Skip to main content

Genetics of Multiple Myeloma

  • Chapter
  • First Online:
Genetic and Molecular Epidemiology of Multiple Myeloma

Abstract

Multiple myeloma (MM) is a heterogeneous disease that utilizes genetic aberrations of the clonal plasma cells as one method to define its major subtypes. While specific genetic changes do not contribute to the definition of the diagnosis of MM, these changes have prognostic significance that allows division into different risk groups and subsequently allows different treatment guidelines based on risk group. Drugs like the proteasome inhibitor bortezomib have shown promise in the treatment of the high-risk group, but further improved treatment options are needed to target this group with the worst prognosis. Currently, no marker or genetic alteration has a predictive value to treatment response, and research is ongoing to find such predictive markers which would be invaluable to determine treatment sequence or combination. Promising new studies are revealing the importance of microRNA abnormalities and epigenetic changes in MM. While FISH and cytogenetic analyses are the standard of genetic evaluation, they have significant limitations, and other methods, including gene expression analyses and genomic sequencing, are evolving and will likely replace current methods with time with improved sensitivity. This chapter intends to summarize critical genetic alterations in MM, review research with microRNA and epigenetic changes, and discuss upcoming methods for genomic analysis in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmann GJ, Jalal SM, Juneau AL et al (1998) A novel three-color, clone-specific fluorescence in situ hybridization procedure for monoclonal gammopathies. Cancer Genet Cytogene 101:7–11

    Article  CAS  Google Scholar 

  • Avet-Loiseau H, Facon T, Daviet A et al (1999a) 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myelome Cancer Res 59:4546–4550

    CAS  Google Scholar 

  • Avet-Loiseau H, Li JY, Morineau N et al (1999b) Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome Blood 94:2583–2589

    CAS  Google Scholar 

  • Avet-Loiseau H, Garand R, Lodé L et al (2003) Translocation t(11;14)(q13;q32) is the hallmark of IgM, IgE, and nonsecretory multiple myeloma variants. Blood 101:1570–1571

    Article  PubMed  CAS  Google Scholar 

  • Avet-Loiseau H, Attal M, Moreau P et al (2007) Genetic abnormalities and survival in multiple myeloma: the experience of the intergroupe francophone du myelome. Blood 109:3489–3495

    Article  PubMed  CAS  Google Scholar 

  • Avet-Loiseau H, Li C, Magrangeas F et al (2009) Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol 27:4585–4590

    Article  PubMed  CAS  Google Scholar 

  • Avet-Loiseau H, Leleu X, Roussel M et al (2010a) Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol 28:4630–4634

    Article  PubMed  CAS  Google Scholar 

  • Avet-Loiseau H, Soulier J, Fermand JP et al (2010b) Impact of high-risk cytogenetics and prior therapy on outcomes in patients with advanced relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone. Leukemia 24:623–628

    Article  PubMed  CAS  Google Scholar 

  • Avet-Loiseau H, Malard F, Campion L et al (2010c) Translocation t(14;16) and multiple myeloma: is it really an independent prognostic factor? Blood 117:2009–2011

    Article  PubMed  Google Scholar 

  • Bergsagel PL, Kuehl WM (2003) Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev 194:96–104

    Article  PubMed  CAS  Google Scholar 

  • Bergsagel PL, Kuehl WM, Zhan F et al (2005) Cyclin D dysregulation: An early and unifying pathogenic event in multiple myeloma. Blood 106:296–303

    Article  PubMed  CAS  Google Scholar 

  • Calvo KR, Landgren O, Roccaro AM et al (2011) Role of microRNAs from monoclonal gammopathy of undetermined significance to multiple myeloma. Seminars Hematolo 48:39–45

    Article  CAS  Google Scholar 

  • Carrasco DR, Tonon G, Huang Y et al (2006) High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 9:313–325

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Qi XY, Samiee S et al (2005a) Genetic risk identifies multiple myeloma patients who do not benefit from autologous stem cell transplantation. Bone Marrow Transplant 36:793–796

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Qi C, Yi QL et al (2005b) p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 105:358–360

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Ning Y, Qi X et al (2007) Chromosome 1p21 deletion is a novel prognostic marker in patients with multiple myeloma. Br J Haematol 139:51–54

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Qi X, Yeung J et al (2009) Genetic aberrations including chromosome 1 abnormalities and clinical features of plasma cell leukemia. Leukemia Res 33:259–262

    Article  CAS  Google Scholar 

  • Chang H, Qi X, Jiang A et al (2010a) 1p21 deletions are strongly associated with 1q21 gains and are an independent adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Bone Marrow Transplant 45:117–121

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Jiang N, Jiang H et al (2010b) CKS1B nuclear expression is inversely correlated with p27Kip1 expression and is predictive of an adverse survival in multiple myeloma. Haematologica 95:1542–1547

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA et al (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471:467–472

    Article  PubMed  CAS  Google Scholar 

  • Chiecchio L, Dagrada GP, Ibrahim AH et al (2009) Timing of acquisition of deletion 13 in plasma cell dyscrasias is dependent on genetic context. Haematologica 94:1708–1713

    Article  PubMed  CAS  Google Scholar 

  • Chng WJ, Price-Troska T, Gonzalez-Paz N et al (2007) Clinical significance of TP53 mutation in myeloma. Leukemia 21:582–584

    Article  PubMed  CAS  Google Scholar 

  • Chng WJ, Braggio E, Mulligan G et al (2008) The centrosome index is a powerful prognostic marker in myeloma and identifies a cohort of patients that might benefit from aurora kinase inhibition. Blood 111:1603–1609

    Article  PubMed  CAS  Google Scholar 

  • Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Scit USA 102:13944–13949 [Erratum appears in Proc Natl Acad Sci USA 2006 Feb 14;103(7):2464]

    Article  CAS  Google Scholar 

  • Debes-Marun C, Dewald GW, Bryant S et al (2003) Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 17:427–436

    Article  PubMed  CAS  Google Scholar 

  • Decaux O, Lodé L, Magrangeas F et al (2008) Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myelome. J Clin Onco 26:4798–4805

    Article  CAS  Google Scholar 

  • Dewald GW, Kyle RA, Hicks GA et al (1985) The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 66:380–390

    PubMed  CAS  Google Scholar 

  • Dispenzieri A, Rajkumar SV, Gertz MA et al (2007) Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc 82:323–341

    PubMed  CAS  Google Scholar 

  • Drach J, Ackermann J, Fritz E et al (1998) Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 92:802–809

    PubMed  CAS  Google Scholar 

  • Durie BG, Salmon SE (1975) A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36(3):842–854

    Article  PubMed  CAS  Google Scholar 

  • Fonseca R (2007) Strategies for risk-adapted therapy in myeloma. Hematol Am Soc Hematol Educ Program 2:304–310

    Article  Google Scholar 

  • Fonseca R, San Miguel J (2007) Prognostic factors and staging in multiple myeloma. Hematol Oncol Clin North Am 21:1115–1140

    Article  PubMed  Google Scholar 

  • Fonseca R, Bailey RJ, Ahmann GJ et al (2002) Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 100:1417–1424

    PubMed  CAS  Google Scholar 

  • Fonseca R, Debes-Marun CS, Picken EB et al (2003a) The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 102:2562–2567

    Article  PubMed  CAS  Google Scholar 

  • Fonseca R, Blood E, Rue M et al (2003b) Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101:4569–4575

    Article  PubMed  CAS  Google Scholar 

  • Fonseca R, Barlogie B, Bataille R et al (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64:1546–1558

    Article  PubMed  CAS  Google Scholar 

  • Fonseca R, Bergsagel PL, Drach J et al (2009) International myeloma working group molecular classification of multiple myeloma: Spotlight review. Leukemia 23:2210–2221

    Article  PubMed  CAS  Google Scholar 

  • Garand R, Avet-Loiseau H, Accard F et al (2003) t(11;14) and t(4;14) translocations correlated with mature lymphoplasmacytoid and immature morphology, respectively, in multiple myeloma. Leukemia 17:2032–2035

    Article  PubMed  CAS  Google Scholar 

  • Gertz MA et al (2005) Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 106:2837–2840

    Article  PubMed  CAS  Google Scholar 

  • Greipp PR et al (2005) International staging system for multiple myeloma. J Clin Oncol 23:3412–3420

    Article  PubMed  Google Scholar 

  • Gutierrez NC, Castellanos MV, Martín ML et al (2007) Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 21:143–150

    Article  PubMed  CAS  Google Scholar 

  • Jagannath S, Richardson PG, Sonneveld P et al (2007) Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 21:151–157

    Article  PubMed  CAS  Google Scholar 

  • Kapoor P, Kumar S, Fonseca R et al (2009) Impact of risk stratification on outcome among patients with multiple myeloma receiving initial therapy with lenalidomide and dexamethasone. Blood 114:518–521

    Article  PubMed  CAS  Google Scholar 

  • Kapoor P, Fonseca R, Rajkumar SV et al (2010) Evidence for cytogenetic and fluorescence in situ hybridization risk stratification of newly diagnosed multiple myeloma in the era of novel ­therapy. Mayo Clin Proc 85:532–537

    Article  PubMed  Google Scholar 

  • Keats JJ, Fonseca R, Chesi M et al (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12:131–144

    Article  PubMed  CAS  Google Scholar 

  • Kumar SK, Mikhael JR, Buadi FK et al (2009) Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines. Mayo Clin Proc 84:1095–1110

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Fonseca R, Ketterling RP et al (2012) Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood 119:2100–2105

    Article  PubMed  CAS  Google Scholar 

  • Lemaire M, Deleu S, De Bruyne E et al (2011) The microenvironment and molecular biology of the multiple myeloma tumor. Adv Cancer Res 110:19–42

    Article  PubMed  CAS  Google Scholar 

  • Lionetti M, Landgren O, Roccaro AM et al (2009) Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood 114:e20–26

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Leong T, Quam L et al (1996) Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the eastern cooperative oncology group phase III trial. Blood 88:2699–2706

    PubMed  CAS  Google Scholar 

  • Loffler D, Brocke-Heidrich K, Pfeifer G et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110:1330–1333

    Article  PubMed  Google Scholar 

  • Lopez-Corral L, Gutiérrez NC, Vidriales MB et al (2011) The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clini Cancer Res 17(7):1692–1700

    Article  CAS  Google Scholar 

  • Mateos M, Guitterez NC, Paiva B et al (2010) Clinical outcome according to both cytogenetic abnormalities (CA) detected by Fluorescence In Situ Hybridization (FISH) and hyperdiploidy assessed by Flow Cytometry (FCM) in elderly newly diagnosed myeloma patients treated with a bortezomib-based combination. Blood November 2010; 116: 309.

    Google Scholar 

  • Munshi NC, Avet-Loiseau H (2011) Genomics in multiple myeloma. Clin Cancer Res 17:1234–1242

    Article  PubMed  CAS  Google Scholar 

  • Nair B, van Rhee F, Shaughnessy JD Jr et al (2010) Superior results of Total Therapy 3 (2003–33) in gene expression profiling-defined low-risk multiple myeloma confirmed in subsequent trial 2006–66 with VRD maintenance. Blood 115:4168–4173

    Article  PubMed  CAS  Google Scholar 

  • Neri A, Baldini L, Trecca D et al (1993) p53 gene mutations in multiple myeloma are associated with advanced forms of malignancy. Blood 81:128–135

    PubMed  CAS  Google Scholar 

  • Pei H, Zhang L, Luo K et al (2011) MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470:124–128

    Article  PubMed  CAS  Google Scholar 

  • Pichiorri F, S-s S, Ladetto M et al (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 105:12885–12890

    Article  PubMed  CAS  Google Scholar 

  • Reece D, Song KW, Fu T et al (2009) Influence of cytogenetics in patients with relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone: adverse effect of deletion 17p13. Blood 114:522–525

    Article  PubMed  CAS  Google Scholar 

  • Richardson P (2006) Optimizing bortezomib treatment in patients with relapsed multiple myeloma. Clin Adv Hematol Oncol 4:4–5; discussion 8; suppl 13

    PubMed  Google Scholar 

  • Ross FM, Ibrahim AH, Vilain-Holmes A et al (2005) Age has a profound effect on the incidence and significance of chromosome abnormalities in myeloma. Leukemia 19:1634–1642

    Article  PubMed  CAS  Google Scholar 

  • Ross FM, Chiecchio L, Dagrada GP et al (2010) The t(14;20) is a poor prognostic factor in myeloma but is associated with long term stable disease in MGUS. Haematologica 95:1221–1225

    Article  PubMed  Google Scholar 

  • San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917

    Article  PubMed  CAS  Google Scholar 

  • Schop RF, Kuehl WM, Van Wier SA et al (2002) Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood 100:2996–3001

    Article  PubMed  CAS  Google Scholar 

  • Schuster SR, Rajkumar SV, Dispenzieri A et al (2010) IgM multiple myeloma: disease definition, prognosis, and differentiation from Waldenstrom’s macroglobulinemia. Am J Hematol 85:853–855

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Heuck CJ, Fazzari MJ et al (2010) DNA methylation alterations in multiple myeloma as a model for epigenetic changes in cancer. Wiley Interdisciplinary Rev Syst Biol Med 2:654–669

    Article  CAS  Google Scholar 

  • Shaughnessy JD Jr, Zhan F, Burington BE et al (2007) A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 109:2276–2284

    Article  PubMed  CAS  Google Scholar 

  • Smadja NV, Fruchart C, Isnard F et al (1998) Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia 12:960–969

    Article  PubMed  CAS  Google Scholar 

  • Smith EM, Boyd K, Davies FE (2009) The potential role of epigenetic therapy in multiple myeloma. Br J Haematol 148:702–713

    Article  PubMed  Google Scholar 

  • Tiedemann RE, Gonzalez-Paz N, Kyle RA et al (2008) Genetic aberrations and survival in plasma cell leukemia. Leukemia 22:1044–1052

    Article  PubMed  CAS  Google Scholar 

  • Todoerti K, Barbui V, Pedrini O et al (2010) Pleiotropic anti-myeloma activity of ITF2357: inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica 95:260–269

    Article  PubMed  CAS  Google Scholar 

  • Tricot G, Barlogie B, Jagannath S et al (1995) Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 86:4250–4256

    PubMed  CAS  Google Scholar 

  • Tricot G, Sawyer JR, Jagannath S et al (1997) Unique role of cytogenetics in the prognosis of patients with myeloma receiving high-dose therapy and autotransplants. J Clin Oncol 15:2659–2666

    PubMed  CAS  Google Scholar 

  • Xiong W, Wu X, Starnes S et al (2008) An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood 112:4235–4246

    Article  PubMed  CAS  Google Scholar 

  • Zhan F, Huang Y, Colla S et al (2006) The molecular classification of multiple myeloma. Blood 108:2020–2028

    Article  PubMed  CAS  Google Scholar 

  • Zhan F, Colla S, Wu X et al (2007) CKS1B, over expressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and independent mechanisms. Blood 109:4995–5001

    Article  PubMed  CAS  Google Scholar 

  • Zhu YX et al (2011) Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 118:4771–4779

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Braggio Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schuster, S., Braggio, E., Fonseca, R. (2013). Genetics of Multiple Myeloma. In: Lentzsch, S. (eds) Genetic and Molecular Epidemiology of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4660-6_1

Download citation

Publish with us

Policies and ethics