Skip to main content

The Psychometric Function: Introduction

  • Chapter
  • First Online:
  • 5635 Accesses

Part of the book series: Use R! ((USE R,volume 32))

Abstract

The psychometric function is a summary of the relation between performance in a classification task (such as the ability to detect or discriminate between stimuli) and stimulus level [59, 176]. Stimulus level is typically a measure of magnitude of a physical stimulus along a single physical dimension such as size, distance, light or sound intensity, concentration, or frequency. We will use the terms “stimulus level and “stimulus intensity interchangeably. We gave an example of a psychometric function in Chaps. 1 and Chaps. 2, we discussed the close relationship between the psychometric function and the generalized linear model. While there is no need to use the GLM in fitting psychometric functions we will see that doing so makes it very convenient to apply advanced statistical methods to psychophysical data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Also, I is the name of a function in R, and it is best to avoid variables with the same names as functions.

  2. 2.

    This is the default behavior of optim. It can be made to maximize by including the argument control = list(fnscale = -1).

  3. 3.

    However, see the mle function in the recommended package stats4 [146].

  4. 4.

    They state, “No special statistical methods are necessary to determine which curve fits the data, since smaller and larger values of n are easily excluded by visual comparison.” Such graphical short-cuts to fitting were common (and unavoidable) before availability of the enormous computational resources of the current era.

  5. 5.

    The use of a Gaussian to describe these data is less heretical than one might think. For example, Crozier [42, 43] argued against a Poisson model and in favor of a Gaussian model to describe detection psychometric functions.

  6. 6.

    H. Sun, personal communication.

  7. 7.

    Lower-order terms are marginal to higher-order terms. For example, main effects are marginal to interactions and simpler interactions are marginal to more complex ones. It is advised to test higher-order interactions without removing marginal effects that include the same terms as the higher-order effects. Conversely, one should not test marginal effects in the presence of significant non-marginal effects.

References

  1. Abbey, C.K., Eckstein, M.P.: Classification image analysis: estimation and statistical inference for two-alternative forced-choice experiments. J. Vis. 2, 66–78 (2002)

    Google Scholar 

  2. Ahumada, A.J.: Perceptual classification images from vernier acuity masked by noise. Perception 25 ECVP Abstract Suppl. (1996)

    Google Scholar 

  3. Ahumada, A.J.: Classification image weights and internal noise level estimation. J. Vis. 2(1), 121–131 (2002)

    Google Scholar 

  4. Ahumada, A.J., Lovell, J.: Stimulus features in signal detection. J. Acoust. Soc. Am. 49, 1751–1756 (1971)

    Google Scholar 

  5. Ahumada, A.J., Marken, R., Sandusky, A.: Time and frequency analyses of auditory signal detection. J. Acoust. Soc. Am. 57(2), 385–390 (1975)

    Google Scholar 

  6. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csàki, F. (eds.) Second International Symposium on Inference Theory, pp. 267–281. Akadémia Kiadó, Budapest (1973)

    Google Scholar 

  7. Baayen, R.H., Davidson, D.J., Bates, D.M.: Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 59, 390–412 (2008)

    Google Scholar 

  8. Bates, D.: Fitting linear mixed models. R News 5, 27–30 (2005). http://www.r-project.org/doc/Rnews/Rnews_2005-1.pdf

  9. Bates, D., Maechler, M., Bolker, B.: lme4: Linear mixed-effects models using S4 classes (2011). R package version 0.999375-42. http://CRAN.R-project.org/package=lme4. Accessed date on 2nd August 2012

  10. Bates, D., Maechler, M., Bolker, B.: lme4.0: Linear mixed-effects models using S4 classes (2012). R package version 0.9999-1/r1692. http://R-Forge.R-project.org/projects/lme4/. Accessed date on 2nd August 2012

  11. Bates, D.M.: lme4: Mixed-Effects Modeling with R. Springer, New York (in preparation). http://lme4.r-forge.r-project.org/book/

  12. Bengtsson, H., Riedy, J.: R.matlab: Read and write of MAT files together with R-to-Matlab connectivity (2011). R package version 1.5.1. http://CRAN.R-project.org/package=R.matlab. Accessed date on 2nd August 2012

  13. Bernstein, S.N.: Sur l’ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné. Mémoires de l’ Académie Royale de Belgique 4, 1–104 (1912)

    Google Scholar 

  14. Bishop, Y.M.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: Theory and Practice. MIT, Cambridge (1975)

    MATH  Google Scholar 

  15. Block, H.D., Marschak, J.: Random orderings and stochastic theories of responses. In: Olkin, I., Ghurye, S., Hoeffding, W., Madow, W., Mann, H. (eds.) Contributions to Probability and Statistics, pp. 38–45. Stanford University Press, Stanford (1960)

    Google Scholar 

  16. Boeck, P.D., Wilson, M. (eds.): Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach. Springer, New York (2004)

    MATH  Google Scholar 

  17. Boring, E.G.: Sensation and Perception in the History of Experimental Psychology. Irvington Publishers, Inc., New York (1942)

    Google Scholar 

  18. Bouet, R., Knoblauch, K.: Perceptual classification of chromatic modulation. Vis. Neurosci. 21, 283–289 (2004)

    Google Scholar 

  19. Bracewell, R.N.: The Fourier Transform and its Applications, 3rd edn. McGraw-Hill, New York (2000)

    Google Scholar 

  20. Bratley, P., Fox, B.L., Schrage, L.E.: A Guide to Simulation. Springer, New York (1983)

    MATH  Google Scholar 

  21. Brindley, G.S.: Two more visual theorems. Q. J. Exp. Psychol. 12, 110–112 (1960)

    Google Scholar 

  22. Britten, K.H., Shadlen, M.N., Newsome, W.T., Movshon, J.A.: The analysis of visual motion: A comparison of neuronal and psychophysical performance. J. Neurosci. 12(12), 4745–4765 (1992)

    Google Scholar 

  23. Broström, G., Holmberg, H.: glmmML: Generalized linear models with clustering (2011). R package version 0.82-1. http://CRAN.R-project.org/package=glmmML. Accessed date on 2nd August 2012

  24. Burnham, K.P., Anderson, D.R.: Model Selection and Inference: A Practical Information-Theoretic Approach. Springer, New York (1998)

    MATH  Google Scholar 

  25. Canty, A., Ripley, B.D.: boot: Bootstrap R (S-Plus) Functions (2012). R package version 1.3-5

    Google Scholar 

  26. Carney, T., Tyler, C.W., Watson, A.B., Makous, W., Beutte, B., Chen, C.C., Norcia, A.M., Klein, S.A.: Modelfest: Year one results and plans for future years. In: Rogowitz, B.E., Pappas, T.N. (eds.) Proceedings of SPIE: Human vision and electronic imaging V, vol. 3959, pp. 140–151. SPIE, Bellingham (2000)

    Google Scholar 

  27. Carroll, L.: Through the Looking Glass and Ahat Alice Found There. Macmillan, Bassingstoke (1871)

    Google Scholar 

  28. Chambers, J.M., Hastie, T.J. (eds.): Statistical Models in S. Chapman and Hall/CRC, Boca Raton (1992)

    MATH  Google Scholar 

  29. Charrier, C., Maloney, L.T., Cherifi, H., Knoblauch, K.: Maximum likelihood difference scaling of image quality in compression-degraded images. J. Opt. Soc. Am. A 24, 3418–3426 (2007)

    Google Scholar 

  30. Chauvin, A., Worsley, K., Schyns, P., Arguin, M., Gosselin, F.: Accurate statistical tests for smooth classification images. J. Vis. 5, 659–667 (2005)

    Google Scholar 

  31. Christensen, R.H.B.: ordinal—regression models for ordinal data (2010). R package version 2011.09-14. http://www.cran.r-project.org/package=ordinal/. Accessed date on 2nd August 2012

  32. Christensen, R.H.B., Brockhoff, P.B.: sensR—an R-package for sensory discrimination (2011). R package version 1.2-13. http://www.cran.r-project.org/package=sensR/. Accessed date on 2nd August 2012

  33. Christensen, R.H.B., Hansen, M.K.: binomTools: Performing diagnostics on binomial regression models (2011). R package version 1.0-1. http://CRAN.R-project.org/package=binomTools. Accessed date on 2nd August 2012

  34. Chung, K.L., Aitsahlia, F.: Elementary Probability Theory, 4th edn. Springer, New York (2006)

    Google Scholar 

  35. Clark, H.H.: The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. J. Verbal Learn. Verbal Behav. 12, 355–359 (1973)

    Google Scholar 

  36. Cleveland, W.S., Diaconis, P., McGill, R.: Variables on scatterplots look more highly correlated when the scales are increased. Science 216, 1138–1141 (1982)

    Google Scholar 

  37. Cleveland, W.S., McGill, R.: Graphical perception: Theory, experimentation and application to the development of graphical methods. J. Am. Stat. Assoc. 79, 531–554 (1984)

    MathSciNet  Google Scholar 

  38. Cleveland, W.S., McGill, R.: The many faces of a scatterplot. J. Am. Stat. Assoc. 79, 807–822 (1984)

    MathSciNet  Google Scholar 

  39. Conway, J., Eddelbuettel, D., Nishiyama, T., Prayaga, S.K., Tiffin, N.: RPostgreSQL: R interface to the PostgreSQL database system (2010). R package version 0.1-7. http://www.postgresql.org. Accessed date on 2nd August 2012

  40. Cook, R.D., Weisberg, S.: Residuals and Influence in Regression. Chapman and Hall, London (1982)

    MATH  Google Scholar 

  41. Cornsweet, T.: Visual Perception. Academic, New York (1970)

    Google Scholar 

  42. Crozier, W.J.: On the visibility of radiation at the human fovea. J. Gen. Physiol. 34, 87–136 (1950)

    Google Scholar 

  43. Crozier, W.J., Wolf, E.: Theory and measurement of visual mechanisms. IV. On flicker with subdivided fields. J. Gen. Physiol. 27, 401–432 (1944)

    Google Scholar 

  44. Dakin, S.C., Bex, P.J.: Natural image statistics mediate brightness filling in. Proc. Biol. Sci. 1531, 2341–2348 (2003)

    Google Scholar 

  45. Dartnall, H.J.A., Bowmaker, J.K., Mollon, J.D.: Microspectrophotometry of human photoreceptors. In: Mollon, J.D., Sharpe, L.T. (eds.) Colour Vision: Physiology and Psychophysics, pp. 69–80. Academic, London (1983)

    Google Scholar 

  46. Davison, A.C., Hinkley, D.V.: Bootstrap Methods and their Applications. Cambridge University Press, Cambridge (1997). http://statwww.epfl.ch/davison/BMA/

  47. Debreu, G.: Topological methods in cardinal utility theory. In: Arrow, K.J., Karlin, S., Suppes, P. (eds.) Mathematical Methods in the Social Sciences, pp. 16–26. Stanford University Press, Stanford (1960)

    Google Scholar 

  48. DeCarlo, L.T.: Signal detection theory and generalized linear models. Psychol. Meth. 3, 186–205 (1998)

    Google Scholar 

  49. DeCarlo, L.T.: On the statistical and theoretical basis of signal detection theory and extensions: Unequal variance, random coefficient and mixture models. J. Math. Psychol. 54, 304–313 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Delord, S., Devinck, F., Knoblauch, K.: Surface and edge in visual detection: Is filling-in necessary? J. Vis. 4, 68a (2004). http://journalofvision.org/4/8/68/

  51. Devinck, F.: Les traitements visuels chez l’homme : stratégies de classification de la forme. Ph.D. thesis, Université Lyon 2 (2003)

    Google Scholar 

  52. Devroye, L.: Non-uniform Random Variate Generation. Springer, New York (1986)

    MATH  Google Scholar 

  53. Dobson, A.J.: An Introduction to Generalized Linear Models. Chapman and Hall, London (1990)

    MATH  Google Scholar 

  54. Edwards, A.W.F.: Likelihood, expanded edn. Johns Hopkins University Press, Baltimore (1992)

    Google Scholar 

  55. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman Hall, New York (1993)

    MATH  Google Scholar 

  56. Emrith, K., Chantler, M.J., Green, P.R., Maloney, L.T., Clarke, A.D.F.: Measuring perceived differences in surface texture due to changes in higher order statistics. J. Opt. Soc. Am. A 27(5), 1232–1244 (2010)

    Google Scholar 

  57. Falmagne, J.C.: Elements of Psychophysical Theory. Oxford University Press, Oxford (1985)

    Google Scholar 

  58. Faraway, J.J.: Extending Linear Models with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Chapman and Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  59. Fechner, G.T.: Elemente der Psychophysik. Druck und Verlag von Breitkopfs, Leipzig (1860)

    Google Scholar 

  60. Finney, D.J.: Probit Analysis, 3rd edn. Cambridge University Press, Cambridge (1971)

    MATH  Google Scholar 

  61. Firth, D.: Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993)

    MathSciNet  MATH  Google Scholar 

  62. Fisher, R.A.: The design of experiments. In: Bennett, J.H. (ed.) Statistical Methods, Experimental Design and Scientific Inference, 9th edn. Macmillan, New York (1971)

    Google Scholar 

  63. Fleming, R.W., Jäkel, F., Maloney, L.T.: Visual perception of thick transparent materials. Psychol. Sci. 22, 812–820 (2011)

    Google Scholar 

  64. Foster, D.H., Bischof, W.F.: Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions. Spatial Vis. 11(1), 135–139 (1997)

    Google Scholar 

  65. Foster, D.H., Żychaluk, K.: Nonparametric estimates of biological transducer functions. IEEE Signal Process. Mag. 24, 49–58 (2007)

    Google Scholar 

  66. Fründ, I., Haenel, N.V., Wichmann, F.A.: Inference for psychometric functions in the presence of nonstationary behavior. J. Vis. 11(6), 1–19 (2011)

    Google Scholar 

  67. Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Bornkamp, B., Hothorn, T.: mvtnorm: Multivariate normal and t distributions (2011). R package version 0.9-9991. http://CRAN.R-project.org/package=mvtnorm. Accessed date on 2nd August 2012

  68. Gescheider., G.A.: Psychophysical scaling. Annu. Rev. Psychol. 39, 169–200 (1988)

    Google Scholar 

  69. Glass, L.: Moiré effect from random dots. Nature 223, 578–580 (1969)

    Google Scholar 

  70. GmbH, M.S.: XLConnect: Excel Connector for R (2011). R package version 0.1-5. http://CRAN.R-project.org/package=XLConnect. Accessed date on 2nd August 2012

  71. Gold, J.M., Murray, R.F., Bennett, P.J., Sekular, A.B.: Deriving behavioural receptive fields for visually completed contours. Curr. Biol. 10, 663–666 (2000)

    Google Scholar 

  72. Green, D.M., Swets, J.A.: Signal Detection Theory and Psychophysics. Robert E. Krieger Publishing Company, Huntington (1966/1974)

    Google Scholar 

  73. Guilford, J.P.: Psychometric Methods, 2nd edn. McGraw-Hill, New York (1954)

    Google Scholar 

  74. Hadfield, J.D.: Mcmc methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Software 33(2), 1–22 (2010). http://www.jstatsoft.org/v33/i02/

    Google Scholar 

  75. Hansen, T., Gegenfurtner, K.R.: Classification images for chromatic signal detection. J. Opt. Soc. Am. A 22, 2081–2089 (2005)

    Google Scholar 

  76. Harrell, F.E.: rms: Regression modeling strategies (2011). R package version 3.3-1. http://CRAN.R-project.org/package=rms. Accessed date on 2nd August 2012

  77. Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman and Hall, London (1990)

    MATH  Google Scholar 

  78. Hauck, W.W. Jr, Donner, A.: Wald’s test as applied to hypotheses in logit analysis. J. Am. Stat. Assoc. 72, 851–853 (1977)

    MathSciNet  MATH  Google Scholar 

  79. Hecht, S., Shlaer, S., Pirenne, M.H.: Energy, quanta and vision. J. Gen. Physiol. 25, 819–840 (1942)

    Google Scholar 

  80. Ho, Y.X., Landy, M.S., Maloney, L.T.: Conjoint measurement of gloss and surface texture. Psychol. Sci. 19, 196–204 (2008)

    Google Scholar 

  81. James, D.A.: DBI: R Database Interface (2009). R package version 0.2.5. http://CRAN.R-project.org/package=DBI. Accessed date on 2nd August 2012

  82. James, D.A.: RSQLite: SQLite interface for R (2011). R package version 0.10.0. http://CRAN.R-project.org/package=RSQLite. Accessed date on 2nd August 2012

  83. James, D.A., DebRoy, S.: RMySQL: R interface to the MySQL database (2011). R package version 0.8-0. http://biostat.mc.vanderbilt.edu/RMySQL. Accessed date on 2nd August 2012

  84. James, D.A., Luciani, J.: ROracle: Oracle database interface for R (2007). R package version 0.5-9. http://www.omegahat.org. Accessed date on 2nd August 2012

  85. Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions. Wiley, New York (2005)

    MATH  Google Scholar 

  86. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1. Wiley, New York (1994)

    MATH  Google Scholar 

  87. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 2. Wiley, New York (1995)

    MATH  Google Scholar 

  88. Keppel, G.: Design & Analysis: A Researcher’s Handbook, 2nd edn. Prentice-Hall, Englewood Cliffs (1982)

    Google Scholar 

  89. Kienzle, W., Franz, M.O., Scholkopf, B., Wichmann, F.A.: Center-surround patterns emerge as optimal predictors for human saccade targets. J. Vis. 9, 1–15 (2009)

    Google Scholar 

  90. Kienzle, W., Wichmann, F.A., Schölkopf, B., Franz, M.O.: A nonparametric approach to bottom-up visual saliency. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference, pp. 689–696. MIT, Cambridge (2007)

    Google Scholar 

  91. Kingdom, F.A.A., Prins, N.: Psychophysics: A Practical Introduction. Academic, New York (2009)

    Google Scholar 

  92. Kleiber, C., Zeileis, A.: Applied Econometrics with R. Springer, New York (2008). http://CRAN.R-project.org/package=AER

  93. Klein, S.A.: Measuring, estimating, and understanding the psychometric function: A commentary. Percept. Psychophys. 63, 1421–1455 (2001)

    Google Scholar 

  94. Knoblauch, K.: psyphy: Functions for analyzing psychophysical data in R (2012). R package version 0.1-7. http://cran.r-project.org/web/packages/psyphy

  95. Knoblauch, K., Maloney, L.T.: Estimating classification images with generalized linear and additive models. J. Vis. 8, 1–19 (2008)

    Google Scholar 

  96. Knoblauch, K., Maloney, L.T.: MLDS: Maximum likelihood difference scaling in R. J. Stat. Software 25, 1–26 (2008). http://www.jstatsoft.org/v25/i02

  97. Knoblauch, K., Maloney, L.T.: MLCM: Maximum likelihood conjoint measurement (2011). R package version 0.0-8. http://CRAN.R-project.org/package=MLCM. Accessed date on 2nd August 2012

  98. Knoblauch, K., Maloney, L.T.: MPDiR: Data sets and scripts for Modeling Psychophysical Data in R (2012). R package version 0.1-11. http://cran.r-project.org/web/packages/MPDiR

  99. Knoblauch, K., Vital-Durand, F., Barbur, J.: Variation of chromatic sensitivity across the life span. Vis. Res. 41, 23–36 (2001)

    Google Scholar 

  100. Knuth, D.E.: The Art of Computer Programming: Seminumerical Programming, 3rd edn. Addison-Wesley, New York (1997)

    Google Scholar 

  101. Komárek, A., Lesaffre, E.: Generalized linear mixed model with a penalized gaussian mixture as a random-effects distribution. Comput. Stat. Data Anal. 52(7), 3441–3458 (2008)

    MATH  Google Scholar 

  102. Kontsevich, L.L., Tyler, C.W.: What makes Mona Lisa smile? Vis. Res. 44, 1493–1498 (2004)

    Google Scholar 

  103. Kosmidis, I.: brglm: Bias reduction in binary-response GLMs (2007). R package version 0.5-6. http://www.ucl.ac.uk/~ucakiko/software.html. Accessed date on 2nd August 2012

  104. Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement (Vol. 1): Additive and Polynomial Representations. Academic, New York (1971)

    Google Scholar 

  105. Kuss, M., Jäkel, F., Wichmann, F.A.: Bayesian inference for psychometric functions. J. Vis. 5, 478–492 (2005). http://journalofvision.org/5/5/8/

    Google Scholar 

  106. Lang, D.T.: Rcompression: In-memory decompression for GNU zip and bzip2 formats. R package version 0.93-2. http://www.omegahat.org/Rcompression. Accessed date on 2nd August 2012

  107. Lazar, N.A.: The Statistical Analysis of Functional MRI Data. Springer, New York (2008)

    MATH  Google Scholar 

  108. Legge, G.E., Gu, Y.C., Luebker, A.: Efficiency of graphical perception. Percept. Psychophys. 46, 365–374 (1989)

    Google Scholar 

  109. Lehmann, E.L., Casella, G.: Theory of Point Estimation, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  110. Lemon, J: Plotrix: A package in the red light district of R. R-News 6(4), 8–12 (2010)

    Google Scholar 

  111. Levi, D.M., Klein, S.A.: Classification images for detection and position discrimination in the fovea and parafovea. J. Vis. 2(1), 46–65 (2002)

    Google Scholar 

  112. Li, Y., Baron, J.: Behavioral Research Data Analysis in R, 1st edn. Springer, New York (2011)

    Google Scholar 

  113. Lindsey, D., Brown, A.: Color naming and the phototoxic effects of sunlight on the eye. Psychol. Sci. 13, 506–512 (2002)

    Google Scholar 

  114. Lindsey, D.T., Brown, A.M., Reijnen, E., Rich, A.N., Kuzmova, Y.I., Wolfe, J.M.: Color channels, not color appearance or color categories, guide visual search for desaturated color targets. Psychol. Sci. 21, 1208–1214 (2010)

    Google Scholar 

  115. Link, S.W.: The Wave Theory of Difference and Similarity. Lawrence Erlbaum Associates, Hillsdale (1992)

    Google Scholar 

  116. Luce, R.D., Green, D.M.: Parallel psychometric functions from a set of independent detectors. Psychol. Rev. 82, 483–486 (1975)

    Google Scholar 

  117. Luce, R.D., Tukey, J.W.: Simultaneous conjoint measurement: A new scale type of fundamental measurement. J. Math. Psychol. 32, 466–473 (1964)

    Google Scholar 

  118. Macke, J.H., Wichmann, F.A.: Estimating predictive stimulus features from psychophysical data: The decision image technique applied to human faces. J. Vis. 10 (2010)

    Google Scholar 

  119. MacLeod, D.: Visual sensitivity. Annu. Rev. Psychol. 29, 613–645 (1978)

    Google Scholar 

  120. Macmillan, N.A., Creelman, C.D.: Detection Theory: A User’s Guide, 2nd edn. Lawrence Erlbaum Associates, New York (2005)

    Google Scholar 

  121. Maloney, L.T.: Confidence intervals for the parameters of psychometric functions. Percept. Psychophys. 47(2), 127–134 (1990)

    Google Scholar 

  122. Maloney, L.T., Dal Martello, M.F.: Kin recognition and the perceived facial similarity of children. J. Vis. 6, 1047–1056 (2006). http://journalofvision.org/6/10/4/

    Google Scholar 

  123. Maloney, L.T., Yang, J.N.: Maximum Likelihood difference scaling. J. Vis. 3(8), 573–585 (2003). http://www.journalofvision.org/3/8/5

    Google Scholar 

  124. Mamassian, P., Goutcher, R.: Temporal dynamics in bistable perception. J. Vis. 5, 361–375 (2005)

    Google Scholar 

  125. Mangini, M.C., Biederman, I.: Making the ineffable explicit: Estimating the information employed for face classifications. Cognit. Sci. 28, 209–226 (2004)

    Google Scholar 

  126. Marin-Franch, I., Żychaluk, K., Foster, D.H.: modelfree: Model-free estimation of a psychometric function (2010). R package version 1.0. http://CRAN.R-project.org/package=modelfree. Accessed date on 2nd August 2012

  127. McCullagh, P., Nelder, J.A.: Generalized Linear Models. Chapman and Hall, London (1989)

    MATH  Google Scholar 

  128. Mineault, P.J., Barthelme, S., Pack, C.C.: Improved classification images with sparse priors in a smooth basis. J. Vis. 9, 1–24 (2009)

    Google Scholar 

  129. Mood, A., Graybill, F.A., Boes., D.C.: Introduction to the Theory of Statistics, 3rd edn. McGraw-Hill, New York (1974)

    Google Scholar 

  130. Murray, R.F.: Classification images: A review. J. Vis. 11, 1–25 (2011)

    Google Scholar 

  131. Murray, R.F., Bennett, P.J., Sekuler, A.B.: Optimal methods for calculating classification images: Weighted sums. J. Vis. 2(1), 79–104 (2002)

    Google Scholar 

  132. Murrel, P.: Introduction to Data Technologies. Chapman and Hall/CRC, Boca Raton (2009)

    Google Scholar 

  133. Nandy, A.S., Tjan, B.S.: The nature of letter crowding as revealed by first- and second-order classification images. J. Vis. 7(2), 5.1–26 (2007)

    Google Scholar 

  134. Neri, P.: Estimation of nonlinear psychophysical kernels. J. Vis. 4, 82–91 (2004). http://journalofvision.org/4/2/2/

    Google Scholar 

  135. Neri, P.: How inherently noisy is human sensory processing? Psychonomic Bull. Rev. 17, 802–808 (2010)

    Google Scholar 

  136. Neri, P., Heeger, D.J.: Spatiotemporal mechanisms for detecting and identifying image features in human vision. Nat. Neurosci. 5, 812–816 (2002)

    Google Scholar 

  137. Neri, P., Parker, A.J., Blakemore, C.: Probing the human stereoscopic system with reverse correlation. Nature 401, 695–698 (1999)

    Google Scholar 

  138. Newsome, W.T., Britten, K.H., Movshon, J.A.: Neuronal correlates of a perceptual decision. Nature 341(6237), 52–54 (1989)

    Google Scholar 

  139. Obein, G., Knoblauch, K., Viénot, F.: Difference scaling of gloss: Nonlinearity, binocularity, and constancy. J. Vis. 4(9), 711–720 (2004)

    Google Scholar 

  140. Peirce, J.W.: The potential importance of saturating and supersaturating contrast response functions in visual cortex. J. Vis. 7, 13 (2007)

    Google Scholar 

  141. Pinheiro, J., Bates, D.: Mixed-Effects Models in S and S-PLUS. Springer, New York (2000)

    MATH  Google Scholar 

  142. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., the R Development Core Team: nlme: Linear and nonlinear mixed effects models (2012). R package version 3.1-104

    Google Scholar 

  143. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, 3rd ed.: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  144. Quick, R.: A vector-magnitude model of contrast detection. Kybernetik 16, 65–67 (1974)

    Google Scholar 

  145. R-core members, et al.: Foreign: Read data stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase, …(2011). R package version 0.8-46. http://CRAN.R-project.org/package=foreign. Accessed date on 2nd August 2012

  146. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2011). ISBN 3-900051-07-0. http://www.R-project.org/. Accessed date on 2nd August 2012

  147. Rensink, R.A., Baldridge, G.: The perception of correlation in scatterplots. Comput. Graph. Forum 29, 1203–1210 (2010)

    Google Scholar 

  148. Rhodes, G., Maloney, L.T., Turner, J., Ewing, L.: Adaptive face coding and discrimination around the average face. Vis. Res. 47, 974–989 (2007)

    Google Scholar 

  149. Ripley, B.: RODBC: ODBC Database Access (2011). R package version 1.3-3. http://CRAN.R-project.org/package=RODBC. Accessed date on 2nd August 2012

  150. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  151. Roberts, F.S.: Measurement Theory. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  152. Ross, M.G., Cohen, A.L.: Using graphical models to infer multiple visual classification features. J. Vis. 9(3), 23.1–24 (2009)

    Google Scholar 

  153. Ross, S.M.: A First Course in Probability Theory, 8th edn. Prentice-Hall, Englewood Cliffs (2009)

    Google Scholar 

  154. Rouder, J.N., Lu, J., Sun, D., Speckman, P., Morey, R., Naveh-Benjamin, M.: Signal detection models with random participant and item effects. Psychometrika 72, 621–642 (2007)

    MathSciNet  MATH  Google Scholar 

  155. Salsberg, D.: The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. W. H. Freeman, New York (2001)

    Google Scholar 

  156. Sarkar, D.: Lattice: Multivariate Data Visualization with R. Springer, New York (2008). http://lmdvr.r-forge.r-project.org

  157. Schneider, B.: Individual loudness functions determined from direct comparisons of loudness intervals. Percept. Psychophys. 28, 493–503 (1980)

    Google Scholar 

  158. Schneider, B.: A technique for the nonmetric analysis of paired comparisons of psychological intervals. Psychometrika 45, 357–372 (1980)

    Google Scholar 

  159. Schneider, B., Parker, S., Stein, D.: The measurement of loudness using direct comparisons of sensory intervals. J. Math. Psychol. 11, 259–273 (1974)

    Google Scholar 

  160. Schwartz, M.: WriteXLS: Cross-platform Perl based R function to create Excel 2003 (XLS) files (2010). R package version 2.1.0. http://CRAN.R-project.org/package=WriteXLS. Accessed date on 2nd August 2012

  161. Solomon, J.A.: Noise reveals visual mechanisms of detection and discrimination. J. Vis. 2(1), 105–120 (2002)

    Google Scholar 

  162. Spector, P.: Data Manipulation with R. Springer, New York (2008)

    MATH  Google Scholar 

  163. van Steen, G.: dataframes2xls: dataframes2xls writes data frames to xls files (2011). R package version 0.4.5. http://cran.r-project.org/web/packages/dataframes2xls. Accessed date on 2nd August 2012

  164. Stevens, S.S.: On the theory of scales of measurement. Science 103, 677–680 (1946)

    MATH  Google Scholar 

  165. Stevens, S.S.: On the psychophysical law. Psychol. Rev. 64, 153–181 (1957)

    Google Scholar 

  166. Strasburger, H.: Converting between measures of slope of the psychometric function. Percept. Psychophys. 63, 1348–1355 (2001)

    Google Scholar 

  167. Sun, H., Lee, B., Baraas, R.: Systematic misestimation in a vernier task arising from contrast mismatch. Vis. Neurosci. 25, 365–370 (2008)

    Google Scholar 

  168. Suppes, P.: Finite equal-interval measurement structures. Theoria 38, 45–63 (1972)

    MathSciNet  MATH  Google Scholar 

  169. Tanner, W.P., Swets, J.A.: A decision-making theory of visual detection. Psychol. Rev. 61, 401–409 (1954)

    Google Scholar 

  170. Teller, D.Y.: The forced-choice preferential looking procedure: A psychophysical technique for use with human infants. Infant Behav. Dev. 2, 135–153 (1979)

    Google Scholar 

  171. Thibault, D., Brosseau-Lachaine, O., Faubert, J., Vital-Durand, F.: Maturation of the sensitivity for luminance and contrast modulated patterns during development of normal and pathological human children. Vis. Res. 47, 1561–1569 (2007)

    Google Scholar 

  172. Thomas, J.P., Knoblauch, K.: Frequency and phase contributions to the detection of temporal luminance modulation. J. Opt. Soc. Am. A 22(10), 2257–2261 (2005)

    Google Scholar 

  173. Thurstone, L.L.: A law of comparative judgement. Psychol. Rev. 34, 273–286 (1927)

    Google Scholar 

  174. Tolhurst, D.J., Movshon, J.A., Dean, A.F.: The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23(8), 775–785 (1983)

    Google Scholar 

  175. Treutwein, B., Strasburger, H.: Fitting the psychometric function. Percept. Psychophys. 61(1), 87–106 (1999)

    Google Scholar 

  176. Urban, F.M.: The method of constant stimuli and its generalizations. Psychol. Rev. 17, 229–259 (1910)

    Google Scholar 

  177. Urbanek, S.: RJDBC: Provides access to databases through the JDBC interface (2011). R package version 0.2-0. http://www.rforge.net/RJDBC/. Accessed date on 2nd August 2012

  178. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002). http://www.stats.ox.ac.uk/pub/MASS4

  179. Victor, J.: Analyzing receptive fields, classification images and functional images: Challenges with opportunities for synergy. Nat. Neurosci. 8, 1651–1656 (2005)

    Google Scholar 

  180. Warnes, G.R.: gmodels: Various R programming tools for model fitting (2011). R package version 2.15.1. http://CRAN.R-project.org/package=gmodels. Accessed date on 2nd August 2012

  181. Warnes, G.R., et al.: gdata: Various R programming tools for data manipulation (2010). R package version 2.8.1. http://CRAN.R-project.org/package=gdata. Accessed date on 2nd August 2012

  182. Watson, A.: The spatial standard observer: A human vision model for display inspection. In: 353 SID Symposium Digest of Technical Papers, 37, pp. 1312–1315 (2006)

    Google Scholar 

  183. Watson, A.B., Ahumada, A.J.: A standard model for foveal detection of spatial contrast. J. Vis. 5, 717–740 (2005)

    Google Scholar 

  184. Watson, A.B., Pelli, D.G.: QUEST: A Bayesian adaptive psychometric method. Percept. Psychophys. 33, 113–120 (1983)

    Google Scholar 

  185. Watson, G.A.: Approximation Theory and Numerical Methods. Wiley, New York (1980)

    MATH  Google Scholar 

  186. Westheimer, G.: The spatial grain of the perifoveal visual field. Vis. Res. 22(1), 157–162 (1982)

    Google Scholar 

  187. Wichmann, F.A., Graf, A.B.A., Simoncelli, E.P., Bülthoff, H.H., Schölkopf, B.: Machine learning applied to perception: Decision-images for gender classification. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 1489–1496. MIT, Cambridge (2005)

    Google Scholar 

  188. Wichmann, F.A., Hill, N.J.: The psychometric function: I. fitting, sampling and goodness of fit. Percept. Psychophys. 63, 1293–1313 (2001)

    Google Scholar 

  189. Wickens, T.D.: Elementary Signal Detection Theory. Oxford University Press, New York (2002)

    Google Scholar 

  190. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2009). http://had.co.nz/ggplot2/book

  191. Wilkinson, G.N., Rogers, C.E.: Symbolic description of factorial models for analysis of variance. Appl. Stat. 22, 392–399 (1973)

    Google Scholar 

  192. Wilkinson, L.: The Grammar of Graphics. Springer, New York (2005)

    MATH  Google Scholar 

  193. Wilks, S.S.: The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938)

    MATH  Google Scholar 

  194. Williams, J., Ramaswamy, D., Oulhaj, A.: 10 Hz flicker improves recognition memory in older people. BMC Neurosci. 7, 21 (2006)

    Google Scholar 

  195. Winer, B.J.: Statistical Principles in Experimental Design, 2nd edn. McGraw-Hill, New York (1971)

    Google Scholar 

  196. Winship, C., Mare, R.D.: Regression models with ordinal variables. Am. Soc. Rev. 49, 512–525 (1984)

    Google Scholar 

  197. Wood, S.: gamm4: Generalized additive mixed models using mgcv and lme4 (2011). R package version 0.1-3. http://CRAN.R-project.org/package=gamm4. Accessed date on 2nd August 2012

  198. Wood, S.N.: Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  199. Xie, Y., Griffin, L.D.: A ‘portholes’ experiment for probing perception of small patches of natural images. Perception 36, 315 (2007)

    Google Scholar 

  200. Yang, J.N., Szeverenyi, N.M., Ts’o, D.: Neural resources associated with perceptual judgment across sensory modalities. Cerebr. Cortex 18, 38–45 (2008)

    Google Scholar 

  201. Yee, T.W.: The vgam package for categorical data analysis. J. Stat. Software 32(10), 1–34 (2010). http://www.jstatsoft.org/v32/i10

    Google Scholar 

  202. Yeshurun, Y., Carrasco, M., Maloney, L.T.: Bias and sensitivity in two-interval forced choice procedures: Tests of the difference model. Vis. Res. 48, 1837–1851 (2008)

    Google Scholar 

  203. Yovel, Y., Franz, M.O., Stilz, P., Schnitzler, H.U.: Plant classification from bat-like echolocation signals. PLoS Comput. Biol. 4, e1000032 (2008)

    MathSciNet  Google Scholar 

  204. Yssaad-Fesselier, R., Knoblauch, K.: Modeling psychometric functions in R. Behav. Res. Meth. Instrum. Comp. 38, 28–41 (2006)

    Google Scholar 

  205. Zhaoping, L., Jingling, L.: Filling-in and suppression of visual perception from context: A Bayesian account of perceptual biases by contextual influences. PLoS Comput. Biol. 4, e14 (2008)

    Google Scholar 

  206. Zucchini, W.: An introduction to model selection. J. Math. Psychol. 44, 41–61 (2000)

    MATH  Google Scholar 

  207. Zuur, A., Ieno, E.N., Walker, N., Saveiliev, A.A., Smith, G.M.: Mixed Effects Lodels and Extensions in Ecology with R. Springer, New York (2009)

    Google Scholar 

  208. Żychaluk, K., Foster, D.H.: Model-free estimation of the psychometric function. Attention Percept. Psychophys. 71, 1414–1425 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knoblauch, K., Maloney, L.T. (2012). The Psychometric Function: Introduction. In: Modeling Psychophysical Data in R. Use R!, vol 32. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4475-6_4

Download citation

Publish with us

Policies and ethics