Skip to main content

HIV Impairment of Immune Responses in Dendritic Cells

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 762))

Abstract

Dendritic cells and their subsets are diverse populations of immune cells in the skin and mucous membranes that possess the ability to sense the presence of microbes and orchestrate an efficient and adapted immune response. Dendritic cells (DC) have the unique ability to act as a bridge between the innate and adaptive immune responses. These cells are composed of a number of subsets behaving with preferential and specific features depending on their location and surrounding environment. Langerhans cells (LC) or dermal DC (dDC) are readily present in mucosal areas. Other DC subsets such as plasmacytoid DC (pDC), myeloid DC (myDC), or monocyte-derived DC (MDDC) are thought to be recruited or differentiated in sites of pathogenic challenge. Upon HIV infection, DC and their subsets are likely among the very first immune cells to encounter incoming pathogens and initiate innate and adaptive immune responses. However, as evidenced during HIV infection, some pathogens have evolved subtle strategies to hijack key cellular machineries essential to generate efficient antiviral responses and subvert immune responses for spread and survival.

In this chapter, we review recent research aimed at investigating the involvement of DC subtypes in HIV transmission at mucosal sites, concentrating on HIV impact on cellular signalling and trafficking pathways in DC leading to DC-mediated immune response alterations and viral immune evasion. We also address some aspects of DC functions during the chronic immune pathogenesis and conclude with an overview of the current and novel therapeutic and prophylactic strategies aimed at improving DC-mediated immune responses, thus to potentially tackle the early events of mucosal HIV infection and spread.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anand AR, Prasad A, Bradley RR, Deol YS, Nagaraja T, Ren X, Terwilliger EF, Ganju RK (2009) HIV-1 gp120-induced migration of dendritic cells is regulated by a novel kinase cascade involving Pyk2, p38 MAP kinase, and LSP1. Blood 114(17):3588–3600

    PubMed  CAS  Google Scholar 

  • Andersson J, Boasso A, Nilsson J, Zhang R, Shire NJ, Lindback S, Shearer GM, Chougnet CA (2005) The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients. J Immunol 174(6):3143–3147

    PubMed  CAS  Google Scholar 

  • Anthony DD, Yonkers NL, Post AB, Asaad R, Heinzel FP, Lederman MM, Lehmann PV, Valdez H (2004) Selective impairments in dendritic cell-associated function distinguish hepatitis C virus and HIV infection. J Immunol 172(8):4907–4916

    PubMed  CAS  Google Scholar 

  • Appelmelk BJ, van Die I, van Vliet SJ, Vandenbroucke-Grauls CM, Geijtenbeek TB, van Kooyk Y (2003) Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol 170(4):1635–1639

    PubMed  CAS  Google Scholar 

  • Arrighi JF, Pion M, Garcia E, Escola JM, van Kooyk Y, Geijtenbeek TB, Piguet V (2004a) DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J Exp Med 200(10):1279–1288

    PubMed  CAS  Google Scholar 

  • Arrighi JF, Pion M, Wiznerowicz M, Geijtenbeek TB, Garcia E, Abraham S, Leuba F, Dutoit V, Ducrey-Rundquist O, van Kooyk Y, Trono D, Piguet V (2004b) Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J Virol 78(20):10848–10855

    PubMed  CAS  Google Scholar 

  • Ashwell G, Harford J (1982) Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51:531–554

    PubMed  CAS  Google Scholar 

  • Ayehunie S, Garcia-Zepeda EA, Hoxie JA, Horuk R, Kupper TS, Luster AD, Ruprecht RM (1997) Human immunodeficiency virus-1 entry into purified blood dendritic cells through CC and CXC chemokine coreceptors. Blood 90(4):1379–1386

    PubMed  CAS  Google Scholar 

  • Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D (2012) Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481(7379):81–84

    CAS  Google Scholar 

  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    PubMed  CAS  Google Scholar 

  • Banchereau J, Paczesny S, Blanco P, Bennett L, Pascual V, Fay J, Palucka AK (2003) Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann N Y Acad Sci 987:180–187

    PubMed  CAS  Google Scholar 

  • Banerjee K, Andjelic S, Klasse PJ, Kang Y, Sanders RW, Michael E, Durso RJ, Ketas TJ, Olson WC, Moore JP (2009) Enzymatic removal of mannose moieties can increase the immune response to HIV-1 gp120 in vivo. Virology 389(1–2):108–121

    PubMed  CAS  Google Scholar 

  • Barratt-Boyes SM, Zimmer MI, Harshyne L (2002) Changes in dendritic cell migration and activation during SIV infection suggest a role in initial viral spread and eventual immunosuppression. J Med Primatol 31(4–5):186–193

    PubMed  CAS  Google Scholar 

  • Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG, Larsson M, Gorelick RJ, Lifson JD, Bhardwaj N (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 115(11):3265–3275

    PubMed  CAS  Google Scholar 

  • Belsito DV, Sanchez MR, Baer RL, Valentine F, Thorbecke GJ (1984) Reduced Langerhans’ cell Ia antigen and ATPase activity in patients with the acquired immunodeficiency syndrome. N Engl J Med 310(20):1279–1282

    PubMed  CAS  Google Scholar 

  • Berger G, Durand S, Fargier G, Nguyen XN, Cordeil S, Bouaziz S, Muriaux D, Darlix JL, Cimarelli A (2011) APOBEC3A is a specific inhibitor of the early phases of HIV-1 infection in myeloid cells. PLoS Pathog 7(9):e1002221

    PubMed  CAS  Google Scholar 

  • Berlier W, Cremel M, Hamzeh H, Levy R, Lucht F, Bourlet T, Pozzetto B, Delezay O (2006) Seminal plasma promotes the attraction of Langerhans cells via the secretion of CCL20 by vaginal epithelial cells: involvement in the sexual transmission of HIV. Hum Reprod 21(5):1135–1142

    PubMed  CAS  Google Scholar 

  • Bhoopat L, Eiangleng L, Rugpao S, Frankel SS, Weissman D, Lekawanvijit S, Petchjom S, Thorner P, Bhoopat T (2001) In vivo identification of Langerhans and related dendritic cells infected with HIV-1 subtype E in vaginal mucosa of asymptomatic patients. Mod Pathol 14(12):1263–1269

    PubMed  CAS  Google Scholar 

  • Bishop KN, Holmes RK, Sheehy AM, Malim MH (2004) APOBEC-mediated editing of viral RNA. Science 305(5684):645

    PubMed  CAS  Google Scholar 

  • Blanchet FP, Piguet V (2010) Immunoamphisomes in dendritic cells amplify TLR signaling and enhance exogenous antigen presentation on MHC-II. Autophagy 6(6):816–818

    PubMed  Google Scholar 

  • Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, Garcia E, Dinkins C, Leuba F, Wu L, Schwartz O, Deretic V, Piguet V (2010) Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32(5):654–669

    PubMed  CAS  Google Scholar 

  • Blanchet F, Moris A, Mitchell JP, Piguet V (2011) A look at HIV journey: from dendritic cells to infection spread in CD4 T cells. Curr Opin HIV AIDS 6(5):391–397

    PubMed  Google Scholar 

  • Blauvelt A, Asada H, Saville MW, Klaus-Kovtun V, Altman DJ, Yarchoan R, Katz SI (1997) Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways. J Clin Invest 100(8):2043–2053

    PubMed  CAS  Google Scholar 

  • Boasso A, Herbeuval JP, Hardy AW, Anderson SA, Dolan MJ, Fuchs D, Shearer GM (2007) HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood 109(8):3351–3359

    PubMed  CAS  Google Scholar 

  • Boggiano C, Manel N, Littman DR (2007) Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J Virol 81(5):2519–2523

    PubMed  CAS  Google Scholar 

  • Bomsel M, Tudor D, Drillet AS, Alfsen A, Ganor Y, Roger MG, Mouz N, Amacker M, Chalifour A, Diomede L, Devillier G, Cong Z, Wei Q, Gao H, Qin C, Yang GB, Zurbriggen R, Lopalco L, Fleury S (2011) Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges. Immunity 34(2):269–280

    PubMed  CAS  Google Scholar 

  • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196(12):1627–1638

    PubMed  CAS  Google Scholar 

  • Bouhlal H, Chomont N, Requena M, Nasreddine N, Saidi H, Legoff J, Kazatchkine MD, Belec L, Hocini H (2007) Opsonization of HIV with complement enhances infection of dendritic cells and viral transfer to CD4 T cells in a CR3 and DC-SIGN-dependent manner. J Immunol 178(2):1086–1095

    PubMed  CAS  Google Scholar 

  • Bozzacco L, Trumpfheller C, Siegal FP, Mehandru S, Markowitz M, Carrington M, Nussenzweig MC, Piperno AG, Steinman RM (2007) DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci U S A 104(4):1289–1294

    PubMed  CAS  Google Scholar 

  • Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, Blazar BR, Rodriguez B, Teixeira-Johnson L, Landay A, Martin JN, Hecht FM, Picker LJ, Lederman MM, Deeks SG, Douek DC (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12(12):1365–1371

    PubMed  CAS  Google Scholar 

  • Burleigh L, Lozach PY, Schiffer C, Staropoli I, Pezo V, Porrot F, Canque B, Virelizier JL, Arenzana-Seisdedos F, Amara A (2006) Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J Virol 80(6):2949–2957

    PubMed  CAS  Google Scholar 

  • Cambi A, Figdor CG (2003) Dual function of C-type lectin-like receptors in the immune system. Curr Opin Cell Biol 15(5):539–546

    PubMed  CAS  Google Scholar 

  • Cambi A, Figdor CG (2005) Levels of complexity in pathogen recognition by C-type lectins. Curr Opin Immunol 17(4):345–351

    PubMed  CAS  Google Scholar 

  • Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257(5068):383–387

    PubMed  CAS  Google Scholar 

  • Cameron PU, Lowe MG, Crowe SM, O’Doherty U, Pope M, Gezelter S, Steinman RM (1994) Susceptibility of dendritic cells to HIV-1 infection in vitro. J Leukoc Biol 56(3):257–265

    PubMed  CAS  Google Scholar 

  • Canque B, Bakri Y, Camus S, Yagello M, Benjouad A, Gluckman JC (1999) The susceptibility to X4 and R5 human immunodeficiency virus-1 strains of dendritic cells derived in vitro from CD34(+) hematopoietic progenitor cells is primarily determined by their maturation stage. Blood 93(11):3866–3875

    PubMed  CAS  Google Scholar 

  • Caparros E, Munoz P, Sierra-Filardi E, Serrano-Gomez D, Puig-Kroger A, Rodriguez-Fernandez JL, Mellado M, Sancho J, Zubiaur M, Corbi AL (2006) DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 107(10):3950–3958

    PubMed  CAS  Google Scholar 

  • Casartelli N, Guivel-Benhassine F, Bouziat R, Brandler S, Schwartz O, Moris A (2010) The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells. J Exp Med 207(1):39–49

    PubMed  CAS  Google Scholar 

  • Cavaleiro R, Baptista AP, Foxall RB, Victorino RM, Sousa AE (2009) Dendritic cell differentiation and maturation in the presence of HIV type 2 envelope. AIDS Res Hum Retroviruses 25(4):425–431

    PubMed  CAS  Google Scholar 

  • Cavrois M, Neidleman J, Kreisberg JF, Fenard D, Callebaut C, Greene WC (2006) Human immunodeficiency virus fusion to dendritic cells declines as cells mature. J Virol 80(4):1992–1999

    PubMed  CAS  Google Scholar 

  • Cavrois M, Neidleman J, Kreisberg JF, Greene WC (2007) In vitro derived dendritic cells trans-infect CD4 T cells primarily with surface-bound HIV-1 virions. PLoS Pathog 3(1):e4

    PubMed  Google Scholar 

  • Cella M, Sallusto F, Lanzavecchia A (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9(1):10–16

    PubMed  CAS  Google Scholar 

  • Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5(8):919–923

    PubMed  CAS  Google Scholar 

  • Chatwell L, Holla A, Kaufer BB, Skerra A (2008) The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol Immunol 45(7):1981–1994

    PubMed  CAS  Google Scholar 

  • Chehimi J, Prakash K, Shanmugam V, Jackson SJ, Bandyopadhyay S, Starr SE (1993) In-vitro infection of peripheral blood dendritic cells with human immunodeficiency virus-1 causes impairment of accessory functions. Adv Exp Med Biol 329:521–526

    PubMed  CAS  Google Scholar 

  • Cheong C, Choi JH, Vitale L, He LZ, Trumpfheller C, Bozzacco L, Do Y, Nchinda G, Park SH, Dandamudi DB, Shrestha E, Pack M, Lee HW, Keler T, Steinman RM, Park CG (2010) Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody. Blood 116(19):3828–3838

    PubMed  CAS  Google Scholar 

  • Choi YK, Fallert BA, Murphey-Corb MA, Reinhart TA (2003a) Simian immunodeficiency virus dramatically alters expression of homeostatic chemokines and dendritic cell markers during infection in vivo. Blood 101(5):1684–1691

    PubMed  CAS  Google Scholar 

  • Choi YK, Whelton KM, Mlechick B, Murphey-Corb MA, Reinhart TA (2003b) Productive infection of dendritic cells by simian immunodeficiency virus in macaque intestinal tissues. J Pathol 201(4):616–628

    PubMed  CAS  Google Scholar 

  • Chung NP, Breun SK, Bashirova A, Baumann JG, Martin TD, Karamchandani JM, Rausch JW, Le Grice SF, Wu L, Carrington M, Kewalramani VN (2010) HIV-1 transmission by dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is regulated by determinants in the carbohydrate recognition domain that are absent in liver/lymph node-SIGN (L-SIGN). J Biol Chem 285(3):2100–2112

    PubMed  CAS  Google Scholar 

  • Clerici M, Hakim FT, Venzon DJ, Blatt S, Hendrix CW, Wynn TA, Shearer GM (1993) Changes in interleukin-2 and interleukin-4 production in asymptomatic, human immunodeficiency virus-seropositive individuals. J Clin Invest 91(3):759–765

    PubMed  CAS  Google Scholar 

  • Coleman CM, Spearman P, Wu L (2011) Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology 8:26

    PubMed  CAS  Google Scholar 

  • Conry SJ, Milkovich KA, Yonkers NL, Rodriguez B, Bernstein HB, Asaad R, Heinzel FP, Tary-Lehmann M, Lederman MM, Anthony DD (2009) Impaired plasmacytoid dendritic cell (PDC)-NK cell activity in viremic human immunodeficiency virus infection attributable to impairments in both PDC and NK cell function. J Virol 83(21):11175–11187

    PubMed  CAS  Google Scholar 

  • Cremel M, Berlier W, Hamzeh H, Cognasse F, Lawrence P, Genin C, Bernengo JC, Lambert C, Dieu-Nosjean MC, Delezay O (2005) Characterization of CCL20 secretion by human epithelial vaginal cells: involvement in Langerhans cell precursor attraction. J Leukoc Biol 78(1):158–166

    PubMed  CAS  Google Scholar 

  • Cunningham AL, Harman AN, Donaghy H (2007) DC-SIGN ‘AIDS’ HIV immune evasion and infection. Nat Immunol 8(6):556–558

    PubMed  CAS  Google Scholar 

  • Dakappagari N, Maruyama T, Renshaw M, Tacken P, Figdor C, Torensma R, Wild MA, Wu D, Bowdish K, Kretz-Rommel A (2006) Internalizing antibodies to the C-type lectins, L-SIGN and DC-SIGN, inhibit viral glycoprotein binding and deliver antigen to human dendritic cells for the induction of T cell responses. J Immunol 176(1):426–440

    PubMed  CAS  Google Scholar 

  • Daly LM, Johnson PA, Donnelly G, Nicolson C, Robertson J, Mills KH (2005) Innate IL-10 promotes the induction of Th2 responses with plasmid DNA expressing HIV gp120. Vaccine 23(7):963–974

    PubMed  CAS  Google Scholar 

  • Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443(7109):350–354

    PubMed  CAS  Google Scholar 

  • de Jong MA, Geijtenbeek TB (2010) Langerhans cells in innate defense against pathogens. Trends Immunol 31(12):452–459

    PubMed  Google Scholar 

  • de Jong MA, de Witte L, Oudhoff MJ, Gringhuis SI, Gallay P, Geijtenbeek TB (2008) TNF-alpha and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo. J Clin Invest 118(10):3440–3452

    PubMed  Google Scholar 

  • de Jong MA, de Witte L, Taylor ME, Geijtenbeek TB (2010) Herpes simplex virus type 2 enhances HIV-1 susceptibility by affecting Langerhans cell function. J Immunol 185(3):1633–1641

    PubMed  Google Scholar 

  • de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TB (2007) Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13(3):367–371

    PubMed  Google Scholar 

  • Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 102(22):7922–7927

    PubMed  CAS  Google Scholar 

  • Deter RL, De Duve C (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 33(2):437–449

    PubMed  CAS  Google Scholar 

  • Deter RL, Baudhuin P, De Duve C (1967) Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35(2):C11–C16

    PubMed  CAS  Google Scholar 

  • Donaghy H, Pozniak A, Gazzard B, Qazi N, Gilmour J, Gotch F, Patterson S (2001) Loss of blood CD11c(+) myeloid and CD11c(−) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood 98(8):2574–2576

    PubMed  CAS  Google Scholar 

  • Donaghy H, Gazzard B, Gotch F, Patterson S (2003) Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood 101(11):4505–4511

    PubMed  CAS  Google Scholar 

  • Dusserre N, Dezutter-Dambuyant C, Mallet F, Delorme P, Philit F, Ebersold A, Desgranges C, Thivolet J, Schmitt D (1992) In vitro HIV-1 entry and replication in Langerhans cells may clarify the HIV-1 genome detection by PCR in epidermis of seropositive patients. J Invest Dermatol 99(5):99S–102S

    PubMed  CAS  Google Scholar 

  • Eales LJ, Farrant J, Helbert M, Pinching AJ (1988) Peripheral blood dendritic cells in persons with AIDS and AIDS related complex: loss of high intensity class II antigen expression and function. Clin Exp Immunol 71(3):423–427

    PubMed  CAS  Google Scholar 

  • Engering A, Geijtenbeek TB, van Vliet SJ, Wijers M, van Liempt E, Demaurex N, Lanzavecchia A, Fransen J, Figdor CG, Piguet V, van Kooyk Y (2002) The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 168(5):2118–2126

    PubMed  CAS  Google Scholar 

  • Enose Y, Ibuki K, Tamaru K, Ui M, Kuwata T, Shimada T, Hayami M (1999) Replication capacity of simian immunodeficiency virus in cultured macaque macrophages and dendritic cells is not prerequisite for intravaginal transmission of the virus in macaques. J Gen Virol 80(Pt 4):847–855

    PubMed  CAS  Google Scholar 

  • Epple HJ, Loddenkemper C, Kunkel D, Troger H, Maul J, Moos V, Berg E, Ullrich R, Schulzke JD, Stein H, Duchmann R, Zeitz M, Schneider T (2006) Mucosal but not peripheral FOXP3+ regulatory T cells are highly increased in untreated HIV infection and normalize after suppressive HAART. Blood 108(9):3072–3078

    PubMed  CAS  Google Scholar 

  • Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, Codogno P, Biard-Piechaczyk M (2006) Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest 116(8):2161–2172

    PubMed  CAS  Google Scholar 

  • Espert L, Varbanov M, Robert-Hebmann V, Sagnier S, Robbins I, Sanchez F, Lafont V, Biard-Piechaczyk M (2009) Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection. PLoS One 4(6):e5787

    PubMed  Google Scholar 

  • Fahrbach KM, Barry SM, Ayehunie S, Lamore S, Klausner M, Hope TJ (2007) Activated CD34-derived Langerhans cells mediate transinfection with human immunodeficiency virus. J Virol 81(13):6858–6868

    PubMed  CAS  Google Scholar 

  • Fantuzzi L, Purificato C, Donato K, Belardelli F, Gessani S (2004) Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis. J Virol 78(18):9763–9772

    PubMed  CAS  Google Scholar 

  • Favre D, Mold J, Hunt PW, Kanwar B, Loke P, Seu L, Barbour JD, Lowe MM, Jayawardene A, Aweeka F, Huang Y, Douek DC, Brenchley JM, Martin JN, Hecht FM, Deeks SG, McCune JM (2010) Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med 2(32):32ra36

    PubMed  Google Scholar 

  • Feinberg H, Taylor ME, Razi N, McBride R, Knirel YA, Graham SA, Drickamer K, Weis WI (2011) Structural basis for langerin recognition of diverse pathogen and mammalian glycans through a single binding site. J Mol Biol 405(4):1027–1039

    PubMed  CAS  Google Scholar 

  • Feldman S, Stein D, Amrute S, Denny T, Garcia Z, Kloser P, Sun Y, Megjugorac N, Fitzgerald-Bocarsly P (2001) Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol 101(2):201–210

    PubMed  CAS  Google Scholar 

  • Felts RL, Narayan K, Estes JD, Shi D, Trubey CM, Fu J, Hartnell LM, Ruthel GT, Schneider DK, Nagashima K, Bess JW Jr, Bavari S, Lowekamp BC, Bliss D, Lifson JD, Subramaniam S (2011) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci U S A 107(30):13336–13341

    Google Scholar 

  • Figdor CG, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2(2):77–84

    PubMed  CAS  Google Scholar 

  • Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, Para MF (2005) Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis 191(5):654–665

    PubMed  Google Scholar 

  • Flynn BJ, Kastenmuller K, Wille-Reece U, Tomaras GD, Alam M, Lindsay RW, Salazar AM, Perdiguero B, Gomez CE, Wagner R, Esteban M, Park CG, Trumpfheller C, Keler T, Pantaleo G, Steinman RM, Seder R (2011) Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates. Proc Natl Acad Sci U S A 108(17):7131–7136

    PubMed  CAS  Google Scholar 

  • Fong L, Mengozzi M, Abbey NW, Herndier BG, Engleman EG (2002) Productive infection of plasmacytoid dendritic cells with human immunodeficiency virus type 1 is triggered by CD40 ligation. J Virol 76(21):11033–11041

    PubMed  CAS  Google Scholar 

  • Fonteneau JF, Larsson M, Beignon AS, McKenna K, Dasilva I, Amara A, Liu YJ, Lifson JD, Littman DR, Bhardwaj N (2004) Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol 78(10):5223–5232

    PubMed  CAS  Google Scholar 

  • Fontenot D, He H, Hanabuchi S, Nehete PN, Zhang M, Chang M, Nehete B, Wang YH, Ma ZM, Lee HC, Ziegler SF, Courtney AN, Miller CJ, Sun SC, Liu YJ, Sastry KJ (2009) TSLP production by epithelial cells exposed to immunodeficiency virus triggers DC-mediated mucosal infection of CD4+ T cells. Proc Natl Acad Sci U S A 106(39):16776–16781

    PubMed  CAS  Google Scholar 

  • Frank I, Stossel H, Gettie A, Turville SG, Bess JW Jr, Lifson JD, Sivin I, Romani N, Robbiani M (2008) A fusion inhibitor prevents spread of immunodeficiency viruses, but not activation of virus-specific T cells, by dendritic cells. J Virol 82(11):5329–5339

    PubMed  CAS  Google Scholar 

  • Frankel SS, Wenig BM, Burke AP, Mannan P, Thompson LD, Abbondanzo SL, Nelson AM, Pope M, Steinman RM (1996) Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science 272(5258):115–117

    PubMed  CAS  Google Scholar 

  • Gagliardi MC, Teloni R, Giannoni F, Pardini M, Sargentini V, Brunori L, Fattorini L, Nisini R (2005) Mycobacterium bovis Bacillus Calmette-Guerin infects DC-SIGN- dendritic cell and causes the inhibition of IL-12 and the enhancement of IL-10 production. J Leukoc Biol 78(1):106–113

    PubMed  CAS  Google Scholar 

  • Ganesh L, Leung K, Lore K, Levin R, Panet A, Schwartz O, Koup RA, Nabel GJ (2004) Infection of specific dendritic cells by CCR5-tropic human immunodeficiency virus type 1 promotes cell-mediated transmission of virus resistant to broadly neutralizing antibodies. J Virol 78(21):11980–11987

    PubMed  CAS  Google Scholar 

  • Garcia E, Pion M, Pelchen-Matthews A, Collinson L, Arrighi JF, Blot G, Leuba F, Escola JM, Demaurex N, Marsh M, Piguet V (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6(6):488–501

    PubMed  CAS  Google Scholar 

  • Garcia E, Nikolic DS, Piguet V (2008) HIV-1 replication in dendritic cells occurs through a tetraspanin-containing compartment enriched in AP-3. Traffic 9(2):200–214

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, van Kooyk Y (2003) DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr Top Microbiol Immunol 276:31–54

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5):587–597

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100(5):575–585

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, van Duijnhoven GC, van Vliet SJ, Krieger E, Vriend G, Figdor CG, van Kooyk Y (2002) Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1. J Biol Chem 277(13):11314–11320

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, Van Kooyk Y (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197(1):7–17

    PubMed  CAS  Google Scholar 

  • Gilbert C, Barat C, Cantin R, Tremblay MJ (2007) Involvement of Src and Syk tyrosine kinases in HIV-1 transfer from dendritic cells to CD4+ T lymphocytes. J Immunol 178(5):2862–2871

    PubMed  CAS  Google Scholar 

  • Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8(8):594–606

    PubMed  CAS  Google Scholar 

  • Girolomoni G, Valle MT, Zacchi V, Costa MG, Giannetti A, Manca F (1995) Human epidermal Langerhans cells efficiently present HIV-1 antigens to specific T cell lines. Adv Exp Med Biol 378:473–475

    PubMed  CAS  Google Scholar 

  • Girolomoni G, Valle MT, Zacchi V, Costa MG, Giannetti A, Manca F (1996) Cultured human Langerhans’ cells are superior to fresh cells at presenting native HIV-1 protein antigens to specific CD4+ T-cell lines. Immunology 87(2):310–316

    PubMed  CAS  Google Scholar 

  • Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480(7377):379–382

    PubMed  CAS  Google Scholar 

  • Goujon C, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A (2003) Heterologous human immunodeficiency virus type 1 lentiviral vectors packaging a simian immunodeficiency virus-derived genome display a specific postentry transduction defect in dendritic cells. J Virol 77(17):9295–9304

    PubMed  CAS  Google Scholar 

  • Goujon C, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A (2006) With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther 13(12):991–994

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Moser B, Pope M, Chen D, Wei Y, Isdell F, O’Doherty U, Paxton W, Koup R, Mojsov S, Bhardwaj N, Clark-Lewis I, Baggiolini M, Steinman RM (1996) Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J Exp Med 184(6):2433–2438

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Delgado E, Finkel V, Paxton W, Steinman RM (1998) Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J Virol 72(4):2733–2737

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Finkel V, Delgado E, Steinman RM (1999) Virus replication begins in dendritic cells during the transmission of HIV-1 from mature dendritic cells to T cells. Curr Biol 9(1):21–29

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Golebiowska A, Trumpfheller C, Siegal FP, Steinman RM (2004) HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101(20):7669–7674

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Pritsker A, Pack M, Shimeliovich I, Arrighi JF, Park CG, Trumpfheller C, Piguet V, Moran TM, Steinman RM (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol 175(7):4265–4273

    PubMed  CAS  Google Scholar 

  • Grassi F, Hosmalin A, McIlroy D, Calvez V, Debre P, Autran B (1999) Depletion in blood CD11c-positive dendritic cells from HIV-infected patients. AIDS 13(7):759–766

    PubMed  CAS  Google Scholar 

  • Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y, Geijtenbeek TB (2007) C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26(5):605–616

    PubMed  CAS  Google Scholar 

  • Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10(10):1081–1088

    PubMed  CAS  Google Scholar 

  • Gringhuis SI, van der Vlist M, van den Berg LM, den Dunnen J, Litjens M, Geijtenbeek TB (2010) HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 11(5):419–426

    PubMed  CAS  Google Scholar 

  • Gummuluru S, KewalRamani VN, Emerman M (2002) Dendritic cell-mediated viral transfer to T cells is required for human immunodeficiency virus type 1 persistence in the face of rapid cell turnover. J Virol 76(21):10692–10701

    PubMed  CAS  Google Scholar 

  • Gummuluru S, Rogel M, Stamatatos L, Emerman M (2003) Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J Virol 77(23):12865–12874

    PubMed  CAS  Google Scholar 

  • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766

    PubMed  CAS  Google Scholar 

  • Haase AT (2005) Perils at mucosal front lines for HIV and SIV and their hosts. Nat Rev Immunol 5(10):783–792

    PubMed  CAS  Google Scholar 

  • Hanley TM, Blay Puryear W, Gummuluru S, Viglianti GA (2010) PPARgamma and LXR signaling inhibit dendritic cell-mediated HIV-1 capture and trans-infection. PLoS Pathog 6:e1000981

    PubMed  Google Scholar 

  • Harman AN, Wilkinson J, Bye CR, Bosnjak L, Stern JL, Nicholle M, Lai J, Cunningham AL (2006) HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells. J Immunol 177(10):7103–7113

    PubMed  CAS  Google Scholar 

  • Harman AN, Kraus M, Bye CR, Byth K, Turville SG, Tang O, Mercier SK, Nasr N, Stern JL, Slobedman B, Driessen C, Cunningham AL (2009) HIV-1-infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase. Blood 114(1):85–94

    PubMed  CAS  Google Scholar 

  • Harman AN, Lai J, Turville S, Samarajiwa S, Gray L, Marsden V, Mercier SK, Jones K, Nasr N, Rustagi A, Cumming H, Donaghy H, Mak J, Gale M Jr, Churchill M, Hertzog P, Cunningham AL (2011) HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood 118(2):298–308

    PubMed  CAS  Google Scholar 

  • Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS, Malim MH (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113(6):803–809

    PubMed  CAS  Google Scholar 

  • Hladik F, Lentz G, Akridge RE, Peterson G, Kelley H, McElroy A, McElrath MJ (1999) Dendritic cell-T-cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract. J Virol 73(7):5833–5842

    PubMed  CAS  Google Scholar 

  • Hodges A, Sharrocks K, Edelmann M, Baban D, Moris A, Schwartz O, Drakesmith H, Davies K, Kessler B, McMichael A, Simmons A (2007) Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8(6):569–577

    PubMed  CAS  Google Scholar 

  • Holla A, Skerra A (2011) Comparative analysis reveals selective recognition of glycans by the dendritic cell receptors DC-SIGN and Langerin. Protein Eng Des Sel 24(9):659–669

    PubMed  CAS  Google Scholar 

  • Howell AL, Edkins RD, Rier SE, Yeaman GR, Stern JE, Fanger MW, Wira CR (1997) Human immunodeficiency virus type 1 infection of cells and tissues from the upper and lower human female reproductive tract. J Virol 71(5):3498–3506

    PubMed  CAS  Google Scholar 

  • Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J (2011a) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474(7353):658–661

    PubMed  CAS  Google Scholar 

  • Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J (2011b) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474(7353):658–661

    PubMed  CAS  Google Scholar 

  • Hu J, Gardner MB, Miller CJ (2000) Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J Virol 74(13):6087–6095

    PubMed  CAS  Google Scholar 

  • Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, Rea TH, Brennan PJ, Belisle JT, Blauvelt A, Porcelli SA, Modlin RL (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest 113(5):701–708

    PubMed  CAS  Google Scholar 

  • Igakura T, Stinchcombe JC, Goon PK, Taylor GP, Weber JN, Griffiths GM, Tanaka Y, Osame M, Bangham CR (2003) Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299(5613):1713–1716

    PubMed  CAS  Google Scholar 

  • Ignatius R, Isdell F, O’Doherty U, Pope M (1998) Dendritic cells from skin and blood of macaques both promote SIV replication with T cells from different anatomical sites. J Med Primatol 27(2–3):121–128

    PubMed  CAS  Google Scholar 

  • Izquierdo-Useros N, Blanco J, Erkizia I, Fernandez-Figueras MT, Borras FE, Naranjo-Gomez M, Bofill M, Ruiz L, Clotet B, Martinez-Picado J (2007) Maturation of blood-derived dendritic cells enhances human immunodeficiency virus type 1 capture and transmission. J Virol 81(14):7559–7570

    PubMed  CAS  Google Scholar 

  • Izquierdo-Useros N, Naranjo-Gomez M, Archer J, Hatch SC, Erkizia I, Blanco J, Borras FE, Puertas MC, Connor JH, Fernandez-Figueras MT, Moore L, Clotet B, Gummuluru S, Martinez-Picado J (2009) Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113(12):2732–2741

    PubMed  CAS  Google Scholar 

  • Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375(6527):151–155

    PubMed  CAS  Google Scholar 

  • Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med 194(6):863–869

    PubMed  CAS  Google Scholar 

  • Kamga I, Kahi S, Develioglu L, Lichtner M, Maranon C, Deveau C, Meyer L, Goujard C, Lebon P, Sinet M, Hosmalin A (2005) Type I interferon production is profoundly and transiently impaired in primary HIV-1 infection. J Infect Dis 192(2):303–310

    PubMed  CAS  Google Scholar 

  • Kawamura T, Cohen SS, Borris DL, Aquilino EA, Glushakova S, Margolis LB, Orenstein JM, Offord RE, Neurath AR, Blauvelt A (2000) Candidate microbicides block HIV-1 infection of human immature Langerhans cells within epithelial tissue explants. J Exp Med 192(10):1491–1500

    PubMed  CAS  Google Scholar 

  • Kawamura T, Gatanaga H, Borris DL, Connors M, Mitsuya H, Blauvelt A (2003) Decreased stimulation of CD4+ T cell proliferation and IL-2 production by highly enriched populations of HIV-infected dendritic cells. J Immunol 170(8):4260–4266

    PubMed  CAS  Google Scholar 

  • Kirchhoff F (2010) Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8(1):55–67

    PubMed  CAS  Google Scholar 

  • Klechevsky E, Flamar AL, Cao Y, Blanck JP, Liu M, O’Bar A, Agouna-Deciat O, Klucar P, Thompson-Snipes L, Zurawski S, Reiter Y, Palucka AK, Zurawski G, Banchereau J (2010) Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood 116(10):1685–1697

    PubMed  CAS  Google Scholar 

  • Knight SC, Patterson S (1997) Bone marrow-derived dendritic cells, infection with human immunodeficiency virus, and immunopathology. Annu Rev Immunol 15:593–615

    PubMed  CAS  Google Scholar 

  • Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16(1):135–144

    PubMed  CAS  Google Scholar 

  • Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, Federico M, Panganiban A, Vergne I, Deretic V (2009) Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 186(2):255–268

    PubMed  CAS  Google Scholar 

  • Laguette N, Benkirane M (2012) How SAMHD1 changes our view of viral restriction. Trends Immunol 33(1):26–33

    PubMed  CAS  Google Scholar 

  • Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474(7353):654–657

    PubMed  CAS  Google Scholar 

  • Lambert AA, Gilbert C, Richard M, Beaulieu AD, Tremblay MJ (2008) The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood 112(4):1299–1307

    PubMed  CAS  Google Scholar 

  • Langerhans P (1868) Uber die nerven der menschlichen haut. Virchows Arch Pathol Anat 44:325–337

    Google Scholar 

  • Langhoff E, Haseltine WA (1992) Infection of accessory dendritic cells by human immunodeficiency virus type 1. J Invest Dermatol 99(5):89S–94S

    PubMed  CAS  Google Scholar 

  • Langhoff E, Terwilliger EF, Bos HJ, Kalland KH, Poznansky MC, Bacon OM, Haseltine WA (1991) Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures. Proc Natl Acad Sci U S A 88(18):7998–8002

    PubMed  CAS  Google Scholar 

  • Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ (2004) IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 202:96–105

    PubMed  CAS  Google Scholar 

  • Lanzavecchia A (1996) Mechanisms of antigen uptake for presentation. Curr Opin Immunol 8(3):348–354

    PubMed  CAS  Google Scholar 

  • Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106(3):263–266

    PubMed  CAS  Google Scholar 

  • Larsen CP, Steinman RM, Witmer-Pack M, Hankins DF, Morris PJ, Austyn JM (1990) Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 172(5):1483–1493

    PubMed  CAS  Google Scholar 

  • Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315(5817):1398–1401

    PubMed  CAS  Google Scholar 

  • Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S, Iwasaki A (2010) In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32(2):227–239

    PubMed  CAS  Google Scholar 

  • Lehner T, Hussain L, Wilson J, Chapman M (1991) Mucosal transmission of HIV. Nature 353(6346):709

    PubMed  CAS  Google Scholar 

  • Lenz A, Heine M, Schuler G, Romani N (1993) Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J Clin Invest 92(6):2587–2596

    PubMed  CAS  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    PubMed  CAS  Google Scholar 

  • Li Q, Estes JD, Schlievert PM, Duan L, Brosnahan AJ, Southern PJ, Reilly CS, Peterson ML, Schultz-Darken N, Brunner KG, Nephew KR, Pambuccian S, Lifson JD, Carlis JV, Haase AT (2009a) Glycerol monolaurate prevents mucosal SIV transmission. Nature 458(7241):1034–1038

    PubMed  CAS  Google Scholar 

  • Li Q, Skinner PJ, Ha SJ, Duan L, Mattila TL, Hage A, White C, Barber DL, O’Mara L, Southern PJ, Reilly CS, Carlis JV, Miller CJ, Ahmed R, Haase AT (2009b) Visualizing antigen-specific and infected cells in situ predicts outcomes in early viral infection. Science 323(5922):1726–1729

    PubMed  CAS  Google Scholar 

  • Lin CL, Sewell AK, Gao GF, Whelan KT, Phillips RE, Austyn JM (2000) Macrophage-tropic HIV induces and exploits dendritic cell chemotaxis. J Exp Med 192(4):587–594

    PubMed  CAS  Google Scholar 

  • Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106(3):259–262

    PubMed  CAS  Google Scholar 

  • Lore K, Smed-Sorensen A, Vasudevan J, Mascola JR, Koup RA (2005) Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 201(12):2023–2033

    PubMed  CAS  Google Scholar 

  • Ludwig IS, Lekkerkerker AN, Depla E, Bosman F, Musters RJ, Depraetere S, van Kooyk Y, Geijtenbeek TB (2004) Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol 78(15):8322–8332

    PubMed  CAS  Google Scholar 

  • Lyerly HK, Cohen OJ, Weinhold KJ (1987) Transmission of HIV by antigen presenting cells during T-cell activation: prevention by 3′-azido-3′-deoxythymidine. AIDS Res Hum Retroviruses 3(1):87–94

    PubMed  CAS  Google Scholar 

  • Macatonia SE, Patterson S, Knight SC (1989) Suppression of immune responses by dendritic cells infected with HIV. Immunology 67(3):285–289

    PubMed  CAS  Google Scholar 

  • Maggi E, Mazzetti M, Ravina A, Annunziato F, de Carli M, Piccinni MP, Manetti R, Carbonari M, Pesce AM, del Prete G et al (1994) Ability of HIV to promote a TH1 to TH0 shift and to replicate preferentially in TH2 and TH0 cells. Science 265(5169):244–248

    PubMed  CAS  Google Scholar 

  • Manches O, Munn D, Fallahi A, Lifson J, Chaperot L, Plumas J, Bhardwaj N (2008) HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest 118(10):3431–3439

    PubMed  CAS  Google Scholar 

  • Mandl JN, Barry AP, Vanderford TH, Kozyr N, Chavan R, Klucking S, Barrat FJ, Coffman RL, Staprans SI, Feinberg MB (2008) Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat Med 14(10):1077–1087

    PubMed  CAS  Google Scholar 

  • Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR (2010) A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467(7312):214–217

    PubMed  CAS  Google Scholar 

  • Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424(6944):99–103

    PubMed  CAS  Google Scholar 

  • Martinson JA, Roman-Gonzalez A, Tenorio AR, Montoya CJ, Gichinga CN, Rugeles MT, Tomai M, Krieg AM, Ghanekar S, Baum LL, Landay AL (2007) Dendritic cells from HIV-1 infected individuals are less responsive to Toll-like receptor (TLR) ligands. Cell Immunol 250(1–2):75–84

    PubMed  CAS  Google Scholar 

  • Mascola JR, Montefiori DC (2010) The role of antibodies in HIV vaccines. Annu Rev Immunol 28:413–444

    PubMed  CAS  Google Scholar 

  • McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300(5623):1295–1297

    PubMed  CAS  Google Scholar 

  • McElrath MJ (2011) Standing guard at the mucosa. Immunity 34(2):146–148

    PubMed  CAS  Google Scholar 

  • McMichael AJ (2006) HIV vaccines. Annu Rev Immunol 24:227–255

    PubMed  CAS  Google Scholar 

  • McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF (2010) The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol 10(1):11–23

    PubMed  CAS  Google Scholar 

  • Mellman I (1990) Endocytosis and antigen processing. Semin Immunol 2(4):229–237

    PubMed  CAS  Google Scholar 

  • Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258

    PubMed  CAS  Google Scholar 

  • Miller CJ, Hu J (1999) T cell-tropic simian immunodeficiency virus (SIV) and simian-human immunodeficiency viruses are readily transmitted by vaginal inoculation of rhesus macaques, and Langerhans’ cells of the female genital tract are infected with SIV. J Infect Dis 179(Suppl 3):S413–S417

    PubMed  Google Scholar 

  • Mitchell DA, Fadden AJ, Drickamer K (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276(31):28939–28945

    PubMed  CAS  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    PubMed  CAS  Google Scholar 

  • Mohanram V, Johansson U, Skold AE, Fink J, Kumar Pathak S, Makitalo B, Walther-Jallow L, Spetz AL (2011) Exposure to apoptotic activated CD4+ T cells induces maturation and APOBEC3G-mediated inhibition of HIV-1 infection in dendritic cells. PLoS One 6(6):e21171

    PubMed  CAS  Google Scholar 

  • Moris A, Nobile C, Buseyne F, Porrot F, Abastado JP, Schwartz O (2004) DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation. Blood 103(7):2648–2654

    PubMed  CAS  Google Scholar 

  • Moris A, Pajot A, Blanchet F, Guivel-Benhassine F, Salcedo M, Schwartz O (2006) Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T-cell activation, and viral transfer. Blood 108(5):1643–1651

    PubMed  CAS  Google Scholar 

  • Muthumani K, Shedlock DJ, Choo DK, Fagone P, Kawalekar OU, Goodman J, Bian CB, Ramanathan AA, Atman P, Tebas P, Chattergoon MA, Choo AY, Weiner DB (2011) HIV-mediated phosphatidylinositol 3-kinase/serine-threonine kinase activation in APCs leads to programmed death-1 ligand upregulation and suppression of HIV-specific CD8 T cells. J Immunol 187(6):2932–2943

    PubMed  CAS  Google Scholar 

  • Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Science 306(5698):1037–1040

    PubMed  CAS  Google Scholar 

  • Nchinda G, Kuroiwa J, Oks M, Trumpfheller C, Park CG, Huang Y, Hannaman D, Schlesinger SJ, Mizenina O, Nussenzweig MC, Uberla K, Steinman RM (2008) The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J Clin Invest 118(4):1427–1436

    PubMed  CAS  Google Scholar 

  • Nchinda G, Amadu D, Trumpfheller C, Mizenina O, Uberla K, Steinman RM (2010) Dendritic cell targeted HIV gag protein vaccine provides help to a DNA vaccine including mobilization of protective CD8+ T cells. Proc Natl Acad Sci U S A 107(9):4281–4286

    PubMed  CAS  Google Scholar 

  • Neil S, Martin F, Ikeda Y, Collins M (2001) Postentry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J Virol 75(12):5448–5456

    PubMed  CAS  Google Scholar 

  • Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ (1993) Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J Immunol 151(11):6535–6545

    PubMed  CAS  Google Scholar 

  • Ng G, Sharma K, Ward SM, Desrosiers MD, Stephens LA, Schoel WM, Li T, Lowell CA, Ling CC, Amrein MW, Shi Y (2008) Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29(5):807–818

    PubMed  CAS  Google Scholar 

  • Nguyen DG, Booth A, Gould SJ, Hildreth JE (2003) Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J Biol Chem 278(52):52347–52354

    PubMed  CAS  Google Scholar 

  • Niedecken H, Lutz G, Bauer R, Kreysel HW (1987) Langerhans cell as primary target and vehicle for transmission of HIV. Lancet 2(8557):519–520

    PubMed  CAS  Google Scholar 

  • Nikolic DS, Lehmann M, Felts R, Garcia E, Blanchet FP, Subramaniam S, Piguet V (2011) HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood 118(18):4841–4852

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Kawamura T, Kimura T, Ito M, Blauvelt A, Shimada S (2009) Gram-positive bacteria enhance HIV-1 susceptibility in Langerhans cells, but not in dendritic cells, via Toll-like receptor activation. Blood 113(21):5157–5166

    PubMed  CAS  Google Scholar 

  • Olsson J, Poles M, Spetz AL, Elliott J, Hultin L, Giorgi J, Andersson J, Anton P (2000) Human immunodeficiency virus type 1 infection is associated with significant mucosal inflammation characterized by increased expression of CCR5, CXCR4, and beta-chemokines. J Infect Dis 182(6):1625–1635

    PubMed  CAS  Google Scholar 

  • Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, Goujard C, Meyer L, Oksenhendler E, Sinet M, Hosmalin A (2001) Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 98(10):3016–3021

    PubMed  CAS  Google Scholar 

  • Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307(5709):593–596

    PubMed  CAS  Google Scholar 

  • Patterson S, Knight SC (1987) Susceptibility of human peripheral blood dendritic cells to infection by human immunodeficiency virus. J Gen Virol 68(Pt 4):1177–1181

    PubMed  Google Scholar 

  • Patterson S, Roberts MS, English NR, Macatonia SE, Gompels MN, Pinching AJ, Knight SC (1994) Detection of HIV DNA in peripheral blood dendritic cells of HIV-infected individuals. Res Virol 145(3–4):171–176

    PubMed  CAS  Google Scholar 

  • Patterson S, Rae A, Hockey N, Gilmour J, Gotch F (2001) Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J Virol 75(14):6710–6713

    PubMed  CAS  Google Scholar 

  • Pavli P, Hume DA, Van De Pol E, Doe WF (1993) Dendritic cells, the major antigen-presenting cells of the human colonic lamina propria. Immunology 78(1):132–141

    PubMed  CAS  Google Scholar 

  • Peng G, Greenwell-Wild T, Nares S, Jin W, Lei KJ, Rangel ZG, Munson PJ, Wahl SM (2007) Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110(1):393–400

    PubMed  CAS  Google Scholar 

  • Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil PD, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J (2011) TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472(7343):361–365

    PubMed  CAS  Google Scholar 

  • Piguet V, Steinman RM (2007) The interaction of HIV with dendritic cells: outcomes and pathways. Trends Immunol 28(11):503–510

    PubMed  CAS  Google Scholar 

  • Pion M, Granelli-Piperno A, Mangeat B, Stalder R, Correa R, Steinman RM, Piguet V (2006) APOBEC3G/3F mediates intrinsic resistance of monocyte-derived dendritic cells to HIV-1 infection. J Exp Med 203(13):2887–2893

    PubMed  CAS  Google Scholar 

  • Pion M, Arrighi JF, Jiang J, Lundquist CA, Hartley O, Aiken C, Piguet V (2007) Analysis of HIV-1-X4 fusion with immature dendritic cells identifies a specific restriction that is independent of CXCR4 levels. J Invest Dermatol 127(2):319–323

    PubMed  CAS  Google Scholar 

  • Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M, van Griensven F, Hu D, Tappero JW, Choopanya K (2006) Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis 194(12):1661–1671

    PubMed  CAS  Google Scholar 

  • Pohlmann S, Baribaud F, Lee B, Leslie GJ, Sanchez MD, Hiebenthal-Millow K, Munch J, Kirchhoff F, Doms RW (2001) DC-SIGN interactions with human immunodeficiency virus type 1 and 2 and simian immunodeficiency virus. J Virol 75(10):4664–4672

    PubMed  CAS  Google Scholar 

  • Pope M (1998) SIV replication and the dendritic cell. AIDS Res Hum Retroviruses 14(Suppl 1):S71–S73

    PubMed  Google Scholar 

  • Pope M, Betjes MG, Romani N, Hirmand H, Cameron PU, Hoffman L, Gezelter S, Schuler G, Steinman RM (1994) Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78(3):389–398

    PubMed  CAS  Google Scholar 

  • Pope M, Betjes MG, Romani N, Hirmand H, Hoffman L, Gezelter S, Schuler G, Cameron PU, Steinman RM (1995a) Dendritic cell-T cell conjugates that migrate from normal human skin are an explosive site of infection for HIV-1. Adv Exp Med Biol 378:457–460

    PubMed  CAS  Google Scholar 

  • Pope M, Gezelter S, Gallo N, Hoffman L, Steinman RM (1995b) Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J Exp Med 182(6):2045–2056

    PubMed  CAS  Google Scholar 

  • Pope M, Elmore D, Ho D, Marx P (1997a) Dendrite cell-T cell mixtures, isolated from the skin and mucosae of macaques, support the replication of SIV. AIDS Res Hum Retroviruses 13(10):819–827

    PubMed  CAS  Google Scholar 

  • Pope M, Frankel S, Steinman R, Elmore D, Ho D, Marx P (1997b) Cutaneous dendritic cells promote replication of immunodeficiency viruses. Adv Exp Med Biol 417:395–399

    PubMed  CAS  Google Scholar 

  • Pope M, Ho DD, Moore JP, Weber J, Dittmar MT, Weiss RA (1997c) Different subtypes of HIV-1 and cutaneous dendritic cells. Science 278(5339):786–788

    PubMed  CAS  Google Scholar 

  • Popov S, Chenine AL, Gruber A, Li PL, Ruprecht RM (2005) Long-term productive human immunodeficiency virus infection of CD1a-sorted myeloid dendritic cells. J Virol 79(1):602–608

    PubMed  CAS  Google Scholar 

  • Powell RD, Holland PJ, Hollis T, Perrino FW (2011) Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 286(51):43596–43600

    PubMed  CAS  Google Scholar 

  • Pruenster M, Wilflingseder D, Banki Z, Ammann CG, Muellauer B, Meyer M, Speth C, Dierich MP, Stoiber H (2005) C-type lectin-independent interaction of complement opsonized HIV with monocyte-derived dendritic cells. Eur J Immunol 35(9):2691–2698

    PubMed  CAS  Google Scholar 

  • Rappersberger K, Gartner S, Schenk P, Stingl G, Groh V, Tschachler E, Mann DL, Wolff K, Konrad K, Popovic M (1988) Langerhans’ cells are an actual site of HIV-1 replication. Intervirology 29(4):185–194

    PubMed  CAS  Google Scholar 

  • Reece JC, Handley AJ, Anstee EJ, Morrison WA, Crowe SM, Cameron PU (1998) HIV-1 selection by epidermal dendritic cells during transmission across human skin. J Exp Med 187(10):1623–1631

    PubMed  CAS  Google Scholar 

  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil JG, Francis DP, Stablein D, Birx DL, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb ML, Michael NL, Kunasol P, Kim JH (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361(23):2209–2220

    PubMed  CAS  Google Scholar 

  • Reynolds MR, Rakasz E, Skinner PJ, White C, Abel K, Ma ZM, Compton L, Napoe G, Wilson N, Miller CJ, Haase A, Watkins DI (2005) CD8+ T-lymphocyte response to major immunodominant epitopes after vaginal exposure to simian immunodeficiency virus: too late and too little. J Virol 79(14):9228–9235

    PubMed  CAS  Google Scholar 

  • Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BC, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832

    PubMed  CAS  Google Scholar 

  • Rich KA, Burkett C, Webster P (2003) Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5(7):455–468

    PubMed  CAS  Google Scholar 

  • Roberts M, Gompels M, Pinching AJ, Knight SC (1994) Dendritic cells from HIV-1 infected individuals show reduced capacity to stimulate autologous T-cell proliferation. Immunol Lett 43(1–2):39–43

    PubMed  CAS  Google Scholar 

  • Saidi H, Melki MT, Gougeon ML (2008) HMGB1-dependent triggering of HIV-1 replication and persistence in dendritic cells as a consequence of NK-DC cross-talk. PLoS One 3(10):e3601

    PubMed  Google Scholar 

  • Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182(2):389–400

    PubMed  CAS  Google Scholar 

  • Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430(6999):569–573

    PubMed  CAS  Google Scholar 

  • Schmitt D, Dezutter-Dambuyant C (1994) Epidermal and mucosal dendritic cells and HIV1 infection. Pathol Res Pract 190(9–10):955–959

    PubMed  CAS  Google Scholar 

  • Sewell AK, Price DA (2001) Dendritic cells and transmission of HIV-1. Trends Immunol 22(4):173–175

    PubMed  CAS  Google Scholar 

  • Shan M, Klasse PJ, Banerjee K, Dey AK, Iyer SP, Dionisio R, Charles D, Campbell-Gardener L, Olson WC, Sanders RW, Moore JP (2007) HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog 3(11):e169

    PubMed  Google Scholar 

  • Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650

    PubMed  CAS  Google Scholar 

  • Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9(11):1404–1407

    PubMed  CAS  Google Scholar 

  • Shi Y, Brandin E, Vincic E, Jansson M, Blaxhult A, Gyllensten K, Moberg L, Brostrom C, Fenyo EM, Albert J (2005) Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation. J Gen Virol 86(Pt 12):3385–3396

    PubMed  CAS  Google Scholar 

  • Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835–1837

    PubMed  CAS  Google Scholar 

  • Sierra-Filardi E, Estecha A, Samaniego R, Fernandez-Ruiz E, Colmenares M, Sanchez-Mateos P, Steinman RM, Granelli-Piperno A, Corbi AL (2010) Epitope mapping on the dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) pathogen-attachment factor. Mol Immunol 47(4):840–848

    PubMed  CAS  Google Scholar 

  • Smed-Sorensen A, Lore K, Vasudevan J, Louder MK, Andersson J, Mascola JR, Spetz AL, Koup RA (2005) Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J Virol 79(14):8861–8869

    PubMed  Google Scholar 

  • Soto-Ramirez LE, Renjifo B, McLane MF, Marlink R, O’Hara C, Sutthent R, Wasi C, Vithayasai P, Vithayasai V, Apichartpiyakul C, Auewarakul P, Pena Cruz V, Chui DS, Osathanondh R, Mayer K, Lee TH, Essex M (1996) HIV-1 Langerhans’ cell tropism associated with heterosexual transmission of HIV. Science 271(5253):1291–1293

    PubMed  CAS  Google Scholar 

  • Spira AI, Marx PA, Patterson BK, Mahoney J, Koup RA, Wolinsky SM, Ho DD (1996) Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med 183(1):215–225

    PubMed  CAS  Google Scholar 

  • Stacey AR, Norris PJ, Qin L, Haygreen EA, Taylor E, Heitman J, Lebedeva M, DeCamp A, Li D, Grove D, Self SG, Borrow P (2009) Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol 83(8):3719–3733

    PubMed  CAS  Google Scholar 

  • Stahl PD, Ezekowitz RA (1998) The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10(1):50–55

    PubMed  CAS  Google Scholar 

  • Stalder R, Blanchet F, Mangeat B, Piguet V (2010) Arsenic modulates APOBEC3G-mediated restriction to HIV-1 infection in myeloid dendritic cells. J Leukoc Biol 88(6):1251–1258

    PubMed  CAS  Google Scholar 

  • Steinman RM (1996a) The dendritic cell in clinical immunology: the AIDS example. J Lab Clin Med 128(6):531–535

    PubMed  CAS  Google Scholar 

  • Steinman RM (1996b) Dendritic cells and immune-based therapies. Exp Hematol 24(8):859–862

    PubMed  CAS  Google Scholar 

  • Steinman RM (2001) Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J Med 68(3):160–166

    PubMed  CAS  Google Scholar 

  • Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22

    PubMed  CAS  Google Scholar 

  • Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162

    PubMed  CAS  Google Scholar 

  • Steinman R, Hoffman L, Pope M (1995) Maturation and migration of cutaneous dendritic cells. J Invest Dermatol 105(1 Suppl):2S–7S

    PubMed  CAS  Google Scholar 

  • Steinman RM, Granelli-Piperno A, Pope M, Trumpfheller C, Ignatius R, Arrode G, Racz P, Tenner-Racz K (2003) The interaction of immunodeficiency viruses with dendritic cells. Curr Top Microbiol Immunol 276:1–30

    PubMed  CAS  Google Scholar 

  • Stopak K, de Noronha C, Yonemoto W, Greene WC (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12(3):591–601

    PubMed  CAS  Google Scholar 

  • Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427(6977):848–853

    PubMed  CAS  Google Scholar 

  • Swiecki M, Colonna M (2010) Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev 234(1):142–162

    PubMed  CAS  Google Scholar 

  • Swiecki M, Wang Y, Vermi W, Gilfillan S, Schreiber RD, Colonna M (2011) Type I interferon negatively controls plasmacytoid dendritic cell numbers in vivo. J Exp Med 208(12):2367–2374

    PubMed  CAS  Google Scholar 

  • Tacchetti C, Favre A, Moresco L, Meszaros P, Luzzi P, Truini M, Rizzo F, Grossi CE, Ciccone E (1997) HIV is trapped and masked in the cytoplasm of lymph node follicular dendritic cells. Am J Pathol 150(2):533–542

    PubMed  CAS  Google Scholar 

  • Teleshova N, Frank I, Pope M (2003) Immunodeficiency virus exploitation of dendritic cells in the early steps of infection. J Leukoc Biol 74(5):683–690

    PubMed  CAS  Google Scholar 

  • Teleshova N, Chang T, Profy A, Klotman ME (2008) Inhibitory effect of PRO 2000, a candidate microbicide, on dendritic cell-mediated human immunodeficiency virus transfer. Antimicrob Agents Chemother 52(5):1751–1758

    PubMed  CAS  Google Scholar 

  • Torrelles JB, Azad AK, Schlesinger LS (2006) Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J Immunol 177(3):1805–1816

    PubMed  CAS  Google Scholar 

  • Trabattoni D, Saresella M, Biasin M, Boasso A, Piacentini L, Ferrante P, Dong H, Maserati R, Shearer GM, Chen L, Clerici M (2003) B7-H1 is up-regulated in HIV infection and is a novel surrogate marker of disease progression. Blood 101(7):2514–2520

    PubMed  CAS  Google Scholar 

  • Trapp S, Derby NR, Singer R, Shaw A, Williams VG, Turville SG, Bess JW Jr, Lifson JD, Robbiani M (2009) Double-stranded RNA analog poly(I:C) inhibits human immunodeficiency virus amplification in dendritic cells via type I interferon-mediated activation of APOBEC3G. J Virol 83(2):884–895

    PubMed  CAS  Google Scholar 

  • Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, Boulassel MR, Delwart E, Sepulveda H, Balderas RS, Routy JP, Haddad EK, Sekaly RP (2006) Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 12(10):1198–1202

    PubMed  CAS  Google Scholar 

  • Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I (2003) Activation of lysosomal function during dendritic cell maturation. Science 299(5611):1400–1403

    PubMed  CAS  Google Scholar 

  • Trumpfheller C, Park CG, Finke J, Steinman RM, Granelli-Piperno A (2003) Cell type-dependent retention and transmission of HIV-1 by DC-SIGN. Int Immunol 15(2):289–298

    PubMed  CAS  Google Scholar 

  • Trumpfheller C, Finke JS, Lopez CB, Moran TM, Moltedo B, Soares H, Huang Y, Schlesinger SJ, Park CG, Nussenzweig MC, Granelli-Piperno A, Steinman RM (2006) Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J Exp Med 203(3):607–617

    PubMed  CAS  Google Scholar 

  • Trumpfheller C, Caskey M, Nchinda G, Longhi MP, Mizenina O, Huang Y, Schlesinger SJ, Colonna M, Steinman RM (2008) The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci U S A 105(7):2574–2579

    PubMed  CAS  Google Scholar 

  • Tschachler E, Groh V, Popovic M, Mann DL, Konrad K, Safai B, Eron L, diMarzo Veronese F, Wolff K, Stingl G (1987) Epidermal Langerhans cells—a target for HTLV-III/LAV infection. J Invest Dermatol 88(2):233–237

    PubMed  CAS  Google Scholar 

  • Tsegaye TS, Pohlmann S (2010) The multiple facets of HIV attachment to dendritic cell lectins. Cell Microbiol 12(11):1553–1561

    PubMed  CAS  Google Scholar 

  • Tsunetsugu-Yokota Y, Akagawa K, Kimoto H, Suzuki K, Iwasaki M, Yasuda S, Hausser G, Hultgren C, Meyerhans A, Takemori T (1995) Monocyte-derived cultured dendritic cells are susceptible to human immunodeficiency virus infection and transmit virus to resting T cells in the process of nominal antigen presentation. J Virol 69(7):4544–4547

    PubMed  CAS  Google Scholar 

  • Tsunetsugu-Yokota Y, Yasuda S, Sugimoto A, Yagi T, Azuma M, Yagita H, Akagawa K, Takemori T (1997) Efficient virus transmission from dendritic cells to CD4+ T cells in response to antigen depends on close contact through adhesion molecules. Virology 239(2):259–268

    PubMed  CAS  Google Scholar 

  • Turville SG, Arthos J, Donald KM, Lynch G, Naif H, Clark G, Hart D, Cunningham AL (2001) HIV gp120 receptors on human dendritic cells. Blood 98(8):2482–2488

    PubMed  CAS  Google Scholar 

  • Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, Doms RW, Cunningham AL (2002) Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3(10):975–983

    PubMed  CAS  Google Scholar 

  • Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M, Dable J, Stossel H, Romani N, Piatak M Jr, Lifson JD, Pope M, Cunningham AL (2004) Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103(6):2170–2179

    PubMed  CAS  Google Scholar 

  • Turville SG, Peretti S, Pope M (2006) Lymphocyte-dendritic cell interactions and mucosal acquisition of SIV/HIV infection. Curr Opin HIV AIDS 1(1):3–9

    PubMed  Google Scholar 

  • Turville SG, Aravantinou M, Stossel H, Romani N, Robbiani M (2008) Resolution of de novo HIV production and trafficking in immature dendritic cells. Nat Methods 5(1):75–85

    PubMed  CAS  Google Scholar 

  • Valladeau J, Duvert-Frances V, Pin JJ, Dezutter-Dambuyant C, Vincent C, Massacrier C, Vincent J, Yoneda K, Banchereau J, Caux C, Davoust J, Saeland S (1999) The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur J Immunol 29(9):2695–2704

    PubMed  CAS  Google Scholar 

  • Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12(1):71–81

    PubMed  CAS  Google Scholar 

  • van der Vlist M, Geijtenbeek TB (2010) Langerin functions as an antiviral receptor on Langerhans cells. Immunol Cell Biol 88(4):410–415

    PubMed  Google Scholar 

  • van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9(6):593–601

    PubMed  Google Scholar 

  • van Liempt E, Bank CM, Mehta P, Garcia-Vallejo JJ, Kawar ZS, Geyer R, Alvarez RA, Cummings RD, Kooyk Y, van Die I (2006) Specificity of DC-SIGN for mannose- and fucose-containing glycans. FEBS Lett 580(26):6123–6131

    PubMed  Google Scholar 

  • van Liempt E, van Vliet SJ, Engering A, Garcia Vallejo JJ, Bank CM, Sanchez-Hernandez M, van Kooyk Y, van Die I (2007) Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol Immunol 44(10):2605–2615

    PubMed  Google Scholar 

  • van Vliet SJ, den Dunnen J, Gringhuis SI, Geijtenbeek TB, van Kooyk Y (2007) Innate signaling and regulation of dendritic cell immunity. Curr Opin Immunol 19(4):435–440

    PubMed  Google Scholar 

  • Virgin HW, Walker BD (2010) Immunology and the elusive AIDS vaccine. Nature 464(7286):224–231

    PubMed  CAS  Google Scholar 

  • Wang JH, Janas AM, Olson WJ, KewalRamani VN, Wu L (2007a) CD4 coexpression regulates DC-SIGN-mediated transmission of human immunodeficiency virus type 1. J Virol 81(5):2497–2507

    PubMed  CAS  Google Scholar 

  • Wang JH, Janas AM, Olson WJ, Wu L (2007b) Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells. J Virol 81(17):8933–8943

    PubMed  CAS  Google Scholar 

  • Wang FX, Huang J, Zhang H, Ma X (2008a) APOBEC3G upregulation by alpha interferon restricts human immunodeficiency virus type 1 infection in human peripheral plasmacytoid dendritic cells. J Gen Virol 89(Pt 3):722–730

    PubMed  CAS  Google Scholar 

  • Wang JH, Wells C, Wu L (2008b) Macropinocytosis and cytoskeleton contribute to dendritic cell-mediated HIV-1 transmission to CD4+ T cells. Virology 381(1):143–154

    PubMed  CAS  Google Scholar 

  • Wang X, Zhang Z, Zhang S, Fu J, Yao J, Jiao Y, Wu H, Wang FS (2008c) B7-H1 up-regulation impairs myeloid DC and correlates with disease progression in chronic HIV-1 infection. Eur J Immunol 38(11):3226–3236

    PubMed  CAS  Google Scholar 

  • Watts C (1997) Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol 15:821–850

    PubMed  CAS  Google Scholar 

  • Weis WI, Taylor ME, Drickamer K (1998) The C-type lectin superfamily in the immune system. Immunol Rev 163:19–34

    PubMed  CAS  Google Scholar 

  • Weissman D, Li Y, Orenstein JM, Fauci AS (1995) Both a precursor and a mature population of dendritic cells can bind HIV. However, only the mature population that expresses CD80 can pass infection to unstimulated CD4+ T cells. J Immunol 155(8):4111–4117

    PubMed  CAS  Google Scholar 

  • Weissman D, Barker TD, Fauci AS (1996) The efficiency of acute infection of CD4+ T cells is markedly enhanced in the setting of antigen-specific immune activation. J Exp Med 183(2):687–692

    PubMed  CAS  Google Scholar 

  • Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103(3):738–743

    PubMed  CAS  Google Scholar 

  • Wilflingseder D, Banki Z, Garcia E, Pruenster M, Pfister G, Muellauer B, Nikolic DS, Gassner C, Ammann CG, Dierich MP, Piguet V, Stoiber H (2007) IgG opsonization of HIV impedes provirus formation in and infection of dendritic cells and subsequent long-term transfer to T cells. J Immunol 178(12):7840–7848

    PubMed  CAS  Google Scholar 

  • Wu L, KewalRamani VN (2006) Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 6(11):859–868

    PubMed  CAS  Google Scholar 

  • Wu L, Martin TD, Carrington M, KewalRamani VN (2004) Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology 318(1):17–23

    PubMed  CAS  Google Scholar 

  • Yonkers NL, Rodriguez B, Asaad R, Lederman MM, Anthony DD (2011) Systemic immune activation in HIV infection is associated with decreased MDC responsiveness to TLR ligand and inability to activate naive CD4 T-cells. PLoS One 6(9):e23884

    PubMed  CAS  Google Scholar 

  • Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog 4(8):e1000134

    PubMed  Google Scholar 

  • Zaitseva M, Blauvelt A, Lee S, Lapham CK, Klaus-Kovtun V, Mostowski H, Manischewitz J, Golding H (1997) Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nat Med 3(12):1369–1375

    PubMed  CAS  Google Scholar 

  • Zhou D, Spector SA (2008) Human immunodeficiency virus type-1 infection inhibits autophagy. AIDS 22(6):695–699

    PubMed  CAS  Google Scholar 

  • Zoeteweij JP, Blauvelt A (1998) HIV-dendritic cell interactions promote efficient viral infection of T cells. J Biomed Sci 5(4):253–259

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This book chapter was supported by Cardiff University and by a grant from the Gates Foundation to V.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Piguet M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ahmed, Z., Czubala, M., Blanchet, F., Piguet, V. (2012). HIV Impairment of Immune Responses in Dendritic Cells. In: Wu, L., Schwartz, O. (eds) HIV Interactions with Dendritic Cells. Advances in Experimental Medicine and Biology, vol 762. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4433-6_8

Download citation

Publish with us

Policies and ethics