Skip to main content

Production of Abiotic Stress Tolerant Fertile Transgenic Plants using Androgenesis and Genetic Transformation Methods in Cereal Crops

  • Chapter
  • First Online:

Abstract

The in vitro production of doubled haploid plants through androgenesis (anther and microspore culture) is an efficient system for the production of fully homozygous plants rapidly. To date, anther and microspore cultures are commonly used to accelerate breeding in a number of cereals and other crop species. Traditionally, plant breeders achieve homozygosity by using self-fertilization or backcrossing, which is a time consuming process. Significant advantage is that the system not only speeds up the process to obtain homozygosity, but also increases the selection efficiency. Doubled haploid plants are genetically normal and phenotypically stable. Abiotic stresses showed adverse effects on the growth of plants and the productivity of crops, thus resulting in significant economic losses worldwide. Conventional plant breeding is being employed to develop varieties resistant to abiotic stresses, but progress has been slow. There is a great need to exploit all genetic variabilities that can be used in breeding in adverse environmental conditions. Use of unconventional techniques, such as doubled haploid (DH) breeding through androgenesis will become more useful to speed up the application of conventional plant breeding methods. Genetic transformation is a novel approach for plant molecular genetics and breeding. This system offers an attractive alternative to conventional breeding programs because it can allow specific traits to be transferred into selected genotypes without adversely affecting their desirable genetic background. Till now, there are some reports using desirable genes to obtain stress tolerance transgenic plants with various transformation systems. There are some reports using explants directly to isolated microspores, protoplast isolation for microspore-derived suspension culture, anther and microspore-derived embryos for rapid production of transgenic fertile plants. However, this report mainly highlights the need to develop abiotic stress tolerance fertile transgenic plants, especially in cereal crops through androgenesis and genetic transformation system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aionesei T, Hosp J, Voronin V, Heberle-Bors E, Touraev A (2006) Methotrexate is a new selectable marker for tobacco immature pollen transformation. Plant Cell Rep 25:410–416

    Article  PubMed  CAS  Google Scholar 

  • Amudha J, Balasubramani G (2011) Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnol Mol Biol Rev 6(2):31–58

    CAS  Google Scholar 

  • Aulinger IE, Peter SO, Schmid JE, Stamp P (2003) Gametic embryos of maize as a target for biolistic transformation: Comparison to immature zygotic embryos. Plant Cell Rep 21:585–591

    PubMed  CAS  Google Scholar 

  • Baisakh N, Datta K, Oliva N, Ona I, Rao GJN, Mew TW, Datta SK (2001) Rapid development of homozygous transgenic rice using anther culture harbouring rice chitinase gene for enhanced sheath blight resistance. Plant Biotechnol 18(2):101–108

    Article  CAS  Google Scholar 

  • Barnabás B (2003) Anther culture of maize (Zea mays L.). In: Maluszynski M, Kasha KJ, Forster BP, SzarejkoI (eds) Doubled haploid production in crop plants, A manual. Kluwer Academic Publishers, Dordrecht, pp 103–108

    Google Scholar 

  • Bikash C, Mandal AB (2001) Microspore embryogenesis and fertile plantlet regeneration in a salt susceptible × salt tolerant rice hybrid. Plant Cell Tiss Org Cult 65:141–147

    Article  Google Scholar 

  • Bolik M, Koop Hu (1991) Identification of embryogenic microspores of barley (Hordeum vulgare L.) by individual selection and culture and their potential for transformation by microinjection. Protoplasma 162:61–68

    Article  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed  CAS  Google Scholar 

  • Breiman A (1985) Plant regeneration from Hordeum spontaneum and Hordeum bulbosum immature embryo-derived calli. Plant Cell Rep 4:70–73

    Article  Google Scholar 

  • Carissen G, Smith C, Francis R, Reynolds H, Mullineaux P (1990) Agrobacterium and microprojectile-mediated viral DNA delivery into barley microspore-derived cultures. Plant Cell Rep 8:680–683

    Article  Google Scholar 

  • Carlson AR, Letarte J, Chen JM, Kasha KJ (2001) Visual screening of microspore-derived transgenic barley (Hordeum vulgare L.) with green fluorescent protein. Plant Cell Rep 20:331–337

    Article  CAS  Google Scholar 

  • Castillo AM, Vasil V, Vasil IK (1994) Rapid production of fertile transgenic plants of rye (Secale cereal L.). Bio/Technol 12:1366–1371

    Article  CAS  Google Scholar 

  • Castillo AM, Valles MP, Cistue L (2000) Comparison of anther and isolated microspore cultures in barley, effects of culture density and regeneration medium. Euphytica 113:1–8

    Article  CAS  Google Scholar 

  • Chair H, Legavre T, Guiderdoni E (1996) Transformation of haploid, microspore-derived cell suspension protoplast of rice (Oryza sativa L.). Plant Cell Rep 10:766–770

    Article  Google Scholar 

  • Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka CM, Duncan DR, Conner W, Wan YC (1997) Genetic transformation of wheat mediated by Agrobacterum tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Chauhan H, Khurana P (2010) Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotech J 1–10

    Google Scholar 

  • Chen JM, Carlson AR, Wan JM, Kasha KJ (2003) Chromosomal location and expression of green fluorescent protein (gfp) gene in microspore-derived transgenic barley (Hordeum vulgare L.). Acta Genet Sin 30:697–705

    PubMed  CAS  Google Scholar 

  • Cheng TY, Smith HH (1975) Organogenesis from callus culture of Hordeum vulgare Planta 123:307–310

    Article  Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) from agronomically-important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technol 9:957–962

    Article  Google Scholar 

  • Coronado MJ, Hensel G, Broeders S, Otto I, Kumlehn J (2005) Immature pollen-derived doubled haploid formation in barley cv. Golden Promise as a tool for transgene recombination. Acta Physiol Plantarum 27(4):591–599

    Article  CAS  Google Scholar 

  • Dale JW, Schantz von M (2004) From genes to genomes, concepts and application of DNA technology. John Willey, UK, pp 325–339

    Google Scholar 

  • Datta SK (2005) Androgenic haploids: Factors controlling development and its application in crop improvement. Curr Sci 89(11):1870–1878

    CAS  Google Scholar 

  • Datta SK, Peterhans A, Datta K, Potrykus I (1990) Genetically-engineered fertile Indica-rice plants recovered from protoplasts. Bio/Technol 8:736–740

    Article  CAS  Google Scholar 

  • Datta SK, Torrizo LB, Tu J, Oliva NP, Datta K (1997) Production and molecular evaluation of transgenic rice plants. IRRI Discussion Paper Series No. 21, Philippines

    Google Scholar 

  • Davey MR, Jaya RS, Nageswara M, Rao, SK, Bhattacharya A, Kole C (2010) Generation and deployment of transgenic crop plants: An overview. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic Crop Plants. Springer-Verlag, pp 1–29

    Google Scholar 

  • Davies PA, Morton S (1998) A comparison of barley isolated microspore and anther culture and the influence of cell culture density. Plant Cell Rep 17:206–210

    Article  CAS  Google Scholar 

  • Fennell A, Hanptmann (1992) Electroporation and PEG delivery of DNA into maize microspore. Plant Cell Rep 11:567–570

    Article  CAS  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  PubMed  CAS  Google Scholar 

  • Floss DM, Kumlehn J, Conrad U, Saalbach I (2009) Haploid technology allows for the efficient and rapid generation of homozygous antibody-accumulating transgenic tobacco plants. Plant Biotech J 7:593–601

    Article  CAS  Google Scholar 

  • Folling L, Olesen A (2002) Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep 20:1098–1105

    Article  CAS  Google Scholar 

  • Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y, Yano H (1998) Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Rep 17:323–328

    Article  CAS  Google Scholar 

  • Gharanjik S, Moieni A, Mousavi A, Alizadeh H (2008) Optimization of transient expression of uidA gene in androgenic embryos of wheat (Triticum aestivum L. cv. Falat) via particle bombardment. Iran J Biotechnol 6:207–213

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brian JV, Chambers SA, Adams WR, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    PubMed  CAS  Google Scholar 

  • Gaillard A, Matthys-Rochon E, Dumas C (1992) Selection of microspore-derived emgbryogenic structures in maize related to transformation potential by microinjection. Bot Acta 105:313–318

    Google Scholar 

  • Grover A, Minhas D (2000) Towards production of abiotic stress-tolerant transgenic rice plants: Issues, progress and future research needs. Proc Indian Nat Sci Acad (PINSA) B66(1):12–32

    Google Scholar 

  • Guo YD, Pulli S (2000) Isolated microspore culture and plant regeneration in rye (Secale cereale L.). Plant Cell Rep 19:875–880

    Article  CAS  Google Scholar 

  • Hagio T, Hirabayashi T, Machii H, Tomutsune H (1995) Production of fertile transgenic barley (Hordeum vulgare L.) plants using the hygromycin-resistance marker. Plant Cell Rep 14:329–334

    Article  CAS  Google Scholar 

  • Harwood WA, Bean SJ, Chen DF, Mullineaux, Snape JW (1995) Transformation studies in Hordeum vulgare using a highly-regenerable microspore system. Euphytica 85:113–118

    Article  Google Scholar 

  • He GY, Korbuly E, Barnabás B (1993) High-frequency callus formation and regeneration of fertile plants from haploid cell-suspensions derived from anther culture in wheat (Triticum aestivum L.). Plant Sci 90:81–87

    Article  CAS  Google Scholar 

  • Hensel G, Kumlehn J (2004) Genetic transformation of barley (Hordeum vulgare L) by co-culture of immature embryos with Agrobacteria. In: Curtis IS (ed) Transgenic corps of the world—Essential protocols. Kluwer, Dordrecht, pp 35–44

    Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence-analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterum tumefaciens. Plant Mol Biol 35:205–218

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium- mediated transformation of rice using immature embryos or calli induced from mature seed. Nature Protocols 3:824–834

    Article  PubMed  CAS  Google Scholar 

  • Holiloglu K, Baenziger PS, Mitra A (2004) Genetic transformation of wheat (Triticum aestivum L.) anther culture-derived embryos by electroporation. Biotechnol. Biotechnol Equip 18:62–68

    Google Scholar 

  • Holmberg N, Bülow L (1998) Improved stress tolerance in plants by heterologous gene transfer: Recent achievements and future prospects. Trends Plant Sci 3:61–66

    Article  Google Scholar 

  • Huang B (1992) Genetic manipulation of microspores and microspore-derived embryos. In vitro Cell Dev Biol 28:53–58

    Google Scholar 

  • Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor (review article). Nature 418:678–684

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterum tumefaciens. Nature Biotechnol. 14(6):745–750

    CAS  Google Scholar 

  • Islam SMS (2010a) The role of drought stress on anther culture of wheat (Triticum aestivum L.). Plant Tiss Cult Biotech 20:55–61

    Google Scholar 

  • Islam SMS (2010b) The effect of colchicine pretreatment on isolated microspore culture of wheat (Triticum aestivum L.). Aus J Crop Sci 4(9):660–665

    CAS  Google Scholar 

  • Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K (1997) The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana . Plant Physiol 115:128

    Google Scholar 

  • Jacquard C, Wojnarowiez G, Clement C (2003) Anther culture in barley. In: Maluszynski M, Jähne A, Becker D, Brettschneider R, Lörz H (1994) Regeneration of transgenic, microspore derived fertile barley. Theor Appl Genet 89:525–533

    Google Scholar 

  • Jauhar PP (2003) Haploid and doubled haploid production in durum wheat by anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled Haploid Production in Crop Plants, a Manual. Kluwer Academic Publishers, Dordrecht, pp 67–172

    Google Scholar 

  • Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120:379–385

    Article  Google Scholar 

  • Kasha KJ, Simion E, Miner M, Letarte J, Hu TC (2003) Haploid wheat isolated microspore culture protocol. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled Haploid Production in Crop Plants, A Manual. Kluwer Academic Publishers, Dordrecht, pp 77–81

    Google Scholar 

  • Kasha KJ, Forster BP, Szarejko I (eds) (2003) Doubled haploid production in crop plants. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) A manual. Kluwer Academic Publishers, Dordrecht, pp 21–27

    Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kao KN, Horn DC (1982) A method for induction of pollen plants in barley In: Fujivara A (ed) Plant Tiss Cult. Maruzen, Tokyo, pp 529–530

    Google Scholar 

  • Kihara M, Saeki K, Ito K (1998) Rapid production of fertile transgenic barley (Hordeum vulgare L.) by direct gene transfer to primary callus-derived protoplasts. Plant Cell Rep 17:937–940

    Article  CAS  Google Scholar 

  • Kiviharju E, Pehu E (1998) The effect of cold and heat pre-treatments on anther culture of Avena sativa and A. sterillis. Plant Cell Tiss Org Cult 54:97–104

    Article  Google Scholar 

  • Köhler F, Wenzel G (1985) Regeneration of isolated barley microspores in conditioned media and trials to characterize the responsible factor. J Plant Physiol 121:181–191

    Article  Google Scholar 

  • Koprek T, Hänsch R, Nerlich A, Mendel RR, Schulze J (1996) Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci 119:79–91

    Article  CAS  Google Scholar 

  • Kott LS, Kasha KJ (1984) Initiation and morphological development of somatic embryoids from barley cell cultures. Canad J Bot 62:1245–1249

    Article  Google Scholar 

  • Kramer PJ (1980) Drought stress and the origin of adaptations. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. John Wiley, New York, pp 7–20

    Google Scholar 

  • Kuchel H, Hollamby GJ, Langridhe P, Willium KJ, Jefferies SP (2006) Identification of genetic loci associated with ear-emergance in bread wheat. Theor Appl Genet 113:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Kuhlmann U, Foroughi-Wehr B, Graner A, Wenzel G (1991) Improved culture system for microspores of barley to become a target for DNA uptake. Plant Breed 107:165–168

    Article  Google Scholar 

  • Kumlehn J, Broeders S, Valkov V (2004) Exclusive generation of true-breeding transgenic plants via Agrobacterium - mediated transformation of barley pollen cultures. J Genet Plant Breed 40:83

    Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G, Becker D, Lörz (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterum tumefaciens. Plant Bioteh J 4(2):251–261

    Article  CAS  Google Scholar 

  • Kumlehn J, Hensel G (2009) Genetic transformation technology in the Triticeae. Breed Sci 59:553–560

    Article  CAS  Google Scholar 

  • Kunz C, Islam SMS, Berberat J, Peter SO, Büter B, Stamp P, Schmid JE (2000) Assessment and improvement of wheat microspore derived embryo induction and regeneration. J Plant Physiol 156:190–196

    Article  CAS  Google Scholar 

  • Lazzeri PA, Lörz H (1990). Regenerable suspension and protoplast cultures of barley and stable transformation via DNA uptake into protoplasts. In: Lycett GW, Grierson D (eds) Genetics Engineering of Crop Plant. Butterworths, London, pp 231–237

    Google Scholar 

  • Lemaux PG (2008) Genetically-engineered plants and foods: A scientist’s analysis of the issues (Part I). Annu Rev Plant Biol 59:771–812

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Zheng MY, Konzak CF (2001) Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.). Plant Cell Rep 20:821–824

    Google Scholar 

  • Lupotto E (1984) Callus induction and plant regeneration from barley mature embryos. Ann Bot 54:523–529

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: An overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Massiah A, Rong H, Brown S, Laurie S (2001) Accelerated production and identification of homozygous transgenic wheat lines by anther culture. Mol Breed 7:163–173

    Article  CAS  Google Scholar 

  • Nishimura A, Aichi I, Matsuoka M (2006) A protocol for Agrobacterium - mediated transformation in rice. Nature Protocols 1(6):2796–2802

    Article  PubMed  CAS  Google Scholar 

  • Nordin K, Heino P, Palva ET (1991) Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 115:875–879

    Google Scholar 

  • Obert B, Middlefell-Williams J, Millam S (2008) Genetic transformation of barley microspores using anther bombardment. Biotechnol Lett 30:945–949

    Article  PubMed  CAS  Google Scholar 

  • Otani M, Wakita Y, Shimada T (2005) Doubled haploid plant production of transgenic rice (Oryza sativa L.) using anther culture. Plant Biotech 22:141–143

    Article  CAS  Google Scholar 

  • Pauk J, Poulimatka M, Toth KL, Monostori T (2000) In vitro androgenesis of triticale in isolated microspore culture. Plant Cell Tiss Org Cult 61:221–229

    Article  CAS  Google Scholar 

  • Pauk J, Mihaly R, Puolimatka M (2003) Protocol for wheat (Triticum aestivum L.) anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled Haploids Production in Crop Plants: A Manual. Kluwer Academic Publishers, UK, pp 59–64

    Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: An assessment. Bio/Technology 8:535–542

    Article  CAS  Google Scholar 

  • Purwoko BS, Dewi IS, Khumaida N (2010) Rice anther culture to obtain doubled-haploids with multiple tolerances. Asia Pac J Mol Biotechnol 18(1):55–57

    Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata (1996) Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep 15:727–730

    Article  CAS  Google Scholar 

  • Ritala A, Aspegren K, Kurten U, Salmenkallio-Marttila M (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol Biol 24:317–325

    Article  PubMed  CAS  Google Scholar 

  • Roy B, Basu AK (2009) Abiotic stress tolerance in crop plants-breeding and biotechnology. New India Pub. Agency, New Delhi, ISBN 10:81–89422-94–4, pp 1–544

    Google Scholar 

  • Roy B, Noren SK, Mandal AB, Basu AK (2011) Genetic engineering for Abiotic stress tolerance in agricultural crops. Biotechnology 10(1):1–22

    Article  CAS  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:1–8

    Article  CAS  Google Scholar 

  • Salmenkallio-Marttila M (1994) Regeneration of fertile barley plants from protoplasts and production of transgenic barley by electroporation. Academic Dissertation. Fac of Sci Helsinki 1–95

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring, Harbor.

    Google Scholar 

  • Schmid JE (1990) In vitro production of haploids in Triticum spelta. In Bajaj YPS (ed) Biotechnol Agric For 13:363–381

    Google Scholar 

  • Schmid JE, Keller ER (1986) Effect of a gametocide on the induction of haploids in Triticum aestivum. Genetic manipulation in plant breeding. In: Horn W, Jensen CJ, Odenbach W, Schieder O (eds) Proc. Int. Symp. Eucarpia, Sept 8–13, Berlin, pp. 347–349.

    Google Scholar 

  • Scholz S, Lörz H, Lüttickes S (2001) Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.). Mol Genet 264:653–661

    Article  CAS  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Shim YS, Kasha KJ (2003) Barley microspore transformation protocol by biolostic gun. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Kulwer Academic, UK, pp 363–366

    Google Scholar 

  • Shim YS, Pauls KP, Kasha K (2009) Transformation of isolated barley (Hordeum vulgare L.) microspores: I. The influence of pre-treatments and osmotic treatment on the time of DNA synthesis. Genome 52:166–174

    Article  PubMed  CAS  Google Scholar 

  • Slama-Ayed O, De Buyser J, Picard E, TrifaY, Amara HS (2010) Effect of pre-treatment on isolated microspores culture ability in durum wheat (Triticum turgidum sub-sp. Durum Desf.). J Plant Breed Crop Sci. 2:30–38

    CAS  Google Scholar 

  • Snape JW, Simpson E, Parker BB (1986) Criteria for the selection and use of doubled haploid system in cereal breeding programs. In: Horn W, Jensen CJ, Odenbach W, Schneider O (eds) Genetic manipulation in plant breeding. De Gruyter, Berlin, pp 217–219

    Google Scholar 

  • Somers DA, Rines HW, Gu W, Kaeppler HF, Bushnell WR (1992) Fertile transgenic oat plants. Bio/Technology 10:37–48

    Article  Google Scholar 

  • Sopory SK, Munshi M (1996) Anther culture, In: Mohan JS, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol. 1. Kluwer Acad. Publishers, Dordrecht, pp 145–176

    Google Scholar 

  • Stöger E, Fink C, Pfosser M, Heberle-Bors E (1995) Plant transformation by particle bombardment of embryogenesis pollen. Plant Cell Rep 14:273–278

    Article  Google Scholar 

  • Sukhapinda K, Kozuch ME, Rubin-Wilson, Ainley WM, Merlo DJ (1993) Transformation of maize (Zea mays L.) protoplasts and regeneration of haploids transgenic plants. Plant Cell Rep 13(2):63–68

    Article  CAS  Google Scholar 

  • Szarejko I (2003) Anther culture for doubled haploid production in barley (Hordeum vulgare L.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants, A manual. Kluwer Academic Publishers, Dordrecht, pp 35–42

    Google Scholar 

  • Tamás M (2003) Microspore culture and genetic transformation studies in barley and triticale. PhD Thesis. CRI, Szeged.

    Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    Article  PubMed  CAS  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors (1996) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Repr 9:209–215

    Article  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N (2010) A method to confer salinity stress tolerance to plants by helicase overexpression. In: Abdelhaleem MM (ed) Helicases, methods in molecular biology. Human Press, Springer Science, pp 377–387

    Google Scholar 

  • Tuvesson S, Liungberg A, Johansson N, Karlsson KE, Suijs LW, Josset JP (2000) Largescale production of wheat and triticale doubled haploids through the use of a single-anther culture method. Plant Breed 119:455–459

    Article  Google Scholar 

  • Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K (2006) CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46:171–182

    Article  PubMed  CAS  Google Scholar 

  • Vashisht AA, Pradhan A, Tuteja R, Tuteja N (2005) Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J 44:76–87

    Article  PubMed  CAS  Google Scholar 

  • Vyroubalová Š, Šmehilová M, Galuszka P and Ohnoutková L (2011) Genetic transformation of barley: limiting factors. Biologia Plantarum 55(2):213–224

    Article  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    PubMed  CAS  Google Scholar 

  • Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum L.). Plant Physiol 102:1077–1088

    PubMed  CAS  Google Scholar 

  • Wenzel G, Hoffmann F, Thomas E (1977) Increased induction and chromosome doubling of androgenetic haploid rye. Theor Appl Genet 51:81–86

    Article  Google Scholar 

  • Wu H, McCormac AC, Elliott MC, Chen DF (1998) Agrobacterium- mediated stable transformation of cell suspension cultures of barley (Hordeum vulgare). Plant Cell Tiss Org Cult 54:161–171

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2007) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Plant Cell Rep 6(8):1275–82

    Google Scholar 

  • Yao QA, Simion E, Willium M, Krochko J, Kasha KJ (1997) Biolostic transformation of haploid isolated microspotres of barley (Hordeum vulgare L.). Genome 40:570–581

    Article  PubMed  CAS  Google Scholar 

  • Zatapa-Arias FJ (2003) Laboratory protocol for anther culture technique in rice. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plant—A manual. Kluwer, Boston, pp 109–116

    Google Scholar 

  • Zimny J, Becker D, Brettschneider R, Lörz H (1995) Fertile, transgenic Triticale (x TriticosecaleWittmack). Mol Breed 1(2):155–164

    Article  Google Scholar 

  • Zhao F, Zhang H (2007) Transgenic rice breeding for abiotic stress tolerance—Present and future. Chin J Biotechnol 23:1–6

    Article  Google Scholar 

  • Zheng MY, Liu W, Weng Y, Polle E, Konzak CF (2001) Culture of freshly isolated wheat (Triticum aestivum L.) microspores treated with inducer chemicals. Plant Cell Rep 20:685–690

    Article  CAS  Google Scholar 

  • Zheng MY, Weng Y, Sahibzada R, Konzak CF (2003) Isolated microspore culture in maize (Zea mays L.), production of doubled-haploids via induced androgenesis. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plant—A manual. Kluwer Academic Publisher, UK, pp 95–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Shahinul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Islam, S., Tuteja, N. (2013). Production of Abiotic Stress Tolerant Fertile Transgenic Plants using Androgenesis and Genetic Transformation Methods in Cereal Crops. In: Tuteja, N., Gill, S. (eds) Crop Improvement Under Adverse Conditions. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4633-0_9

Download citation

Publish with us

Policies and ethics