Skip to main content

Persistence of Periodic Orbits for Perturbed Dissipative Dynamical Systems

  • Chapter
  • First Online:
Infinite Dimensional Dynamical Systems

Part of the book series: Fields Institute Communications ((FIC,volume 64))

Abstract

This paper is devoted to the study of the persistence of periodic solutions under perturbations in dynamical systems generated by evolutionary equations, which are not smoothing in finite time, but only asymptotically smoothing. Assuming that the periodic solution of the unperturbed system is non-degenerate, we want to prove the existence and uniqueness of a periodic solution for the perturbed equation in the neighbourhood of the unperturbed solution (with a period near the period of the periodic solution of the unperturbed problem). We review some methods of proofs, used in the case of systems of ordinary differential equations, and discuss their extensions to the infinite-dimensional case.

Mathematics Subject Classification 2010(2010): Primary 35B10, 35B25, 37L50, 37L05 Secondary 35Q30, 35Q35

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Abdelhedi, Orbites périodiques dans des domaines minces. Ph.D. thesis, Université Paris-Sud, Mathématique, 2005

    Google Scholar 

  2. B. Abdelhedi, Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete Contin. Dyn. Syst. 20, 767–800 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Arrieta, A. Carvalho, J.K. Hale, A damped hyperbolic equation with critical exponent. Comm. PDE 17, 841–866 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. I.N. Gurova, M.I. Kamenskii, On the method of semidiscretization in periodic solutions problems for quasilinear autonomous parabolic equations. Diff. Equat. 32, 106–112 (1996)

    Google Scholar 

  5. J.K. Hale, Oscillations in Nonlinear Systems, 1st edn. (McGraw-Hill Book Co. Inc., New York, Toronto, London, 1963).

    Google Scholar 

  6. J.K. Hale, Ordinary Differential Equations, (Krieger Publishing Company, John Wiley, 1st edn. 1969; 2nd edn. 1980)

    Google Scholar 

  7. J.K. Hale, Asymptotic behaviour and dynamics in infinite dimensions, in Research Notes in Mathematics, vol 132 (Pitman, Boston, 1985), pp. 1–41

    Google Scholar 

  8. J.K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol 25 (American Mathematical Society, Providence, RI, 1988)

    Google Scholar 

  9. J.K. Hale, R. Joly, G. Raugel, book in preparation.

    Google Scholar 

  10. J.K. Hale, G. Raugel, A damped hyperbolic equation on thin domains. Trans. Am. Math. Soc. 329, 185–219 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.K. Hale, G. Raugel, Reaction–diffusion equation on thin domains. J. Math. Pures Appl. 71, 33–95 (1992)

    Google Scholar 

  12. J.K. Hale, G. Raugel, Regularity, determining modes and Galerkin method. J. Math. Pures Appl. 82, 1075–1136 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.K. Hale, G. Raugel, A modified Poincaré method for the persistence of periodic orbits and applications. J. Dyn. Diff. Equat. 22, 3–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. J.K. Hale, G. Raugel, Local coordinate systems and autonomous or non-autonomous perturbations of dissipative evolutionary equations. manuscript

    Google Scholar 

  15. J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional-differential Equations, Applied Mathematical Sciences Series, vol. 99 (Springer, New York, 1993)

    Chapter  MATH  Google Scholar 

  16. J.K. Hale, M. Weedermann, On perturbations of delay-differential equations with periodic orbit. J. Diff. Equat. 197, 219–246 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840 (Springer, Berlin, 1981)

    Book  MATH  Google Scholar 

  18. R. Johnson, M. Kamenskii, P. Nistri, On periodic solutions of a damped wave equation in a thin domain using degree theoretic methods. J. Diff. Equat. 40, 186–208 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Johnson, M. Kamenskii, P. Nistri, Existence of periodic solutions of an autonomous damped wave equation in thin domains. J. Dyn. Diff. Equat. 10, 409–424 (1998)

    Google Scholar 

  20. R. Johnson, M. Kamenskii, P. Nistri, Stability and instability of periodic solutions of a damped wave equation in a thin domain, Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis, vol. 2 (1998), pp. 199–213

    Google Scholar 

  21. R. Johnson, M. Kamenskii, P. Nistri, Bifurcation and multiplicity results for periodic solutions of a damped wave equation in a thin domain. Fixed point theory with applications in nonlinear analysis. J. Comput. Appl. Math. 113, 123–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Johnson, M. Kamenskii, P. Nistri, Erratum to existence of periodic solutions of an autonomous damped wave equation in thin domains. J. Dyn. Diff. Equat. 12, 675–679 (2000)

    Google Scholar 

  23. R. Joly, Convergence of the wave equation damped on the interior to the one damped on the boundary. J. Diff. Equat. 229, 588–653 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. M.A. Krasnoselskii, The operator of Translation along Trajectories of Differential Equations, 1st edn. in Nauka (in Russian) in 1966; English edition, Translations of mathematical Monographs, vol. 19 (AMS, Providence, RI, 1968)

    Google Scholar 

  25. M.A. Krasnoselskii, P.P. Zabreiko, E.I. Pustylnik, P.E. Sobolevskii, Integral Operators in Spaces of Integrable Functions, 1st edn. in Nauka (in Russian) 1966; English edition, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics Analysis. (Noordhoff International Publishing, Leiden, 1976)

    Google Scholar 

  26. O. Ladyzhenskaya, On the determination of minimal global attractors for the Navier-Stokes and other partial differential equations. Russ. Math. Surv. 42, 27–73 (1987)

    Article  MATH  Google Scholar 

  27. I.G. Malkin, Some problems in the theory of nonlinear oscillations. (United States Atomic Energy Commission Technical Information, 1959)

    Google Scholar 

  28. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci., vol. 44 (Springer, New-York, 1983)

    Google Scholar 

  29. G. Raugel, Global attractors in partial differential equations, Handbook of Dynamical Systems, vol. 2 (North-Holland, Amsterdam, 2002), pp. 885–982

    Google Scholar 

  30. M. Urabe, Nonlinear Autonomous Oscillations (Academic Press, New York, 1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Raugel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hale, J.K., Raugel, G. (2013). Persistence of Periodic Orbits for Perturbed Dissipative Dynamical Systems. In: Mallet-Paret, J., Wu, J., Yi, Y., Zhu, H. (eds) Infinite Dimensional Dynamical Systems. Fields Institute Communications, vol 64. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4523-4_1

Download citation

Publish with us

Policies and ethics