Skip to main content

Spectral Theory for Forward Nonautonomous Parabolic Equations and Applications

  • Chapter
  • First Online:
Book cover Infinite Dimensional Dynamical Systems

Part of the book series: Fields Institute Communications ((FIC,volume 64))

Abstract

We introduce the concept of the principal spectrum for linear forward nonautonomous parabolic partial differential equations. The principal spectrum is a nonempty compact interval. Fundamental properties of the principal spectrum for forward nonautonomous equations are investigated. The paper concludes with applications of the principal spectrum theory to the problem of uniform persistence in some population growth models.

The second-named author was partially supported by NSF grant DMS–0907752

Mathematics Subject Classification (2010): Primary 35K15, 35P05; Secondary 35K55, 35P15, 37B55, 92D25

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Amann, Existence and regularity for semilinear parabolic evolution equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11(4), 593–676 (1984) MR 87h:34088

    Google Scholar 

  2. D. Daners, Existence and Perturbation of Principal Eigenvalues for a Periodic-Parabolic Problem. In: Proceedings of the Conference on Nonlinear Differential Equations (Coral Gables, FL, 1999); Electron. J. Differ. Equ. Conf., vol. 5 (Southwest Texas State Univ., San Marcos, TX, 2000) pp. 51–67. MR 2001j:35125

    Google Scholar 

  3. D. Daners, Heat kernel estimates for operators with boundary conditions. Math. Nachr. 217, 13–41 (2000) MR 2002f:35109

    Article  MathSciNet  Google Scholar 

  4. D. Daners, Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc. 352(9), 4207–4236 (2000) MR 2000m:35048

    Article  MathSciNet  Google Scholar 

  5. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5, Evolution Problems. I. (with the collaboration of M. Artola, M. Cessenat and H. Lanchon, translated from the French by A. Craig), (Springer, Berlin, 1992) MR 92k:00006

    Google Scholar 

  6. L.C. Evans, Partial Differential Equations. Grad. Stud. Math., vol. 19 (American Mathematical Society, Providence, 1998) MR 99e:35001

    Google Scholar 

  7. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math., vol. 840 (Springer, Berlin, New York, 1981) MR 83j:35084

    Book  Google Scholar 

  8. P. Hess, P. Poláčik, Boundedness of prime periods of stable cycles and convergence to fixed points in discrete monotone dynamical systems. SIAM J. Math. Anal. 24(5), 1312–1330 (1993) MR 94i:47087

    Article  MathSciNet  Google Scholar 

  9. J. Húska, Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains. J. Diff. Equat. 226(2), 541–557 (2006) MR 2007h:35144

    Article  MathSciNet  Google Scholar 

  10. J. Húska, P. Poláčik, The principal Floquet bundle and exponential separation for linear parabolic equations. J. Dynam. Diff. Equat. 16(2), 347–375 (2004) MR 2006e:35147

    Article  MathSciNet  Google Scholar 

  11. J. Húska, P. Poláčik, M.V. Safonov, Harnack inequality, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(5), 711–739 (2007) MR 2008k:35211

    Article  MathSciNet  Google Scholar 

  12. V. Hutson, W. Shen, G.T. Vickers, Estimates for the principal spectrum point for certain time-dependent parabolic operators. Proc. Amer. Math. Soc. 129(6), 1669–1679 (2000) MR 2001m:35243

    Google Scholar 

  13. J.-F. Jiang, X.-Q. Zhao, Convergence in monotone and uniformly stable skew-product semiflows with applications. J. Reine Angew. Math. 589, 21–55 (2005) MR 2006k:37031

    Article  MathSciNet  Google Scholar 

  14. J. Mierczyński, The principal spectrum for linear nonautonomous parabolic PDEs of second order: basic properties. [In: Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998)]. J. Diff. Equat. 168(2), 453–476 (2000) MR 2001m:35147

    Article  MathSciNet  Google Scholar 

  15. J. Mierczyński, W. Shen, Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations. J. Diff. Equat. 191(1), 175–205 (2003) MR 2004h:35232

    Article  MathSciNet  Google Scholar 

  16. J. Mierczyński, W. Shen, The Faber–Krahn inequality for random/nonautonomous parabolic equations. Commun. Pure Appl. Anal. 4(1), 101–114 (2005) MR 2006b:35358

    Google Scholar 

  17. J. Mierczyński, W. Shen, Time averaging for nonautonomous/random parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 9(3/4), 661–699 (2008) MR 2009a:35108

    Google Scholar 

  18. J. Mierczyński, W. Shen, Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications. Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., vol. 139 (Chapman & Hall/CRC, Boca Raton, FL, 2008) MR 2464792

    Google Scholar 

  19. J. Mierczyński, W. Shen, X.-Q. Zhao, Uniform persistence for nonautonomous and random parabolic Kolmogorov systems. J. Diff. Equat. 204(2), 471–510 (2004) MR 2006f:37111

    Article  MathSciNet  Google Scholar 

  20. J. Oxtoby, Ergodic sets. Bull. Amer. Math. Soc. 58, 116–136 (1952) MR 13,850e

    Article  MathSciNet  Google Scholar 

  21. P. Poláčik, On uniqueness of positive entire solutions and other properties of linear parabolic equations. Discrete Contin. Dyn. Syst. 12(1), 13–26 (2005) MR 2005k:35170

    Article  MathSciNet  Google Scholar 

  22. P. Poláčik, I. Tereščák, Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems. Arch. Rational Mech. Anal. 116, 339–360 (1991) MR 93b:58088

    Article  MathSciNet  Google Scholar 

  23. R.J. Sacker, G.R. Sell, Existence of dichotomies and invariant splittings for linear differential systems, I. J. Diff. Equat. 15, 429–458 (1974) MR 49 #6209

    Article  MathSciNet  Google Scholar 

  24. R.J. Sacker, G.R. Sell, Existence of dichotomies and invariant splittings for linear differential systems, II. J. Diff. Equat. 22(2), 478–496 (1976) MR 55 #13494

    Google Scholar 

  25. R.J. Sacker, G.R. Sell, Existence of dichotomies and invariant splittings for linear differential systems, III. J. Diff. Equat. 22(2), 497–522 (1976) MR 55 #13495

    Google Scholar 

  26. R.J. Sacker, G.R. Sell, Dichotomies for linear evolutionary equations in Banach spaces. J. Diff. Equat. 113(1), 17–67 (1994) MR 96k:34136

    Article  MathSciNet  Google Scholar 

  27. W. Shen, Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows. Part II, Skew-product semiflows. Mem. Amer. Math. Soc. 136(647), 23–52 (1998) MR 99d:34088

    Article  MathSciNet  Google Scholar 

  28. F. Wei, K. Wang, Uniform persistence of asymptotically periodic multispecies competition predator-prey systems with Holling III type functional response. Appl. Math. Comput. 170(2), 994–998 (2005) MR 2175261

    Article  MathSciNet  Google Scholar 

  29. X.-Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications. Comm. Appl. Nonlinear Anal. 3(4), 43–66 (1996), MR 97i:58150

    Google Scholar 

  30. X.-Q. Zhao, Convergence in Asymptotically Periodic Tridiagonal Competitive-Cooperative Systems, Geoffrey J. Butler Memorial Conference in Differential Equations and Mathematical Biology (Edmonton, AB, 1996); Canad. Appl. Math. Quart. 6(3), 287–301 (1998) MR 2000a:34085

    Google Scholar 

  31. C. Zhong, D. Li, P.E. Kloeden, Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete Contin. Dyn. Syst. 12(2), 213–232 (2005) MR 2006d:37155

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Mierczyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mierczyński, J., Shen, W. (2013). Spectral Theory for Forward Nonautonomous Parabolic Equations and Applications. In: Mallet-Paret, J., Wu, J., Yi, Y., Zhu, H. (eds) Infinite Dimensional Dynamical Systems. Fields Institute Communications, vol 64. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4523-4_2

Download citation

Publish with us

Policies and ethics