Skip to main content

Energy-Efficient Capacitive Sensor Interfaces

  • Chapter
  • First Online:

Abstract

Capacitive sensor systems are potentially highly energy efficient. In practice, however, their energy consumption is typically dominated by that of the interface circuit that digitizes the sensor capacitance. Energy-efficient capacitive sensor interfaces are therefore a prerequisite for the successful application of capacitive sensors in energy-constrained applications, such as battery-powered devices and wireless sensor nodes. This chapter derives lower bounds on the energy consumption of capacitive sensor interfaces. A comparison of these bounds with the state-of-the-art suggests that there is significant room for improvement. Several approaches to improving energy efficiency are discussed and illustrated by two design examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li X, Meijer GCM (2008) Capacitive sensors. In: Meijer GCM (ed) Smart sensor systems. Wiley, Chichester

    Google Scholar 

  2. Baxter LK (1997) Capacitive sensor, design and applications. IEEE Press, New York

    Google Scholar 

  3. Smith MJS, Bowman L, Meindl JD (1986) Analysis, design, and performance of micropower circuits for a capacitive pressure sensor IC. IEEE J Solid-St Circ SC-21(6):1045–1056

    Article  Google Scholar 

  4. Paavola M et al (2009) A micropower ΔΣ-based interface ASIC for a capacitive 3-axis micro-accelerometer. IEEE J Solid-St Circ 44(11):3193–3210

    Article  Google Scholar 

  5. Tan Z et al (2011) A 1.8 V 11μW CMOS smart humidity sensor for RFID sensing applications. In: Proceedings of IEEE asian solid-state circuits conference (A-SSCC), Jeju, korea, pp 105–108

    Google Scholar 

  6. van de Plassche R (2003) CMOS integrated analog-to-digital converters, 2nd edn. Kluwer, Boston

    MATH  Google Scholar 

  7. Bechen B, Weiler D, Boom T, Hosticka BJ (2006) A 10 bit very low-power CMOS SAR-ADC for capacitive micro-mechanical pressure measurement in implants. Adv Radio Sci 4:243–246

    Article  Google Scholar 

  8. Tanaka K et al (2007) A 0.026 mm2 capacitance-to-digital converter for biotelemetry applications using a charge redistribution technique. In: Proceedings of IEEE Asian solid-state circuits conference (A-SSCC), Jeju, korea, pp 244–247

    Google Scholar 

  9. Vo TM et al (2009) A 10-bit, 290 fJ/conv. steps, 0.13 mm2, zero-static power, self-timed capacitance to digital converter. In: Proceedings of international conference on Solid State Devices and Materials (SSDM) Sendai, Japan

    Google Scholar 

  10. Bracke W, Puers R, Van Hoof C (2007) Ultra low power capacitive sensor interfaces. Springer, Dordrecht

    Google Scholar 

  11. Jawed SA, et al (2008) A 828 μW 1.8 V 80 dB dynamic range readout interface for a MEMS capacitive microphone. In: Proceedings of European solid-state circuits conference (ESSCIRC), Edinbourgh, UK, pp 442–445

    Google Scholar 

  12. Shin D-Y, Lee H, Kim S (2011) A delta–sigma interface circuit for capacitive sensors with an automatically calibrated zero point. IEEE Trans Circ Syst II 58(2):90–94

    Article  MathSciNet  Google Scholar 

  13. AD7156 datasheet, Analog devices (Online). http://www.analog.com

  14. Danneels H, Coddens K, Gielen G (2011) A fully-digital, 0.3 V, 270 nW capacitive sensor interface without external references. In: Proceedings of European solid-state circuits conference (ESSCIRC), Helsiulei, Fiuland, pp 287–290

    Google Scholar 

  15. Xia S, Makinwa K, Nihtianov S (2012) A capacitance-to-digital converter for displacement sensing with 17 b resolution and 20 μs conversion time. In: International solid-state circuits conference (ISSCC), Digest of technical papers San Francisco, USA (in press)

    Google Scholar 

  16. Bruschi P, Nizza N, Piotto M (2007) A current-mode, dual slope, integrated capacitance-to-pulse duration converter. IEEE J Solid-St Circ 42(9):1884–1891

    Article  Google Scholar 

  17. Bruschi P, Nizza N, Dei M (2008) A low-power capacitance to pulse width converter for MEMS interfacing. In: Proceedings of European solid-state circuits conference (ESSCIRC), Edinburgh, UK, pp 446–449

    Google Scholar 

  18. Lu JH-L et al (2011) A low-power, wide-dynamic-range semi-digital universal sensor readout circuit using pulsewidth modulation. IEEE Sens J 11(5):1134–1144

    Article  Google Scholar 

  19. Heidary A, Meijer GCM (2008) Features and design constraints for an optimized SC front-end circuit for capacitive sensors with a wide dynamic range. IEEE J Solid-St Circ 43(7):1609–1616

    Article  Google Scholar 

  20. Heidary A, Heidary Shalmany S, Meijer G (2010) A flexible low-power high-resolution integrated interface for capacitive sensors. In: Proceedings of international symposium on industrial electronics (ISIE), Bari, Haly, pp 3347–3350

    Google Scholar 

  21. Tan Z, Pertijs MAP, Meijer GCM (2011) An energy-efficient 15-bit capacitive sensor interface. In: Proceedings of European solid-state circuits conference (ESSCIRC), Helsinki, Finland, pp 283–286

    Google Scholar 

  22. Tan Z, Heidary Shalmany S, Meijer GCM, Pertijs MAP (2012). An energy-efficient 15-bit capacitive-sensor interface based on period modulation. IEEE J Solid-St Circ 47(7): pp 17011–1711

    Google Scholar 

  23. Murmann B. ADC performance survey 1997–2011 (Online). http://www.stanford.edu/~murmann/adcsurvey.html

  24. van Elzakker M et al (2010) A 10-bit charge-redistribution ADC consuming 1.9 μW at 1 MS/s. IEEE J Solid-St Circ 45(5):1007–1015

    Article  Google Scholar 

  25. Harpe P et al (2011) A 26 μW 8 bit 10 MS/s asynchronous SAR ADC for low energy radios. IEEE J Solid-St Circ 46(7):1585–1595

    Article  Google Scholar 

  26. Schreier R, Silva J, Steensgaard J, Temes GC (2005) Design-oriented estimation of thermal noise in switched-capacitor circuits. IEEE Trans Circ Syst-I 52(11):2358–2368

    Article  Google Scholar 

  27. Cho S-H, Lee C-K, Kwon J-K, Ryu S-T (2011) A 550-μW 10-b 40-MS/s SAR ADC with multistep addition-only digital error correction. IEEE J Solid-St Circ 46(8):1881–1892

    Article  Google Scholar 

  28. Norsworthy SR, Schreier R, Temes GC (eds) (1997) Delta-sigma data converters: theory, design and simulation. IEEE Press, Piscataway/New York

    Google Scholar 

  29. Meijer GCM (2008) Interface electronics and measurement techniques for smart sensor systems. In: Meijer GCM (ed) Smart sensor systems. Wiley, Chichester

    Chapter  Google Scholar 

  30. Chae Y, Han G (2009) Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE J Solid-St Circ 44(2):458–472

    Article  Google Scholar 

  31. Meijer GCM, Iordanov VP (2001) SC front-end with wide dynamic range. Electron Lett 37(23):1377–1378

    Article  Google Scholar 

  32. Malcovati P et al (1995) Combined air humidity and flow CMOS microsensor with on-chip 15 bit sigma-delta A/D interface. In: Symposium on VLSI circuits, Digest of technical papers, Kyoto, Japan, pp 45–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel A. P. Pertijs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pertijs, M.A.P., Tan, Z. (2013). Energy-Efficient Capacitive Sensor Interfaces. In: van Roermund, A., Baschirotto, A., Steyaert, M. (eds) Nyquist AD Converters, Sensor Interfaces, and Robustness. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4587-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4587-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4586-9

  • Online ISBN: 978-1-4614-4587-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics