Skip to main content

Nanosized and Nanostructured Cathode Materials for Lithium-Ion Batteries

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

There is a great deal of interest in improving the properties of cathode materials for lithium-ion batteries to meet the energy and power demand of many applications including most consumer electronics, the electric vehicle and large-format energy storage. Traditionally, the rate capability of most cathode materials is intrinsically limited to the slow ionic diffusion within the crystalline structure, and for a few materials, the problem is exacerbated by poor bulk electronic conductivity. Nanostructuring and nanosizing cathode materials have proven to be a very useful method to overcome the problem and not only enhance the rate performance of the batteries but also render some materials electrochemically active. In this chapter, we review the most recent advances in the subject by summarizing new design and synthetic methods for nanomaterials, their characterization and performance in lithium-ion batteries with great emphasis on olivines (LiFePO4) and spinel LiMn2O4 and its Ni substituent nanomaterials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pitchai R, Thavasi V, Mhaisalkar S, Ramakrishna S (2011) Nanostructured cathode materials: a key for better performance in Li-ion batteries. J Mater Chem 21(30):11040–11051

    Google Scholar 

  2. Malik R, Burch D, Bazant M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10(10):4123–4127

    Google Scholar 

  3. Okubo M, Hosono E, Kim J, Enomoto M, Kojima N, Kudo T, Zhou H, Honma I (2007) Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J Am Chem Soc 129(23):7444–7452

    Article  CAS  Google Scholar 

  4. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194

    Article  CAS  Google Scholar 

  5. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507

    Google Scholar 

  6. Chung S-Y, Bloking JT, Chiang Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1(2):123–128

    Article  CAS  Google Scholar 

  7. Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron based cathode material. ECS meeting abstracts 99(2): Abstract #127

    Google Scholar 

  8. Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Size effects on carbon-free LiFePO4 powders. Electrochem Solid State Lett 9(7):A352–A355

    Google Scholar 

  9. Fisher CAJ, Islam MS (2008) Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour. J Mater Chem 18(11):1209–1215

    Article  CAS  Google Scholar 

  10. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid State Lett 7(2):A30–A32

    Article  CAS  Google Scholar 

  11. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224–A229

    Article  CAS  Google Scholar 

  12. Gauthier M, Michot C, Ravet N, Duchesneau M, Dufour J, Liang G, Wontcheu J, Gauthier L, MacNeil D (2010) Melt casting LiFePO4. J Electrochem Soc 157(4):A453–A462

    Google Scholar 

  13. Yang S, Zavalij PY, Whittingham MS (2001) Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun 3(9):505–508

    Article  CAS  Google Scholar 

  14. Jin B, Gu H-B (2008) Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ionics 178(37–38):1907–1914

    Article  CAS  Google Scholar 

  15. Dokko K, Koizumi S, Nakano H, Kanamura K (2007) Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J Mater Chem 17(45):4803–4810

    Google Scholar 

  16. Yang S, Zhou X, Zhang J, Liu Z (2010) Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries. J Mater Chem 20(37):8086–8091

    Google Scholar 

  17. Nan C, Lu J, Chen C, Peng Q, Li Y (2011) Solvothermal synthesis of lithium iron phosphate nanoplates. J Mater Chem 21(27):9994–9996

    Google Scholar 

  18. Recham N, Dupont L, Courty M, Djellab K, Larcher D, Armand M, Tarascon J-M (2009) Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem Mater 21(6):1096–1107

    Google Scholar 

  19. Drezen T, Kwon N-H, Bowen P, Teerlinck I, Isono M, Exnar I (2007) Effect of particle size on LiMnPO4 cathodes. J Power Sources 174(2):949–953

    Google Scholar 

  20. Wang D, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon N-H, Miners J, Poletto L, Grðtzel M (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189(1):624–628

    Google Scholar 

  21. Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156(7):A541–A552

    Google Scholar 

  22. Choi D, Wang D, Bae I-T, Xiao† J, Nie Z, Wang W, Viswanathan V, Lee Y, Zhang J-G, Graff G, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10(8):2799–2805

    Google Scholar 

  23. Chen G, Richardson TJ (2010) Thermal instability of Olivine-type LiMnPO4 cathodes. J Power Sources 195:1221–1224

    Article  CAS  Google Scholar 

  24. Molenda J, Ojczyk W, Marzec J (2007) Electrical conductivity and reaction with lithium of LiFe1-yMnyPO4 olivine-type cathode materials. J Power Sources 174(2):689–694

    Article  CAS  Google Scholar 

  25. Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem Solid State Lett 3(4):178–179

    Article  CAS  Google Scholar 

  26. Li H, Jin J, Wei J, Zhou Z, Yan J (2009) Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances. Electrochem Commun 11(1):95–98

    Google Scholar 

  27. Bramnik N, Nikolowski K, M. Trotsc D, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid State Lett 11(6):A89–A93

    Google Scholar 

  28. Wolfenstine J, Allen J (2004) LiNiPO4-LiCoPO4 solid solutions as cathodes. J Power Sources 136(1):150–153

    Article  CAS  Google Scholar 

  29. Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources 142(1–2):389–390

    Article  CAS  Google Scholar 

  30. Biensan Ph, Simon B, PÕrÒs JP, de Guibert A, Broussely M, Bodet JM, Perton F (1999) On safety of lithium-ion cells. J Power Sources 81–82:906–912

    Google Scholar 

  31. MacNeil DD, Lu Z, Chen Z, Dahn J (2002) A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources 108(1–2):8–14

    Google Scholar 

  32. MacNeil DD, Dahn JR (2001) The reaction of charged cathodes with nonaqueous solvents and electrolytes: II. LiMn2O4 charged to 4.2 V. J Electrochem Soc 148(11):A1211–A1215

    Article  CAS  Google Scholar 

  33. Ohzuku T, Kitagawa M, Hirai T (1990) Electrochemistry of manganese dioxide in lithium nonaqueous cell. J Electrochem Soc 137(3):769–775

    Article  CAS  Google Scholar 

  34. Tarascon JM, Guyomard D (1991) Li metal-free rechargeable batteries based on Li1+xMn2O4 cathodes (0 < = x < = 1) and carbon anodes. J Electrochem Soc 138(10):2864–2868

    Article  CAS  Google Scholar 

  35. Tarascon J-M, Wang E, Shokoohi F, McKinnon W, Colson S (1991) The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J Electrochem Soc 138(10):2859–2864

    Article  CAS  Google Scholar 

  36. Goonetilleke PC, Zheng JP, Roy D (2009) Effects of surface-film formation on the electrochemical characteristics of LiMn2O4 cathodes of lithium ion batteries. J Electrochem Soc 156(9):A709–A719

    Article  CAS  Google Scholar 

  37. Shin Y, Manthiram A (2003) High rate, superior capacity retention LiMn2-2yLiyNiyO4 spinel cathodes for lithium-ion batteries. Electrochem Solid State Lett 6(2):A34–A36

    Article  CAS  Google Scholar 

  38. Amatucci G, Du Pasquier A, Blyr A, Zheng T, Tarascon J-M (1999) The elevated temperature performance of the LiMn2O4/C system: failure and solutions. Electrochim Acta 45(1–2):255–271

    Google Scholar 

  39. Belharouak I, Sun Y-K, Lu W, Amine K (2007) On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system. J Electrochem Soc 154(12):A1083–A1087

    Google Scholar 

  40. Thackeray M, Shao–Horn Y, Kahaian A, Kepler K, Skinner E, Vaughey J, Hackney S (1998) Structural fatigue in spinel electrodes in high voltage (4 V) Li/LiMn2O4 Cells. Electrochem Solid State Lett 1(1):7–9

    Google Scholar 

  41. Gao Y, Dahn JR (1996) Synthesis and characterization of Li1+xMn2-xO4 for Li-ion battery applications. J Electrochem Soc 143(1):100–114

    Article  CAS  Google Scholar 

  42. Blyr A, Sigala C, Amatucci G, Guyomard D, Chabre Y, Tarascon J-M (1998) Self-discharge of LiMn2O4/C Li-ion cells in their discharged state. J Electrochem Soc 145(1):194–209

    Google Scholar 

  43. Kanamura K, Dokko K, Kaizawa T (2005) Synthesis of spinel LiMn2O4 by a hydrothermal process in supercritical water with heat-treatment. J Electrochem Soc 152(2):A391–A395

    Article  CAS  Google Scholar 

  44. Kim DK, Muralidharan P, Lee H-W, Ruffo R, Yang Y, Chan C, Peng H, Huggins R, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8(11):3948–3952

    Google Scholar 

  45. Shaju KM, Bruce PG (2008) A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem Mater 20(17):5557–5562

    Article  CAS  Google Scholar 

  46. Shaju KM, Bruce PG (2008) Nano-LiNi0.5Mn1.5O4 spinel: a high power electrode for Li-ion batteries. Dalton Trans 40:5471–5475

    Article  Google Scholar 

  47. Ma X, Kang B, Ceder G (2010) High rate micron-sized ordered LiNi0.5Mn1.5O4. J Electrochem Soc 157(8):A925–A931

    Article  CAS  Google Scholar 

  48. Duncan H, Abu-Lebdeh Y, Davidson IJ (2010) Study of the cathode–electrolyte interface of LiNi0.5Mn1.5O4 synthesized by a sol–gel method for Li-ion batteries. J Electrochem Soc 157(4):A528–A535

    Article  CAS  Google Scholar 

  49. Niketic S, Whitfield P, Davidson I (2008) Synthesis and characterization of a high performance LiMn1.5Ni0.5O4 spinel cathode material. ECS meeting abstracts 801(5):155–155

    Google Scholar 

  50. Lee H-W et al (2011) Synthesis and electrochemical performance of spinel LiNi0.5Mn1.5O4 nanorods as high voltage cathode materials for Li-ion batteries. ECS meeting abstracts 1101(11):536

    Google Scholar 

  51. Lee H-W, Muralidharan P, Mari C, Ruffo R, Kim D (2011) Facile synthesis and electrochemical performance of ordered LiNi0.5Mn1.5O4 nanorods as a high power positive electrode for rechargeable Li-ion batteries. J Power Sources 196(24):10712–10716

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Abu-Lebdeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Duncan, H., Abouimrane, A., Abu-Lebdeh, Y. (2012). Nanosized and Nanostructured Cathode Materials for Lithium-Ion Batteries. In: Abu-Lebdeh, Y., Davidson, I. (eds) Nanotechnology for Lithium-Ion Batteries. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4605-7_7

Download citation

Publish with us

Policies and ethics