Skip to main content

Integrated Design-Trajectory Optimization for Hybrid Rocket Motors

  • Chapter
  • First Online:
Modeling and Optimization in Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 73))

  • 2540 Accesses

Abstract

Hybrid rocket motors present a competitive edge among space applications, as they are flexible, safe, reliable, and low cost. The motor design and operation are contingent on the type of designated mission; therefore, it is useful to couple design and trajectory optimization. This approach is especially needed for hybrid rockets in which a unique combustion process links thrust and specific impulse. In this chapter, a multidisciplinary optimization code is described for the use of designing hybrid rocket motors. There are few parameters which define the design of the hybrid engine, whereas the trajectory optimization is characterized by continuous controls. Due to the difference between these unknowns, a mixed optimization procedure has been developed. To maximize mission performance, direct optimization of engine design variables is coupled with the trajectory indirect optimization.Some interesting applications of the aforementioned procedure are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abel, T.M., Velez, T.A.: Electrical drive system for rocket engine propellant Pump. US Patent 6457306 B1, USA (2002)

    Google Scholar 

  2. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York (1972)

    Google Scholar 

  3. Barrere, M., Jaumotte, A., De Veubeke, B.F., Vandenkerckhove J.: Rocket Propulsion. Elsevier Publishing Company, New York (1960)

    Google Scholar 

  4. Ben-Yakar, A., Gany, A.: Hybrid engine design and analysis. Paper AIAA 93–2548. AIAA, Reston VA USA (1993)

    Google Scholar 

  5. Bryson, A.E., Ho, Y.C.: Applied Optimal Control, rev. edn. Hemisphere, Washington DC (1975)

    Google Scholar 

  6. Carmicino, C., Russo Sorge, A.: Role of injection in hybrid rockets regression rate behaviour. J. Propul. Power (2005). doi: 10.2514/1.39578

    Google Scholar 

  7. Casalino, L., Pastrone, D.: Oxidizer control and optimal design of hybrid rockets for small satellites. J. Propul. Power (2005). doi: 10.2514/1.6556

    MATH  Google Scholar 

  8. Casalino, L., Pastrone, D.: Optimal design of hybrid rocket motors for microgravity platform. J. Propul. Power (2008). doi: 10.2514/1.30548

    MATH  Google Scholar 

  9. Casalino, L., Pastrone, D.: Optimization of hybrid sounding rockets for hypersonic testing. AIAA 2009–4841. AIAA, Reston VA USA (2009)

    Google Scholar 

  10. Casalino, L., Pastrone, D.: Optimization of a hybrid rocket upper stage with electric pump feed system. AIAA-2010-6954. AIAA Reston VA USA (2010)

    Google Scholar 

  11. Casalino, L., Pastrone, D.: Optimal design of hybrid rocket motors for launchers upper stages. J. Propul. Power (2010). doi: 10.2514/1.41856

    Google Scholar 

  12. Casalino, L., Colasurdo, G., Pastrone, D.: Optimal low-thrust escape trajectories using gravity assist. J. Guid. Contr. Dynam. (1999). doi:10.2514/2.4451

    Google Scholar 

  13. Casalino, L., Pastrone, D., Simeoni, F.: Hybrid rocket upper stage optimization: Effects of grain geometry. AIAA-2011-6024. AIAA, Reston VA USA (2011)

    Google Scholar 

  14. Doran, E., Dyer, J., Lohner, K., Dunn, Z., Cantwell, B., Zilliac, G.: Nitrous oxide hybrid rocket motor fuel regression rate characterization. Paper AIAA 2007–5352. AIAA, Reston VA USA (2007)

    Google Scholar 

  15. Dornheim, M.A.: Reaching 100 km. Aviat. Week Space Tec. 161(6), 45–46 (2004)

    Google Scholar 

  16. Evans, B., Boyer, E., Kuo, K.: Hybrid rocket investigations at Penn State university’s high pressure combustion laboratory: Overview and recent results. AIAA 2009–5346. AIAA, Reston VA USA (2009)

    Google Scholar 

  17. Farbar, E., Louwers, J., Kaya, T.: Investigation of metallized and nonmetallized hydroxyl terminated polybutadiene/hydrogen peroxide hybrid rockets. J. Prop. Power (2007). doi: 10.2514/1.22091

    Google Scholar 

  18. Gordon, S., McBride, B.J.: Computer program for calculation of complex chemical equilibrium compositions and applications. NASA RP-1311, NASA (1996)

    Google Scholar 

  19. Isakowitz, S.J., Hopkins, J.A., Hopkins, J.A. Jr.: International reference guide to space launch systems, 4th edn. AIAA, Reston VA USA (1994)

    Google Scholar 

  20. Karabeyoglu, M.A., Cantwell, B.J., Altman, D.: Development and testing of paraffin-based hybrid rocket fuels. AIAA-2001-4503. AIAA, Reston VA USA (2001)

    Google Scholar 

  21. Karabeyoglu, M.A., Altman, D., Cantwell, B.J.: Combustion of liquefying hybrid propellants: Part 1 general theory. J. Propul. Power (2002). doi: 10.2514/2.5975

    Google Scholar 

  22. Karabeyoglu, A., Zilliac, G., Cantwell, B., DeZilwa, S., Castellucci, P.: Scale-up tests of high regression rate paraffin-based hybrid rocket fuels. J. Propul. Power (2004). doi: 10.2514/1.2188

    Google Scholar 

  23. Knuth, W.H., Chiaverini, M.J., Sauer, J.A., Gramer, D.J.: Solid-fuel regression rate behavior of vortex hybrid rocket engines. J. Propul. Power (2002). doi: 10.2514/2.5974

    MATH  Google Scholar 

  24. Linden, D., Reddy, T.B. (ed.): Handbook of Batteries, 3rd edn. McGraw-Hill, New York (2002)

    Google Scholar 

  25. Maggi, F., Gariani, G., Galfetti, L., De Luca, L.T.: Theoretical analysis of hydrides in solid and hybrid rocket propulsion. Int. J. Hydrogen Energ. (2011). International Journal of Hydrogen Energy. http://dx.doi.org/10.1016/j.ijhydene.2011.10.018 37(2):1760–1769 (2012)

  26. Nagata, H.: New Fuel Configurations for Advanced Hybrid Rockets. IAF-98-S.3.09. IAF, Paris (1998)

    Google Scholar 

  27. NASA: Turbopump systems for liquid rocket engines. NASA SP-8107, NASA (1974)

    Google Scholar 

  28. Peretz, A., Einav, O., Hashmonay, B.A., Birnholz, A., Sobe, Z.: Development of a laboratory-scale system for hybrid rocket motor testing. J. Propul. Power (2011). doi: 10.2514/1.47521

    MATH  Google Scholar 

  29. Rhee, I., Lee, C., Lee, J.W.: Optimal design for hybrid rocket engine for air launch vehicle. J. Mech. Sci. Technol. (2008). doi: 10.1007/s12206-008-0514-6

    Google Scholar 

  30. Rocker, M.: Modeling of nonacoustic combustion instability in simulations of hybrid motor tests. NASA/TP-000-209905, NASA (2000)

    Google Scholar 

  31. Saad, T., Majdalani, J.: Energy based mean flow solutions for slab hybrid rocket chambers. AIAA 2008–5021. AIAA, Reston VA USA (2008)

    Google Scholar 

  32. Sutton, G.P., Biblarz, O.: Rocket Propulsion Elements, 7th edn. Wiley, New York (2001)

    Google Scholar 

  33. Vonderwell, D.J., Murray, I.F., Heister, S.D.: Optimization of hybrid-rocket-booster fuel-grain design. J. Spacecraft Rockets (1995). doi: 10.2514/3.26716

    Google Scholar 

  34. Wernimont, E.H., Heister, S.D.: Combustion experiments in hydrogen peroxide/polyethylene hybrid with catalytic ignition. J. Propul. Power (2000) doi: 10.2514/2.5571

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Pastrone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pastrone, D., Casalino, L. (2012). Integrated Design-Trajectory Optimization for Hybrid Rocket Motors. In: Fasano, G., Pintér, J. (eds) Modeling and Optimization in Space Engineering. Springer Optimization and Its Applications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4469-5_14

Download citation

Publish with us

Policies and ethics