Skip to main content

Buckling Delamination of Compressed Thin Films

  • Chapter
  • First Online:
Mechanical Self-Assembly
  • 2054 Accesses

Abstract

The aim of this chapter is to review the studies on buckle delamination in compressively stressed thin films over substrates by pulling together experimental and theoretical analysis. The general phenomena shown in delamination buckles of compressively stressed films were discussed from the onset to propagation over the substrates. The experimental observations were characterized by the delamination conditions and buckle morphologies. Then, the related mechanics for buckle delamination were provided with a theoretical solution for simple buckle configurations and a numerical solution for nonlinear buckle. Based on the experimental and theoretical analysis, the buckle configuration was applied to fluidic channels by precisely controlling buckle width within the desired area by adjusting interface adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audoly B (1999) Stability of straight delamination blisters. Phys Rev Lett 83(20):4124

    Article  Google Scholar 

  2. Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393:146

    Article  Google Scholar 

  3. Chen X, Hutchinson JW (2004) A family of herringbone patterns in thin films. Script Mater 50:797

    Article  Google Scholar 

  4. Cho S-J, Lee K-R, Eun KY, J-h J, Kwon D (1999) A method of determining the elastic properties of diamond-like carbon films. Diamond Relat Mater 8:1067

    Article  Google Scholar 

  5. Evans AG, Hutchinson JW (1984) On the mechanics of delamination and spalling in compressed films. Int J Solid Struct 20:455

    Article  Google Scholar 

  6. Evans AG, Ruhle M, Dalgleish BJ, Charalambides PG (1990) The fracture energy of bimaterial interfaces. Mater Sci Eng A126:53

    Google Scholar 

  7. Faulhaber S, Mercer C, Moon M-W, Hutchinson JW, Evans AG (2006) Buckling delamination in compressed multilayers on curved substrates with accompanying ridge cracks. J Mech Phys Solids (54):1004

    Article  MATH  Google Scholar 

  8. Gioia G, Oritz M (1997) Delamination of compressed thin films. Adv Appl Mech 33:120

    Google Scholar 

  9. Hutchinson JW, Suo Z (1992) Mixed mode cracking in layered materials. Adv Appl Mech 29:63

    Article  MATH  Google Scholar 

  10. Hutchinson JW (2001) Delamination of compressed films on curved substrates. J Mech Phys Solids 49(9):1847

    Article  MathSciNet  MATH  Google Scholar 

  11. Hutchinson JW, He MY, Evans AG (2000) The ratcheting of compressed thermally grown thin films on ductile substrates. J Mech Phys Solids 48:709

    Article  MATH  Google Scholar 

  12. Hutchinson JW, Thouless MD, Liniger EG (1992) Growth and configurational stability of circular, buckling-driven film delaminations. Acta Metal Mater 40:295

    Article  Google Scholar 

  13. Jensen HM, Sheinman I (2001) Straight-sided, buckling-driven delamination of thin films at high stress levels. Int J Fract 110:371

    Article  Google Scholar 

  14. Kinbara A, Baba S, Matuda N, Takamisawa K (1981) Mechanical properties of and cracks and wrinkles in vacuum-deposited MgF2. Thin Solid Films 84:205

    Article  Google Scholar 

  15. Kinbara A, Baba S (1991) Growth process of wrinkles generated in deposited films. J Vac Sci Technol A9:2494–2496

    Google Scholar 

  16. Kim H-J, Moon M-W, Lee K-R, Seok H-K, Han S-H, Ryu J-W, Shin K-M, Oh KH (2008) Mechanical stability of the diamond-like carbon film on nitinol vascular stents under cyclic loading. Thin Solid Films 517:146–1150

    Google Scholar 

  17. Lee A, Clemens BM, Nix WD (2004) Stress induced delamination methods for the study of adhesion of Pt thin films to Si. Acta Mater 52(7):2081

    Article  Google Scholar 

  18. Lee K-R, Baik Y-J, Eun K-Y (1993) Stress relief behaviour of diamond-like carbon films on glasses. Diamond Relat Mater 2:218

    Article  Google Scholar 

  19. Matuda N, Baba S, Kinbara A (1981) Internal stress, Young's modulus and adhesion energy of carbon films on glass substrates. Thin Solid Films 81:301

    Article  Google Scholar 

  20. Moon M-W, Chung J-W, Lee K-R, Oh KH, Wang R, Evans AG (2002) An experimental study of the influence of imperfections on the buckling of compressed thin films. Acta Mater 50:1219

    Article  Google Scholar 

  21. Moon M-W, Jensen HM, Oh KH, Hutchinson JW, Evans AG (2002) The characterization of telephone cord buckling of compressed thin films on substrates. J Mech Phys Solids 50(11):2355

    Article  Google Scholar 

  22. Moon M-W, Lee K-R, Oh KH, Hutchinson JW (2004) Buckle delamination on patterned substrates. Acta Mater 52(10):3151

    Article  Google Scholar 

  23. Moon M-W, Lee SH, Sun JY, Oh KH, Vaziri A, Hutchinson JW (2007) Wrinkled hard skins on polymers created by focused ion beam. Proc Natl Acad Sci U S A 104:1133

    Article  Google Scholar 

  24. Moon M-W, Chung S, Lee K-R, Oh KH, Stone HA, Hutchinson JW (2007) Directed assembly of fluidic networks by buckle delamination of films on patterned substrates. Int J Mater Res 12:1203–1208

    Article  Google Scholar 

  25. Ogawa K, Ohkoshi T, Tekeuchi T, Mizoguchi T, Masumoto T (1986) Nucleation and growth of stress relief patterns in sputtered molybdenum films. J Appl Phys 25:695

    Article  Google Scholar 

  26. Pundt A, Nikitin E, Pekarski P, Kirchheim R (2004) Adhesion energy between metal films and polymers obtained by studying buckling induced by hydrogen. Acta Mater 52:1579

    Article  Google Scholar 

  27. Thouless MD (1993) Combined buckling and cracking of films. J Am Ceram Soc 76(11):2936

    Article  Google Scholar 

  28. Tolpygo VK, Clarke DR (2000) Spalling failure of α-alumina films grown by oxidation: I. Dependence on cooling rate and metal thickness. Mater Sci Eng A278:151

    Google Scholar 

  29. Weissmantel GHR, Schurer C, Frohlich F, Grau P, Lehmann H (1979) Mechanical properties of hard carbon films. Thin Solid Films 61(2):L5

    Article  Google Scholar 

  30. Yu HH, Hutchinson JW (2002) Influence of substrate compliance on buckling delamination of thin films. Int J Fract 113:39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Woon Moon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moon, MW. (2013). Buckling Delamination of Compressed Thin Films. In: Chen, X. (eds) Mechanical Self-Assembly. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4562-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4562-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4561-6

  • Online ISBN: 978-1-4614-4562-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics