Skip to main content

Exercise Impact on Immune Regulation of Cancer

  • Chapter
  • First Online:
  • 1218 Accesses

Part of the book series: Energy Balance and Cancer ((EBAC,volume 6))

Abstract

The incidence of several types of cancer is reduced by regular physical activity. Several possible mechanisms have been cited as potential mediators of the beneficial effect of physical activity on cancer prevention, including immune regulation. The immune system plays an important role in controlling tumor development by resolving inflammation and by detecting and eliminating transformed cells via a variety of mechanisms including macrophage phagocytosis and/or cytotoxicity, NK cell function, and T cell cytokine production and/or cytotoxicity. The immune system can also play a role in tumor promotion. The current review focuses on the role of acute and chronic, moderate aerobic exercise on immune endpoints relevant to anti-tumor immunity, including macrophage, NK cell and T lymphocyte function. Both acute and chronic exercise have been shown to consistently enhance phagocytosis and anti-tumor activity of macrophages which may contribute to better immunosurveillance and protection from tumor progression. In contrast, there is heterogeneity in the literature regarding the role of acute and chronic exercise on NK cell and T cell function. There is a growing body of evidence to suggest that chronic exercise training enhances antigen-specific T cell proliferation and cytokine production, which may play a role in anti-tumor immunity. However, to date, no studies have explored the role of exercise in regulating the immune response to tumors. Future studies should focus on immune regulation in tumor-bearing hosts to gain a better understanding of the complex relationship between exercise, immune regulation and cancer control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bianchini F, Kaaks R, Vainio H (2002) Weight control and physical activity in cancer prevention. Obes Rev 3:5–8

    Article  PubMed  Google Scholar 

  2. WCR Fund (2007) Food, nutrition and the prevention of cancer: a global perspective. World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington DC: AICR, 2007

    Google Scholar 

  3. Friedenreich CM, Neilson HK, Lynch BM (2010) State of the epidemiological evidence on physical activity and cancer prevention. Eur J Cancer 46:2593–2604

    Article  PubMed  Google Scholar 

  4. Davies NJ, Batehup L, Thomas R (2011) The role of diet and physical activity in breast, colorectal, and prostate cancer survivorship: a review of the literature. Br J Cancer 105(Suppl 1):S52–S73

    Article  PubMed  Google Scholar 

  5. Meyerhardt JA (2011) Beyond standard adjuvant therapy for colon cancer: role of nonstandard interventions. Semin Oncol 38:533–541

    Article  PubMed  Google Scholar 

  6. McTiernan A, Irwin M, Vongruenigen V (2010) Weight, physical activity, diet, and prognosis in breast and gynecologic cancers. J Clin Oncol 28:4074–4080

    Article  PubMed  Google Scholar 

  7. Friedenreich CM, Gregory J, Kopciuk KA, Mackey JR, Courneya KS (2009) Prospective cohort study of lifetime physical activity and breast cancer survival. Int J Cancer 124:1954–1962

    Article  PubMed  CAS  Google Scholar 

  8. West-Wright CN et al (2009) Long-term and recent recreational physical activity and survival after breast cancer: the California Teachers Study. Cancer Epidemiol Biomarkers Prev 18:2851–2859

    Article  PubMed  Google Scholar 

  9. Speck RM, Courneya KS, Masse LC, Duval S, Schmitz KH (2010) An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv 4(2):87–100

    Article  PubMed  Google Scholar 

  10. Meyerhardt JA et al (2006) Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol 24:3527–3534

    Article  PubMed  Google Scholar 

  11. Meyerhardt JA et al (2006) Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Clin Oncol 24:3535–3541

    Article  PubMed  Google Scholar 

  12. Hoffman-Goetz L (2003) Physical activity and cancer prevention: animal-tumor models. Med Sci Sports Exerc 35:1828–1833

    Article  PubMed  Google Scholar 

  13. Basterfield L, Reul JM, Mathers JC (2005) Impact of physical activity on intestinal cancer development in mice. J Nutr 135:3002S–3008S

    PubMed  CAS  Google Scholar 

  14. Rogers CJ, Colbert LH, Greiner JW, Perkins SN, Hursting SD (2008) Physical activity and cancer prevention: pathways and targets for intervention. Sports Med 38:271–296

    Article  PubMed  Google Scholar 

  15. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162

    Article  PubMed  CAS  Google Scholar 

  16. Szostak J, Laurant P (2011) The forgotten face of regular physical exercise: a ‘natural’ anti-atherogenic activity. Clin Sci (London) 121(3):91–106

    Article  Google Scholar 

  17. Walsh NP et al (2011) Position statement. Part one: immune function and exercise. Exerc Immunol Rev 17:6–63

    PubMed  Google Scholar 

  18. Mantovani A, Garlanda C, Locati M (2009) Macrophage diversity and polarization in atherosclerosis: a question of balance. Arterioscler Thromb Vasc Biol 29:1419–1423

    Article  PubMed  CAS  Google Scholar 

  19. Allavena P, Mantovani A (2012) Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 167:195–205

    Article  PubMed  CAS  Google Scholar 

  20. Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117:1137–1146

    Article  PubMed  CAS  Google Scholar 

  21. Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ (2008) Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 84:988–993

    Article  PubMed  CAS  Google Scholar 

  22. Ostrand-Rosenberg S (2008) Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18:11–18

    Article  PubMed  CAS  Google Scholar 

  23. Smyth MJ, Johnstone RW (2000) Role of TNF in lymphocyte-mediated cytotoxicity. Microsc Res Tech 50:196–208

    Article  PubMed  CAS  Google Scholar 

  24. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197

    Article  PubMed  CAS  Google Scholar 

  25. Smyth MJ et al (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668

    Article  PubMed  CAS  Google Scholar 

  26. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  PubMed  CAS  Google Scholar 

  27. Hoffman-Goetz L (1999) Effect of estradiol and exercise on lymphocyte proliferation responses in female mice. Physiol Behav 68:169–174

    Article  PubMed  CAS  Google Scholar 

  28. Barlozzari T, Leonhardt J, Wiltrout RH, Herberman RB, Reynolds CW (1985) Direct evidence for the role of LGL in the inhibition of experimental tumor metastases. J Immunol 134:2783–2789

    PubMed  CAS  Google Scholar 

  29. Kaplan DH et al (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561

    Article  PubMed  CAS  Google Scholar 

  30. Shankaran V et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  PubMed  CAS  Google Scholar 

  31. Engel AM, Svane IM, Rygaard J, Werdelin O (1997) MCA sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice. Scand J Immunol 45:463–470

    Article  PubMed  CAS  Google Scholar 

  32. Smyth MJ et al (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760

    Article  PubMed  CAS  Google Scholar 

  33. van den Broek ME et al (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184:1781–1790

    Article  PubMed  Google Scholar 

  34. Street SE, Trapani JA, MacGregor D, Smyth MJ (2002) Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196:129–134

    Article  PubMed  CAS  Google Scholar 

  35. Liu J, Xiang Z, Ma X (2004) Role of IFN regulatory factor-1 and IL-12 in immunological resistance to pathogenesis of N-methyl-N-nitrosourea-induced T lymphoma. J Immunol 173:1184–1193

    PubMed  CAS  Google Scholar 

  36. Buell JF, Gross TG, Woodle ES (2005) Malignancy after transplantation. Transplantation 80:S254–S264

    Article  PubMed  Google Scholar 

  37. Penn I (1988) Tumors of the immunocompromised patient. Annu Rev Med 39:63–73

    Article  PubMed  CAS  Google Scholar 

  38. Birkeland SA et al (1995) Cancer risk after renal transplantation in the Nordic countries, 1964–1986. Int J Cancer 60:183–189

    Article  PubMed  CAS  Google Scholar 

  39. Naito Y et al (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494

    PubMed  CAS  Google Scholar 

  40. Sato E et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543

    Article  PubMed  CAS  Google Scholar 

  41. Kondo E et al (2003) Preoperative natural killer cell activity as a prognostic factor for distant metastasis following surgery for colon cancer. Dig Surg 20:445–451

    Article  PubMed  Google Scholar 

  42. Ishigami S et al (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88:577–583

    Article  PubMed  CAS  Google Scholar 

  43. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356:1795–1799

    Article  PubMed  CAS  Google Scholar 

  44. Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692

    Article  PubMed  CAS  Google Scholar 

  45. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  PubMed  CAS  Google Scholar 

  46. Sica A et al (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18:349–355

    Article  PubMed  CAS  Google Scholar 

  47. Mantovani A, Locati M (2009) Orchestration of macrophage polarization. Blood 114:3135–3136

    Article  PubMed  CAS  Google Scholar 

  48. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  PubMed  CAS  Google Scholar 

  49. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  PubMed  CAS  Google Scholar 

  50. Zaynagetdinov R et al (2011) A critical role for macrophages in promotion of urethane-induced lung carcinogenesis. J Immunol 187:5703–5711

    Article  PubMed  CAS  Google Scholar 

  51. Zhang Z et al (2010) Antigen presentation by dendritic cells in tumors is disrupted by altered metabolism that involves pyruvate kinase M2 and its interaction with SOCS3. Cancer Res 70:89–98

    Article  PubMed  CAS  Google Scholar 

  52. Forssell J et al (2007) High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13:1472–1479

    Article  PubMed  CAS  Google Scholar 

  53. Ohno S et al (2003) The degree of macrophage infiltration into the cancer cell nest is a significant predictor of survival in gastric cancer patients. Anticancer Res 23:5015–5022

    PubMed  Google Scholar 

  54. Boonman ZF et al (2006) Macrophages are vital in spontaneous intraocular tumor eradication. Invest Ophthalmol Vis Sci 47:2959–2965

    Article  PubMed  Google Scholar 

  55. Houghton AM et al (2006) Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66:6149–6155

    Article  PubMed  CAS  Google Scholar 

  56. Kaduka Y et al (2005) TWEAK mediates anti-tumor effect of tumor-infiltrating macrophage. Biochem Biophys Res Commun 331:384–390

    Article  PubMed  CAS  Google Scholar 

  57. Centers for Disease Control and Prevention(2012) National Diabetes Surveillance System. http://apps.nccd.cdc.gov/DDTSTRS/default.aspx, Accessed on May 5 2012

    Google Scholar 

  58. Kawashima H et al (2004) Endurance treadmill training in rats alters CRH activity in the hypothalamic paraventricular nucleus at rest and during acute running according to its period. Life Sci 76:763–774

    Article  PubMed  CAS  Google Scholar 

  59. Hayes K et al (2008) Forced, not voluntary, exercise effectively induces neuroprotection in stroke. Acta Neuropathol 115:289–296

    Article  PubMed  CAS  Google Scholar 

  60. Liu YF et al (2009) Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J Physiol 587:3221–3231

    Article  PubMed  CAS  Google Scholar 

  61. Walsh NP et al (2011) Position statement. Part two: maintaining immune health. Exerc Immunol Rev 17:64–103

    PubMed  Google Scholar 

  62. Fehr HG, Lotzerich H, Michna H (1989) Human macrophage function and physical exercise: phagocytic and histochemical studies. Eur J Appl Physiol Occup Physiol 58:613–617

    Article  PubMed  CAS  Google Scholar 

  63. Ortega E, Collazos ME, Barriga C, De la Fuente M (1992) Stimulation of the phagocytic function in guinea pig peritoneal macrophages by physical activity stress. Eur J Appl Physiol Occup Physiol 64:323–327

    Article  PubMed  CAS  Google Scholar 

  64. Ortega E, Forner MA, Barriga C, De la Fuente M (1993) Effect of age and of swimming-induced stress on the phagocytic capacity of peritoneal macrophages from mice. Mech Ageing Dev 70:53–63

    Article  PubMed  CAS  Google Scholar 

  65. Forner MA, Barriga C, Rodriguez AB, Ortega E (1995) A study of the role of corticosterone as a mediator in exercise-induced stimulation of murine macrophage phagocytosis. J Physiol 488(Pt 3):789–794

    PubMed  CAS  Google Scholar 

  66. Su SH, Chen HI, Jen CJ (2001) Severe exercise enhances phagocytosis by murine bronchoalveolar macrophages. J Leukoc Biol 69:75–80

    PubMed  CAS  Google Scholar 

  67. Ferreira CK et al (2010) Phagocytic responses of peritoneal macrophages and neutrophils are different in rats following prolonged exercise. Clinics (Sao Paulo) 65:1167–1173

    Article  Google Scholar 

  68. Woods JA et al (1994) Effects of exercise on the immune response to cancer. Med Sci Sports Exerc 26:1109–1115

    PubMed  CAS  Google Scholar 

  69. Davis JM et al (1998) Exercise effects on lung tumor metastases and in vitro alveolar macrophage antitumor cytotoxicity. Am J Physiol 274:R1454–R1459

    PubMed  CAS  Google Scholar 

  70. Woods JA, Davis JM, Mayer EP, Ghaffar A, Pate RR (1993) Exercise increases inflammatory macrophage antitumor cytotoxicity. J Appl Physiol 75:879–886

    PubMed  CAS  Google Scholar 

  71. Lu Q, Ceddia MA, Price EA, Ye SM, Woods JA (1999) Chronic exercise increases macrophage-mediated tumor cytolysis in young and old mice. Am J Physiol 276:R482–R489

    PubMed  CAS  Google Scholar 

  72. Sugiura H, Nishida H, Inaba R, Mirbod SM, Iwata H (2001) Effects of different durations of exercise on macrophage functions in mice. J Appl Physiol 90:789–794

    Article  PubMed  CAS  Google Scholar 

  73. Ko MH et al (2010) The interactive effect of exercise and immunosuppressant cyclosporin A on immune function in mice. J Sports Sci 28:967–973

    Article  PubMed  Google Scholar 

  74. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  PubMed  CAS  Google Scholar 

  75. Kawanishi N, Yano H, Yokogawa Y, Suzuki K (2010) Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev 16:105–118

    PubMed  Google Scholar 

  76. Yakeu G et al (2010) Low-intensity exercise enhances expression of markers of alternative activation in circulating leukocytes: roles of PPARgamma and Th2 cytokines. Atherosclerosis 212:668–673

    Article  PubMed  CAS  Google Scholar 

  77. Targan S, Britvan L, Dorey F (1981) Activation of human NKCC by moderate exercise: increased frequency of NK cells with enhanced capability of effector–target lytic interactions. Clin Exp Immunol 45:352–360

    PubMed  CAS  Google Scholar 

  78. Gannon GA et al (1998) beta-Endorphin and natural killer cell cytolytic activity during ­prolonged exercise. is there a connection? Am J Physiol 275:R1725–R1734

    PubMed  CAS  Google Scholar 

  79. McFarlin BK, Flynn MG, Stewart LK, Timmerman KL (2004) Carbohydrate intake during endurance exercise increases natural killer cell responsiveness to IL-2. J Appl Physiol 96:271–275

    Article  PubMed  CAS  Google Scholar 

  80. Edwards AJ et al (1984) Changes in the populations of lymphoid cells in human peripheral blood following physical exercise. Clin Exp Immunol 58:420–427

    PubMed  CAS  Google Scholar 

  81. Rhind SG, Gannon GA, Suzui M, Shephard RJ, Shek PN (1999) Indomethacin inhibits circulating PGE2 and reverses postexercise suppression of natural killer cell activity. Am J Physiol 276:R1496–R1505

    PubMed  CAS  Google Scholar 

  82. Nielsen HB, Madsen P, Svendsen LB, Roach RC, Secher NH (1998) The influence of PaO2, pH and SaO2 on maximal oxygen uptake. Acta Physiol Scand 164:89–97

    Article  PubMed  CAS  Google Scholar 

  83. Radom-Aizik S, Zaldivar F Jr, Leu SY, Cooper DM (2009) A brief bout of exercise alters gene expression and distinct gene pathways in peripheral blood mononuclear cells of early- and late-pubertal females. J Appl Physiol 107:168–175

    Article  PubMed  CAS  Google Scholar 

  84. Scharhag J et al (2005) Does prolonged cycling of moderate intensity affect immune cell function? Br J Sports Med 39:171–177

    Article  PubMed  CAS  Google Scholar 

  85. Braun WA et al (1999) Indomethacin does not influence natural cell-mediated cytotoxic response to endurance exercise. J Appl Physiol 87:2237–2243

    PubMed  CAS  Google Scholar 

  86. Kohut ML, Boehm GW, Moynihan JA (2001) Prolonged exercise suppresses antigen-specific cytokine response to upper respiratory infection. J Appl Physiol 90:678–684

    PubMed  CAS  Google Scholar 

  87. Kakanis MW et al (2010) The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc Immunol Rev 16:119–137

    PubMed  CAS  Google Scholar 

  88. Nieman DC (1997) Immune response to heavy exertion. J Appl Physiol 82:1385–1394

    PubMed  CAS  Google Scholar 

  89. Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80:1055–1081

    PubMed  CAS  Google Scholar 

  90. Nieman DC et al (1993) Effects of high- vs moderate-intensity exercise on natural killer cell activity. Med Sci Sports Exerc 25:1126–1134

    PubMed  CAS  Google Scholar 

  91. Woods JA, Davis JM, Smith JA, Nieman DC (1999) Exercise and cellular innate immune function. Med Sci Sports Exerc 31:57–66

    Article  PubMed  CAS  Google Scholar 

  92. Crist DM, Mackinnon LT, Thompson RF, Atterbom HA, Egan PA (1989) Physical exercise increases natural cellular-mediated tumor cytotoxicity in elderly women. Gerontology 35:66–71

    Article  PubMed  CAS  Google Scholar 

  93. Nieman DC et al (1990) The effects of moderate exercise training on natural killer cells and acute upper respiratory tract infections. Int J Sports Med 11:467–473

    Article  PubMed  CAS  Google Scholar 

  94. Yan H et al (2001) Effect of moderate exercise on immune senescence in men. Eur J Appl Physiol 86:105–111

    Article  PubMed  CAS  Google Scholar 

  95. DiPenta JM, Johnson JG, Murphy RJ (2004) Natural killer cells and exercise training in the elderly: a review. Can J Appl Physiol 29:419–443

    Article  PubMed  Google Scholar 

  96. Wang JS, Weng TP (2011) Hypoxic exercise training promotes antitumour cytotoxicity of natural killer cells in young men. Clin Sci (London) 121:343–353

    Article  CAS  Google Scholar 

  97. MacNeil B, Hoffman-Goetz L (1993) Chronic exercise enhances in vivo and in vitro cytotoxic mechanisms of natural immunity in mice. J Appl Physiol 74:388–395

    PubMed  CAS  Google Scholar 

  98. Hoffman-Goetz L, May KM, Arumugam Y (1994) Exercise training and mouse mammary tumour metastasis. Anticancer Res 14:2627–2631

    PubMed  CAS  Google Scholar 

  99. Jonsdottir IH et al (1997) Duration and mechanisms of the increased natural cytotoxicity seen after chronic voluntary exercise in rats. Acta Physiol Scand 160:333–339

    Article  PubMed  CAS  Google Scholar 

  100. Ferrandez MD, De la Fuente M (1996) Changes with aging, sex and physical exercise in murine natural killer activity and antibody-dependent cellular cytotoxicity. Mech Ageing Dev 86:83–94

    Article  PubMed  CAS  Google Scholar 

  101. Jonsdottir IH, Hellstrand K, Thoren P, Hoffmann P (2000) Enhancement of natural immunity seen after voluntary exercise in rats, role of central opioid receptors. Life Sci 66:1231–1239

    Article  PubMed  CAS  Google Scholar 

  102. Rogers CJ et al (2008) Energy restriction and exercise differentially enhance components of systemic and mucosal immunity in mice. J Nutr 138:115–122

    PubMed  CAS  Google Scholar 

  103. Wang JS, Chen WL, Weng TP (2011) Hypoxic exercise training reduces senescent T-lymphocyte subsets in blood. Brain Behav Immun 25:270–278

    Article  PubMed  CAS  Google Scholar 

  104. Rogers CJ et al (2012) Cancer, Exercise & Immunity. In Encylcopedia of Lifestyle Medicine. J. Rippe, (ed). Sage Publications, Volume 2, pp. 176-179.

    Google Scholar 

  105. Borchardt RA et al (1994) Growth-dependent regulation of cellular ceramides in human T-cells. Biochim Biophys Acta 1212:327–336

    Article  PubMed  CAS  Google Scholar 

  106. Fairey AS et al (2005) Randomized controlled trial of exercise and blood immune function in postmenopausal breast cancer survivors. J Appl Physiol 98:1534–1540

    Article  PubMed  Google Scholar 

  107. Nieman DC et al (1998) Immune response to exercise training and/or energy restriction in obese women. Med Sci Sports Exerc 30:679–686

    Article  PubMed  CAS  Google Scholar 

  108. Baslund B et al (1993) Effect of 8 wk of bicycle training on the immune system of patients with rheumatoid arthritis. J Appl Physiol 75:1691–1695

    PubMed  CAS  Google Scholar 

  109. Fahlman M et al (2000) Effects of endurance training on selected parameters of immune function in elderly women. Gerontology 46:97–104

    Article  PubMed  CAS  Google Scholar 

  110. Nieman DC et al (1995) Moderate exercise training and natural killer cell cytotoxic activity in breast cancer patients. Int J Sports Med 16:334–337

    Article  PubMed  CAS  Google Scholar 

  111. Campbell KL et al (2008) No reduction in C-reactive protein following a 12-month randomized controlled trial of exercise in men and women. Cancer Epidemiol Biomarkers Prev 17:1714–1718

    Article  PubMed  CAS  Google Scholar 

  112. Biondo PD et al (2008) A randomized controlled crossover trial of the effect of ginseng consumption on the immune response to moderate exercise in healthy sedentary men. Appl Physiol Nutr Metab 33:966–975

    Article  PubMed  CAS  Google Scholar 

  113. Green KJ, Croaker SJ, Rowbottom DG (2003) Carbohydrate supplementation and exercise-induced changes in T-lymphocyte function. J Appl Physiol 95:1216–1223

    PubMed  CAS  Google Scholar 

  114. Green KJ, Rowbottom DG, Mackinnon LT (2002) Exercise and T-lymphocyte function: a comparison of proliferation in PBMC and NK cell-depleted PBMC culture. J Appl Physiol 92:2390–2395

    PubMed  Google Scholar 

  115. Kapasi ZF, McRae ML, Ahmed R (2005) Suppression of viral specific primary T-cell response following intense physical exercise in young but not old mice. J Appl Physiol 98:663–671

    Article  PubMed  Google Scholar 

  116. Potteiger JA et al (2001) Training status influences T-cell responses in women following acute resistance exercise. J Strength Cond Res 15:185–191

    PubMed  CAS  Google Scholar 

  117. Green KJ, Rowbottom DG (2003) Exercise-induced changes to in vitro T-lymphocyte mitogen responses using CFSE. J Appl Physiol 95:57–63

    PubMed  Google Scholar 

  118. Bishop NC et al (2005) Lymphocyte responses to influenza and tetanus toxoid in vitro following intensive exercise and carbohydrate ingestion on consecutive days. J Appl Physiol 99:1327–1335

    Article  PubMed  Google Scholar 

  119. Kohut ML, Boehm GW, Moynihan JA (2001) Moderate exercise is associated with enhanced antigen-specific cytokine, but not IgM antibody production in aged mice. Mech Ageing Dev 122:1135–1150

    Article  PubMed  CAS  Google Scholar 

  120. Lancaster GI et al (2005) Effect of prolonged exercise and carbohydrate ingestion on type 1 and type 2T lymphocyte distribution and intracellular cytokine production in humans. J Appl Physiol 98:565–571

    Article  PubMed  CAS  Google Scholar 

  121. Rhind SG, Shek PN, Shinkai S, Shephard RJ (1996) Effects of moderate endurance exercise and training on in vitro lymphocyte proliferation, interleukin-2 (IL-2) production, and IL-2 receptor expression. Eur J Appl Physiol Occup Physiol 74:348–360

    Article  PubMed  CAS  Google Scholar 

  122. Watson RR et al (1986) Modification of cellular immune functions in humans by endurance exercise training during beta-adrenergic blockade with atenolol or propranolol. Med Sci Sports Exerc 18:95–100

    PubMed  CAS  Google Scholar 

  123. Hoffman-Goetz L, Thorne RJ, Houston ME (1988) Splenic immune responses following treadmill exercise in mice. Can J Physiol Pharmacol 66:1415–1419

    Article  PubMed  CAS  Google Scholar 

  124. Tharp GD, Preuss TL (1991) Mitogenic response of T-lymphocytes to exercise training and stress. J Appl Physiol 70:2535–2538

    PubMed  CAS  Google Scholar 

  125. Coleman KJ, Rager DR (1993) Effects of voluntary exercise on immune function in rats. Physiol Behav 54:771–774

    Article  PubMed  CAS  Google Scholar 

  126. Shinkai S et al (1995) Physical activity and immune senescence in men. Med Sci Sports Exerc 27:1516–1526

    PubMed  CAS  Google Scholar 

  127. Gueldner SH et al (1997) Long-term exercise patterns and immune function in healthy older women. A report of preliminary findings. Mech Ageing Dev 93:215–222

    Article  PubMed  CAS  Google Scholar 

  128. Dos Santos Cunha WD et al (2004) Exercise restores immune cell function in energy-restricted rats. Med Sci Sports Exerc 36:2059–2064

    Article  PubMed  Google Scholar 

  129. Rogers CJ et al (2008) Exercise enhances vaccine-induced antigen-specific T cell responses. Vaccine 26:5407–5415

    Article  PubMed  CAS  Google Scholar 

  130. Hutnick NA et al (2005) Exercise and lymphocyte activation following chemotherapy for breast cancer. Med Sci Sports Exerc 37:1827–1835

    Article  PubMed  Google Scholar 

  131. Lin YS, Jan MS, Chen HI (1993) The effect of chronic and acute exercise on immunity in rats. Int J Sports Med 14:86–92

    Article  PubMed  CAS  Google Scholar 

  132. Peters BA, Sothmann M, Wehrenberg WB (1989) Blood leukocyte and spleen lymphocyte immune responses in chronically physically active and sedentary hamsters. Life Sci 45:2239–2245

    Article  PubMed  CAS  Google Scholar 

  133. Nehlsen-Cannarella SL et al (1991) The effects of moderate exercise training on immune response. Med Sci Sports Exerc 23:64–70

    PubMed  CAS  Google Scholar 

  134. Mitchell JB et al (1996) The effect of moderate aerobic training on lymphocyte proliferation. Int J Sports Med 17:384–389

    Article  PubMed  CAS  Google Scholar 

  135. Jonsdottir IH et al (1996) Voluntary chronic exercise augments in vivo natural immunity in rats. J Appl Physiol 80:1799–1803

    PubMed  CAS  Google Scholar 

  136. Shore S, Shinkai S, Rhind S, Shephard RJ (1999) Immune responses to training: how critical is training volume? J Sports Med Phys Fitness 39:1–11

    PubMed  CAS  Google Scholar 

  137. Hayes SC, Rowbottom D, Davies PS, Parker TW, Bashford J (2003) Immunological changes after cancer treatment and participation in an exercise program. Med Sci Sports Exerc 35:2–9

    Article  PubMed  Google Scholar 

  138. Nieman DC et al (1993) Physical activity and immune function in elderly women. Med Sci Sports Exerc 25:823–831

    Article  PubMed  CAS  Google Scholar 

  139. Chubak J et al (2006) Moderate-intensity exercise reduces the incidence of colds among postmenopausal women. Am J Med 119:937–942

    Article  PubMed  Google Scholar 

  140. Hogan RJ et al (2001) Protection from respiratory virus infections can be mediated by antigen-specific CD4(+) T cells that persist in the lungs. J Exp Med 193:981–986

    Article  PubMed  CAS  Google Scholar 

  141. Woodland DL, Hogan RJ, Zhong W (2001) Cellular immunity and memory to respiratory virus infections. Immunol Res 24:53–67

    Article  PubMed  CAS  Google Scholar 

  142. Smith TP, Kennedy SL, Fleshner M (2004) Influence of age and physical activity on the primary in vivo antibody and T cell-mediated responses in men. J Appl Physiol 97:491–498

    Article  PubMed  CAS  Google Scholar 

  143. Kohut ML, Cooper MM, Nickolaus MS, Russell DR, Cunnick JE (2002) Exercise and psychosocial factors modulate immunity to influenza vaccine in elderly individuals. J Gerontol A Biol Sci Med Sci 57:M557–M562

    Article  PubMed  Google Scholar 

  144. Shimizu K et al (2008) Effect of moderate exercise training on T-helper cell subpopulations in elderly people. Exerc Immunol Rev 14:24–37

    PubMed  Google Scholar 

  145. Okutsu M et al (2008) Exercise training enhances in vivo tuberculosis purified protein derivative response in the elderly. J Appl Physiol 104:1690–1696

    Article  PubMed  CAS  Google Scholar 

  146. Kohut ML et al (2004) Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine 22:2298–2306

    Article  PubMed  CAS  Google Scholar 

  147. Bacuau RF, Belmonte MA, Seelaender MC, Costa Rosa LF (2000) Effect of a moderate intensity exercise training protocol on the metabolism of macrophages and lymphocytes of tumour-bearing rats. Cell Biochem Funct 18:249–258

    Article  Google Scholar 

  148. Woods JA, Davis JM, Mayer EP, Ghaffar A, Pate RR (1994) Effects of exercise on macrophage activation for antitumor cytotoxicity. J Appl Physiol 76:2177–2185

    PubMed  CAS  Google Scholar 

  149. Shewchuk LD, Baracos VE, Field CJ (1997) Dietary L-glutamine supplementation reduces the growth of the Morris Hepatoma 7777 in exercise-trained and sedentary rats. J Nutr 127:158–166

    PubMed  CAS  Google Scholar 

  150. Zielinski MR, Muenchow M, Wallig MA, Horn PL, Woods JA (2004) Exercise delays allogeneic tumor growth and reduces intratumoral inflammation and vascularization. J Appl Physiol 96:2249–2256

    Article  PubMed  Google Scholar 

  151. Davis JM et al (1997) Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J Appl Physiol 83:1461–1466

    PubMed  CAS  Google Scholar 

  152. Murphy EA et al (2004) Effects of moderate exercise and oat beta-glucan on lung tumor metastases and macrophage antitumor cytotoxicity. J Appl Physiol 97:955–959

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie J. Rogers Ph.D. M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meng, H., Rogers, C.J. (2013). Exercise Impact on Immune Regulation of Cancer. In: Ulrich, C., Steindorf, K., Berger, N. (eds) Exercise, Energy Balance, and Cancer. Energy Balance and Cancer, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4493-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4493-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4492-3

  • Online ISBN: 978-1-4614-4493-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics