaching Statistics (ICOTS 4), Marrakech, Morocco, 25–30 July 1994. Retrieved from http://lama.unipaderborn.de/fileadmin/Mathematik/People/biehler/Homepage/pubs/BiehlerIcots19941.pdf.

  • Biehler, R. (1997). Software for learning and for doing statistics. International Statistical Review, 65(2), 167–189.

    Article  Google Scholar 

  • Biehler, R. (2005). Authentic modelling in stochastics education: The case of the binomial distribution. In G. Kaiser & H.-W. Henn (Eds.), Festschrift fĂĽr Werner Blum (pp. 19–30). Hildesheim, Germany: Franzbecker.

    Google Scholar 

  • Biehler, R. (2007a). Skriptum Elementare Stochastik. Kassel, Germany: Universität Kassel.

    Google Scholar 

  • Biehler, R. (2007b, August). Challenging students’ informal inferential reasoning by means of smoothly introducing p-value based hypothesis testing. Paper presented at the Fifth International Forum for Research on Statistical Reasoning, Thinking and Literacy. University of Warwick, Warwick, UK.

    Google Scholar 

  • Biehler, R. (2007c). TINKERPLOTS: Eine Software zur Förderung der Datenkompetenz in Primar- und frĂĽher Sekundarstufe. Stochastik in der Schule, 27(3), 34–42.

    Google Scholar 

  • Biehler, R., & Hofmann, T. (2011, August). Designing and evaluating an e-learning environment for supporting students’ problem-oriented use of statistical tool software. Paper presented at the 58th ISI Session, Dublin, Ireland.

    Google Scholar 

  • Biehler, R., & Prömmel, A. (2010). Developing students’ computer-supported simulation and modelling competencies by means of carefully designed working environments. In C. Reading (Ed.), Proceedings of the Eighth International Conference on Teaching Statistics. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/icots8/ICOTS8_8D3_BIEHLER.pdf.

  • Burrill, G., & Biehler, R. (2011). Fundamental statistical ideas in the school curriculum and in training teachers. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: Challenges for teaching and teacher education (A joint ICMI/IASE Study) (pp. 57–69). New York, NY: Springer.

    Chapter  Google Scholar 

  • Chambers, J. M. (1980). Statistical computing: History and trends. The American Statistician, 34(4), 238–243.

    Google Scholar 

  • Chance, B. L., Ben-Zvi, D., Garfield, J., & Medina, E. (2007). The role of technology in improving student learning. Technology Innovations in Statistics Education,1(1). Article 2. Retrieved from http://escholarship.org/uc/item/8Sd2tyrr.

  • Chance, B. L., delMas, R., & Garfield, J. (2004). Reasoning about sampling distributions. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 295–323). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Cobb, P., Gravemeijer, K. P. E., Bowers, J., & Doorman, L. M. (1997). Statistical Minitools [applets and applications]. Nashville & Utrecht: Vanderbilt University, Freudenthal Institute, & Utrecht University.

    Google Scholar 

  • Cobb, G., & Moore, D. (1997). Mathematics, statistics and teaching. American Mathematical Monthly, 104(9), 801–823.

    Article  Google Scholar 

  • Cryer, J. (2001, August). Problems with using Microsoft Excel for statistics. Presented at the American Statistical Association (ASA) Joint Statistical Meeting, Atlanta, GA.

    Google Scholar 

  • cTWO (2007). Rich in meaning. A vision on innovative mathematics education. Utrecht, The Netherlands: Commissie Toekomst WiskundeOnderwijs.

    Google Scholar 

  • delMas, R. (2004). A comparison of mathematical and statistical reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 79–95). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • delMas, R. (2002). Statistical literacy, reasoning and learning. Journal of Statistics Education, 10(3). Online.

    Google Scholar 

  • Diaconis, P., & Efron, B. (1983). Computer-intensive methods in statistics. Scientific American, 248, 96–110.

    Article  Google Scholar 

  • DiSessa, A. A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing graphing: Meta-representational expertise in children. Journal of Mathematical Behavior, 10, 117–160.

    Google Scholar 

  • Ernie, K. (1996). Technology reviews: DataScope and ProbSim. Mathematics Teacher, 89, 359–360.

    Google Scholar 

  • Everson, M. G., & Garfield, J. (2008). An innovative approach to teaching online statistics courses. Technology Innovations in Statistics Education, 2(1), Article 3. Retrieved from http://escholarship.org/uc/item/2v6124xr.

  • Finzer, W. (2001). Fathom Dynamic Statistics (v1.0) [Current version is 2.1]. Key Curriculum Press.

    Google Scholar 

  • Finzer, W. (2006). What does dragging this do? The role of dynamically changing data and parameters in building a foundation for statistical understanding. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics [CD-ROM]. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/17/7D4_FINZ.pdf.

  • Finzer, W., & Jackiw, N. (1998). Dynamic manipulation of mathematical objects. White paper presented to the NCTM 2000 Electronic Format Group. http://www.dynamicgeometry.com/documents/recentTalks/s2k/DynamicManipulation.doc.

  • Fitzallen, N., & Watson, J. (2010, July). Developing statistical reasoning facilitated by TinkerPlots. In C. Reading (Ed.), Proceedings of the Eighth International Conference on Teaching Statistics, Ljubljana, Slovenia. Voorburg, The Netherlands: International Statistical Institute.

    Google Scholar 

  • Flores, A. (2006). Using graphing calculators to redress beliefs in the “law of small numbers”. In G. F. Burrill (Ed.), Thinking and reasoning with data and chance: Sixty-eighth Yearbook (pp. 291–304). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Friel, S. N. (2002). Wooden or steel roller coasters: What’s the choice? New England Mathematics Journal, 34, 40–54.

    Google Scholar 

  • Gal, I. (2002). Developing statistical literacy: Towards implementing change. International Statistical Review, 70(1), 46–51.

    Article  Google Scholar 

  • Gal, I., & Ograjenšek, I. (2010). Qualitative research in the service of understanding learners and users of statistics. International Statistical Review, 78, 287–296.

    Article  Google Scholar 

  • Garfield, J. (2003). Assessing statistical reasoning. Statistics Education Research Journal, 2(1), 22–38. http://www.stat.auckland.ac.nz/~iase/serj/SERJ2(1).

  • Garfield, J., & Ben-Zvi, D. (2007). How students learn statistics revisited: A current review research on teaching and learning statistics. International Statistical Review, 75, 372–396.

    Article  Google Scholar 

  • Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning: Connecting research and teaching practice. New York, NY: Springer.

    Google Scholar 

  • Garfield, J., & Ben-Zvi, D. (2009). Helping students develop statistical reasoning: Implementing a statistical reasoning learning environment. Teaching Statistics, 31(3), 72–77.

    Article  Google Scholar 

  • Garfield, J., Chance, B., & Snell, J. L. (2000). Technology in college statistics courses. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 357–370). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Garfield, J., Zieffler, A., Kaplan, D., Cobb, G. W., Chance, B. L., & Holcomb, J. P. (2011). Rethinking assessment of student learning in statistics courses. The American Statistician, 65(1), 1–10.

    Article  Google Scholar 

  • Gil, E., & Ben-Zvi, D. (2011). Explanations and context in the emergence of students’ informal inferential reasoning. Mathematical Thinking and Learning, 13, 87–108.

    Article  Google Scholar 

  • Gould, R. (2010). Statistics and the modern student. International Statistical Review, 78, 297–315.

    Article  Google Scholar 

  • Hall, J. (2011). Engaging teachers and students with real data: Benefits and challenges. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: Challenges for teaching and teacher education (pp. 335–346). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Hancock, C. (1995). Tabletop. Cambridge, MA: TERC.

    Google Scholar 

  • Harradine, A., & Konold, C. (2006). How representational medium affects the data displays students make. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics [CD-ROM]. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/17/7C4_HARR.pdf.

  • Heiberger, R. M., & Neuwirth, E. (2009). R through Excel: A spreadsheet interface for statistics, data analysis, and graphics. New York, NY: Springer.

    Google Scholar 

  • Hoyles, C., Bakker, A., Kent, P., & Noss, R. (2007). Attributing meanings to representations of data: The case of statistical process control. Mathematical Thinking and Learning, 9, 331–360.

    Article  Google Scholar 

  • Hoyles, C., Noss, R., Kent, P., & Bakker, A. (2010). Improving mathematics at work: The need for techno-mathematical literacies. London, UK: Routledge.

    Google Scholar 

  • Hunt, D. N. (1996). Teaching statistics with Excel 5.0. Maths & Stats, 7(2), 11–14.

    Google Scholar 

  • Ireland, S., & Watson, J. (2009). Building an understanding of the connection between experimental and theoretical aspects of probability. International Electronic Journal of Mathematics Education, 4, 339–370.

    Google Scholar 

  • Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under uncertainty: Heuristics and biases. New York, NY: Cambridge University Press.

    Google Scholar 

  • KMK (Eds.). (2004). Bildungsstandards im Fach Mathematik fĂĽr den Mittleren Schulabschluss - Beschluss der Kultusministerkonferenz vom 4. 12. 2003 [National standards for mathematics in Germany]. MĂĽnchen, Germany: Wolters Kluwer.

    Google Scholar 

  • Koehler, M. H. (2006). Using graphing calculator simulations in teaching statistics. In G. F. Burrill (Ed.), Thinking and reasoning with data and chance: Sixty-eighth Yearbook (pp. 257–272). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Konold, C. (2002). Teaching concepts rather than conventions. New England Journal of Mathematics, 34(2), 69–81.

    Google Scholar 

  • Konold, C. (2010, July). The virtues of building on sand. Paper presented at the Eighth International Conference on Teaching Statistics, Ljubljana, Slovenia. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/icots8/ICOTS8_PL6_KONOLD.html.

  • Konold, C., Harradine, A., & Kazak, S. (2007). Understanding distributions by modeling them. International Journal of Computers for Mathematical Learning, 12, 217–230.

    Article  Google Scholar 

  • Konold, C., & Higgins, T. L. (2002). Working with data: Highlights of related research. In S. J. Russell, D. Schifter, & V. Bastable (Eds.), Developing mathematical ideas: Collecting, representing, and analyzing data (pp. 165–201). Parsippany, NJ: Dale Seymour Publications.

    Google Scholar 

  • Konold, C., Higgins, T., Russell, S. J., & Khalil, K. (2003). Data seen through different lenses (Unpublished Manuscript). University of Massachusetts, Amherst, MA.

    Google Scholar 

  • Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations In Statistics Education, 2(1), Article 1. Retrieved from http://escholarship.org/uc/item/38p7c94r.

  • Konold, C., & Lehrer, R. (2008). Technology and mathematics education: An essay in honor of Jim Kaput. In L. D. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 49–72). New York, NY: Routledge.

    Google Scholar 

  • Konold, C., & Miller, C. D. (2005). TinkerPlots: Dynamic Data Exploration™ (Version 1.0) [Computer software]. Emeryville, CA: Key Curriculum Press. Retrieved from http://www.keypress.com/x5715.xml.

  • Konold, C., & Miller, C. (2011). TinkerPlots (Version v2.0) [Computer software]. Emeryville, CA: Key Curriculum Press.

    Google Scholar 

  • Konold, C., & Pollatsek, A. (2002). Data analysis as the search for signals in noisy processes. Journal for Research in Mathematics Education, 33(4), 259–289.

    Article  Google Scholar 

  • Kuhn, J. R. D. (2003). Graphing calculator programs for instructional data diagnostics and statistical inference. Journal of Statistics Education, 11(2). http://www.amstat.org/publications/jse/v11n2/kuhn.html.

  • Lee, H. S., & Hollebrands, K. (2008). Preparing to teach data analysis and probability with technology. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Proceedings of the Joint ICMI/IASE Study on Statistics Education in School Mathematics: Challenges for teaching and teacher education. Monterrey, Mexico: ITESM.

    Google Scholar 

  • Lehrer, R., Kim, M., & Schauble, L. (2007). Supporting the development of conceptions of statistics by engaging students in modeling and measuring variability. International Journal of Computers for Mathematics Learning, 12, 195–216.

    Article  Google Scholar 

  • Lesser, L. (2007). Using graphing calculators to do statistics: A pair of problematic pitfalls. Mathematics Teacher, 100, 375–378.

    Google Scholar 

  • Madden, S. R. (2011). Statistically, technologically, and contextually provocative tasks: Supporting teachers’ informal inferential reasoning. Mathematical Thinking and Learning, 13, 109–131.

    Article  Google Scholar 

  • Makar, K., Bakker, A., & Ben-Zvi, D. (2011). The reasoning behind informal statistical inference. Mathematical Thinking and Learning, 13, 152–173.

    Article  Google Scholar 

  • Makar, K., & Fielding-Wells, J. (2011). Teaching teachers to teach statistical investigations. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: Challenges for teaching and teacher education (pp. 347–358). New York, NY: Springer.

    Chapter  Google Scholar 

  • Maxara, C. (2009). Stochastische Simulation von Zufallsexperimenten mit Fathom—Eine theoretische Werkzeuganalyse und explorative Fallstudie. Kasseler Online-Schriften zur Didaktik der Stochastik (KaDiSto) Bd. 7. Kassel: Universität Kassel. Retrieved from http://nbn-resolving.org/urn:nbn:de:hebis:34-2006110215452.

  • Maxara, C., & Biehler, R. (2006). Students’ probabilistic simulation and modeling competence after a computer-intensive elementary course in statistics and probability In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics [CD-ROM]. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/17/7C1_MAXA.pdf.

  • Maxara, C., & Biehler, R. (2007). Constructing stochastic simulations with a computer tool—students’ competencies and difficulties. Proceedings of CERME 5. http://www.erme.unito.it/CERME5b/WG5.pdf#page=79.

  • Maxara, C., & Biehler, R. (2010). Students’ understanding and reasoning about sample size and the law of large numbers after a computer-intensive introductory course on stochastics. In C. Reading (Ed.), Proceedings of the Eighth International Conference on Teaching Statistics. Voorburg, The Netherlands: International Statistical Institute. http://www.stat.auckland.ac.nz/~iase/publications/icots8/ICOTS8_3C2_MAXARA.pdf.

  • McCullough, B. D., & Wilson, B. (1999). On the accuracy of statistical procedures in Microsoft Excel 97. Computational Statistics and Data Analysis, 31, 27–37.

    Article  Google Scholar 

  • Meyfarth, T. (2006). Ein computergestĂĽtztes Kurskonzept fĂĽr den Stochastik-Leistungskurs mit kontinuierlicher Verwendung der Software Fathom—Didaktisch kommentierte Unterrichtsmaterialien. Kasseler Online-Schriften zur Didaktik der Stochastik (KaDiSto) Bd. 2. Kassel, Germany: Universität Kassel. Retrieved from http://nbn-resolving.org/urn:nbn:de:hebis34-2006092214683.

  • Meyfarth, T. (2008). Die Konzeption, DurchfĂĽhrung und Analyse eines simulationsintensiven Einstiegs in das Kurshalbjahr Stochastik der gymnasialen Oberstufe—Eine explorative Entwicklungsstudie. Kasseler Online-Schriften zur Didaktik der Stochastik (KaDiSto) Bd. 6. Kassel, Germany: Universität Kassel. Retrieved from http://nbn-resolving.org/urn:nbn:de:hebis:34-2006100414792.

  • Mittag, H. J. (2002). Java applets and multimedia catalogues for statistics education. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics: Developing a statistically literate society. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/1/7a1_mitt.pdf.

  • Moore, D. (1997). New pedagogy and new content: The case of statistics. International Statistical Review, 65, 123–137.

    Article  Google Scholar 

  • Moore, D. (1998). Statistics among the liberal arts. Journal of the American Statistical Association, 93(444), 1253–1259.

    Article  Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • New Zealand Ministry of Education. (2007). The New Zealand curriculum. Wellington, New Zealand: Learning Media Ltd.

    Google Scholar 

  • Noss, R., Bakker, A., Hoyles, C., & Kent, P. (2007). Situating graphs as workplace knowledge. Educational Studies in Mathematics, 65, 367–384.

    Article  Google Scholar 

  • Ogborn, J., & Boohan, D. (1991). Making sense of data: Nuffield Exploratory Data Skills Project. Mini-Course 5: Scatterplots. Student book. London, UK: Longman.

    Google Scholar 

  • Olive, J., & Makar, K. (2010). Mathematical knowledge and practices resulting from access to digital technologies. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology revisited: Rethinking the terrain (pp. 133–177). New York, NY: Springer. doi: 10.1007/978-1-4419-0146-0_8.

    Google Scholar 

  • Paparistodemou, E., & Meletiou-Mavrotheris, M. (2008). Enhancing reasoning about statistical inference in 8 year-old students. Statistics Education Research Journal, 7(2), 83–106.

    Google Scholar 

  • Pfannkuch, M., & Ben-Zvi, D. (2011). Developing teachers’ statistical thinking. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: Challenges for teaching and teacher education (A joint ICMI/IASE Study) (pp. 323–333). New York, NY: Springer.

    Chapter  Google Scholar 

  • Podworny, S. (2007). Hypothesentesten mit P-Werten im Stochastikunterricht der gymnasialen Oberstufe—Eine didaktische Analyse konkreten Unterrichts. Master’s thesis: Universität Kassel.

    Google Scholar 

  • Pratt, D. (1998). The construction of meanings in and for a stochastic domain of abstraction (Unpublished Ph.D. thesis). University of Warwick, Warwick. Retrieved from http://fcis1.wie.warwick.ac.uk/~dave_pratt/papers/thesis.rtf.

  • Pratt, D., & Ainley, J. (Eds.) (2008). Introducing the special issue on informal inference. Statistical Education Research Journal, 7(2), 3–4

    Google Scholar 

  • Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega: The International Journal of Management Science, 36, 64–75.

    Article  Google Scholar 

  • Qualifications and Curriculum Authority. (2007). The national curriculum. London, UK: Author.

    Google Scholar 

  • Ridgway, J., Nicholson, J., & McCusker, S. (2007). Reasoning with multivariate evidence. International Electronic Journal of Mathematics Education, 2, 245–269.

    Google Scholar 

  • Rosa, M., & Lerman, S. (2011). Researching online mathematics education: Opening a space for virtual learner identities. Educational Studies in Mathematics, 78, 69–90.

    Google Scholar 

  • Rossman, A. J., & Chance, B. L. (2008). Workshop statistics: Discovery with data (3rd ed.). Emeryville, CA: Key College Publishing.

    Google Scholar 

  • Salsburg, D. (2001). The lady tasting tea: How statistics revolutionized science in the twentieth century. New York, NY: W.H. Freeman.

    Google Scholar 

  • Sandlin, J. A. (2007). Netnography as a consumer education research tool. International Journal of Consumer Studies, 31, 288–294.

    Article  Google Scholar 

  • Schafer, D. W., & Ramsey, F. L. (2003). Teaching the craft of data analysis. Journal of Statistics Education, 11(1). Retrieved from http://www.amstat.org/publications/jse/v11n1/schafer.html.

  • Sedlmeier, P. (1999). Improving statistical reasoning: Theoretical models and practical implications. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and directions. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 465–494). New York, NY: Macmillan.

    Google Scholar 

  • Sklar, J. C., & Zwick R. (2009). Multimedia presentations in educational measurement and statistics: Design considerations and instructional approaches. Journal of Statistics Education, 17(3). Retrieved from http://www.amstat.org/publications/jse/v17n3/sklar.html.

  • Symanzik, J., & Vukasinovic, N. (2006). Teaching an introductory statistics course with CyberStats, an electronic textbook. Journal of Statistics Education, 14(1). Retrieved from http://www.amstat.org/publications/jse/v14n1/symanzik.html.

  • Trewin, D. (2007). The evolution of national statistical systems: Trends and implications. Statistical Journal of the International Association for Official Statistics, 24, 5–33.

    Google Scholar 

  • Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.

    Article  Google Scholar 

  • Tukey, J. W. (1965). The technical tools of statistics. The American Statistician, 19(2), 23–28.

    Google Scholar 

  • Tukey, J. W. (1972). Data analysis, computation and mathematics. Quarterly of Applied Mathematics, 30, 51–65.

    Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Velleman, P. (1998). Learning data analysis with Data Desk. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Verzani, J. (2005). Using R for introductory statistics [Online]. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Watson, J. M. (2002). Doing research in statistics education: More than just data. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics: Developing a Statistically Literate Society. Voorburg, The Netherlands: International Statistical Institute.

    Google Scholar 

  • Watson, J. M. (2006). Statistical literacy at school: Growth and goals. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Watson, J. M., & Callingham, R. A. (1997). Data cards: An introduction to higher order processes in data handling. Teaching Statistics, 19, 12–16.

    Article  Google Scholar 

  • Watson, J. M., & Donne, J. (2009). TinkerPlots as a research tool to explore student understanding. Technology Innovations in Statistics Education, 3(1), Article 1. Retrieved from http://escholarship.org/uc/item/8dp5t34t.

  • West, W. (2009). Social data analysis with StatCrunch: Potential benefits to statistical education. Technology Innovations in Statistics Education, 3(1). Retrieved from http://escholarship.org/uc/item/8dp5t34t.

  • Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67, 223–265.

    Article  Google Scholar 

  • Wild, C. J., Pfannkuch, M., Regan, M., & Horton, N. J. (2011). Towards more accessible conceptions of statistical inference. Journal of the Royal Statistical Society: Series A (Statistics in Society), 174(2), 247–295.

    Article  Google Scholar 

  • Yates, F. (1971). The use of computers for statistical analysis: A review of aims and achievements. Proceedings of the ISI, Session 36, 39–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Biehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Biehler, R., Ben-Zvi, D., Bakker, A., Makar, K. (2012). Technology for Enhancing Statistical Reasoning at the School Level. In: Clements, M., Bishop, A., Keitel, C., Kilpatrick, J., Leung, F. (eds) Third International Handbook of Mathematics Education. Springer International Handbooks of Education, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4684-2_21

Download citation

Publish with us

Policies and ethics