Skip to main content

Why Population Density Matters

  • Chapter
  • First Online:
  • 993 Accesses

Abstract

After having traveled from ecology to physiology, endocrinology, metabolism, and immunology, we will return once again to the basic drawing board of ecology. Ecology and evolution are the basic foundations of all these arguments, and one should not lose touch with the foundation at any time. The dynamics of populations is a very fundamental process of ecology and evolution, and it is certainly very important in physiology and medicine too, but its importance is not appreciated sufficiently in these areas of science. Population level processes and individual’s behavior and physiology have subtle but far-reaching influences on each other, but this is an area that has not yet received sufficient attention. Ecologists have realized the importance of it [1–3] to some extent, but physiologists have not paid sufficient attention to it. I would attempt to make a case below for why and how population level processes are bound to affect individual behavior and physiology and why physiology and medicine need to understand population level processes. If I am able to convince the reader about this point, it would logically follow that today’s unprecedented density of human population is a supernormal stimulus that could change human behavior as well as physiology substantially, ultimately having some consequences for health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sutherland W (1995) From individual behaviour to population ecology. Oxford University Press, Oxford

    Google Scholar 

  2. Matapurkar AK, Watve MG (1997) Altruist cheater dynamics in Dictyostelium: aggregated distribution gives stable oscillations. Am Nat 150:790–797

    PubMed  CAS  Google Scholar 

  3. Levin PS, Tolimieri N, Nicklin M, Sale PF (2000) Integrating individual behavior and population ­ecology: the potential for habitat-dependent population regulation in a reef fish. Behav Ecol 11: 565–571

    Google Scholar 

  4. Tsoularis A, Wallace J (2002) Analysis of logistic growth models. Math Biosci 179:21–55

    PubMed  CAS  Google Scholar 

  5. Bewley R (1988) A flexible logistic growth model with applications in telecommunications. Int J Forecast 4:177–192

    Google Scholar 

  6. Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    PubMed  CAS  Google Scholar 

  7. Weisstein EW. Logistic equation – from Wolfram MathWorld. http://mathworld.wolfram.com/LogisticEquation.html

  8. Krebs C (2009) Ecology: the experimental analysis of distribution and abundance. NHBS Benjamin-Cummings

    Google Scholar 

  9. Parry GD (1981) The meanings of r- and K-selection. Oecologia 48:260–264

    Google Scholar 

  10. Pianka ER (1970) On r- and K-selecton. Am Nat 104:592–597

    Google Scholar 

  11. MacArthur R, Wilson E (2001) The theory of Island biogeography. Princeton University Press, Princeton

    Google Scholar 

  12. Watve MG et al (2000) The ‘K’ selected oligophilic bacteria: a key to uncultured diversity? Curr Sci 78:1535–1542

    Google Scholar 

  13. Richardson BJ (1975) r and K selection in kangaroos. Nature 255:323–324

    PubMed  CAS  Google Scholar 

  14. Sinervo B, Svensson E, Comendant T (2000) Density cycles and an offspring quantity and quality game driven by natural selection. Nature 406: 985–988

    PubMed  CAS  Google Scholar 

  15. Gillespie DOS, Russell AF, Lummaa V (2008) When fecundity does not equal fitness: evidence of an offspring quantity versus quality trade-off in pre-industrial humans. Proc Biol Sci 275:713–722

    PubMed  Google Scholar 

  16. Chisholm JS, Burbank VK (2001) Evolution and inequality. Int J Epidemiol 30:206–211

    PubMed  CAS  Google Scholar 

  17. Bruce HM (1963) Olfactory block to pregnancy among grouped mice. J Reprod Fertil 6:451–460

    PubMed  CAS  Google Scholar 

  18. Morris EW (1977) Mobility, fertility, and residential crowding. Sociol Soc Res 61:363–379

    Google Scholar 

  19. Felson M, Solaun M (1975) The fertility-inhibiting effect of crowded apartment living in a tight housing market. Am J Sociol 80:1410–1427

    PubMed  CAS  Google Scholar 

  20. Christian JJ, Lemunyan CD (1958) Adverse effects of crowding on lactation and reproduction of mice and two generations of their progeny. Endocrinology 63:517–529

    PubMed  CAS  Google Scholar 

  21. Goulden CE, Hornig LL (1980) Population oscillations and energy reserves in planktonic cladocera and their consequences to competition. Proc Natl Acad Sci U S A 77:1716–1720

    PubMed  CAS  Google Scholar 

  22. Norman RJ, Clark AM (1998) Obesity and reproductive disorders: a review. Reprod Fertil Dev 10:55–63

    PubMed  CAS  Google Scholar 

  23. Pasquali R, Gambineri A, Pagotto U (2006) Review article: the impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG Int J Obstet Gynaecol 113:1148–1159

    CAS  Google Scholar 

  24. Corbett SJ, McMichael AJ, Prentice AM (2009) Type 2 diabetes, cardiovascular disease, and the evolutionary paradox of the polycystic ovary syndrome: a fertility first hypothesis. Am J Hum Biol 21:587–598

    PubMed  Google Scholar 

  25. Ibáñez L et al (2001) Sensitization to insulin induces ovulation in nonobese adolescents with anovulatory hyperandrogenism. J Clin Endocrinol Metab 86:3595–3598

    PubMed  Google Scholar 

  26. Powers RW, Chambers C, Larsen WJ (1996) Diabetes-mediated decreases in ovarian superoxide dismutase activity are related to blood-follicle barrier and ovulation defects. Endocrinology 137:3101–3110

    PubMed  CAS  Google Scholar 

  27. Altay B, Çetinkalp Ş, Do-anavşargil B, Hekimgil M, Semerci B (2003) Streptozotocin-induced diabetic effects on spermatogenesis with proliferative cell nuclear antigen immunostaining of adult rat testis. Fertil Steril 80:828–831

    PubMed  Google Scholar 

  28. Cameron DF, Murray FT, Drylie DD (1985) Interstitial compartment pathology and spermatogenic disruption in testes from impotent diabetic men. Anat Rec 213:53–62

    PubMed  CAS  Google Scholar 

  29. Arikawe AP, Daramola AO, Odofin AO, Obika LFO (2006) Alloxan-induced and insulin-resistant diabetes mellitus affect semen parameters and impair spermatogenesis in male rats/diabète sucré provoqué par l’alloxane aussi Bien que le diabète insulinorésistant influent sur les paramètres du sperme et entravent la spermatogenèse chez les rats mâles. Afr J Reprod Health 10:106–113

    PubMed  CAS  Google Scholar 

  30. Doruk H et al (2005) Effect of diabetes mellitus on female sexual function and risk factors. Syst Biol Reprod Med 51:1–6

    CAS  Google Scholar 

  31. Rubin A, Babbott D (1958) Impotence and diabetes mellitus. J Am Med Assoc 168:498–500

    PubMed  CAS  Google Scholar 

  32. Ellenberg M (1971) Impotence in diabetes: the neurologic factor. Ann Intern Med 75:213–219

    PubMed  CAS  Google Scholar 

  33. Malavige LS et al (2008) Erectile dysfunction among men with diabetes is strongly associated with premature ejaculation and reduced libido. J Sex Med 5:2125–2134

    PubMed  Google Scholar 

  34. Nakanishi S, Yamane K, Kamei N, Okubo M, Kohno N (2004) Erectile dysfunction is strongly linked with decreased libido in diabetic men. Aging Male 7:113–119

    PubMed  CAS  Google Scholar 

  35. Lemone P (1996) The physical effects of diabetes on sexuality in women. Diabetes Educ 22:361–366

    PubMed  CAS  Google Scholar 

  36. Neel JV (1999) Diabetes mellitus: a ‘thrifty’ genotype rendered detrimental by ‘progress’? 1962. Bull World Health Organ 77:694–703, discussion 692–693

    PubMed  CAS  Google Scholar 

  37. Schaefer-Graf UM et al (2003) Determinants of fetal growth at different periods of pregnancies complicated by gestational diabetes mellitus or impaired glucose tolerance. Diabetes Care 26:193–198

    PubMed  Google Scholar 

  38. Moore TR (1997) Fetal growth in diabetic pregnancy. Clin Obstet Gynecol 40:771–786

    PubMed  CAS  Google Scholar 

  39. Xu T et al (2002) Effect of surgical castration on risk factors for arteriosclerosis of patients with prostate cancer. Chin Med J 115:1336–1340

    PubMed  Google Scholar 

  40. Holmäng A, Björntorp P (1992) The effects of testosterone on insulin sensitivity in male rats. Acta Physiol Scand 146:505–510

    PubMed  Google Scholar 

  41. Godsland IF et al (1992) Insulin resistance, secretion, and metabolism in users of oral contraceptives. J Clin Endocrinol Metab 74:64–70

    PubMed  CAS  Google Scholar 

  42. Diamanti-Kandarakis E, Baillargeon J-P, Iuorno MJ, Jakubowicz DJ, Nestler JE (2003) A modern medical quandary: polycystic ovary syndrome, insulin resistance, and oral contraceptive pills. J Clin Endocrinol Metab 88:1927–1932

    PubMed  CAS  Google Scholar 

  43. Alexander N, Clarkson T (1978) Vasectomy increases the severity of diet-induced atherosclerosis in Macaca fascicularis. Science 201:538–541

    PubMed  CAS  Google Scholar 

  44. Clarkson TB, Alexander NJ (1980) Long-term vasectomy: effects on the occurrence and extent of atherosclerosis in rhesus monkeys. J Clin Invest 65:15–25

    PubMed  CAS  Google Scholar 

  45. Clarkson TB, Lombardi DM, Alexander NJ, Lewis JC (1986) Diet and vasectomy: effects on atherogenesis in cynomolgus macaques. Exp Mol Pathol 44:29–49

    PubMed  CAS  Google Scholar 

  46. Manson JE et al (1999) Vasectomy and subsequent cardiovascular disease in US physicians. Contraception 59:181–186

    PubMed  CAS  Google Scholar 

  47. Mullooly JP, Wiest WM, Alexander NJ, Greenlicki MR, Fulgham DL (1993) Vasectomy, serum assays, and coronary heart disease symptoms and risk factors. J Clin Epidemiol 46:101–109

    PubMed  CAS  Google Scholar 

  48. Lu C-C et al (2009) Association of glycemic control with risk of erectile dysfunction in men with type 2 diabetes. J Sex Med 6:1719–1728

    PubMed  CAS  Google Scholar 

  49. Awad H, Salem A, Gadalla A, El Wafa NA, Mohamed OA (2010) Erectile function in men with diabetes type 2: correlation with glycemic control. Int J Impot Res 22:36–39

    PubMed  CAS  Google Scholar 

  50. Hidalgo-Tamola J, Chitaley K (2009) Review. J Sex Med 6:916–926

    PubMed  CAS  Google Scholar 

  51. Yaman O, Akand M, Gursoy A, Erdogan MF, Anafarta K (2006) The effect of diabetes mellitus treatment and good glycemic control on the erectile function in men with diabetes mellitus-induced erectile dysfunction: a pilot study. J Sex Med 3:344–348

    PubMed  Google Scholar 

  52. Ayala JE et al (2007) Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes 56:1025–1033

    PubMed  CAS  Google Scholar 

  53. Mammi C et al (2011) Sildenafil reduces insulin-resistance in human endothelial cells. PLoS One 6:e14542

    PubMed  CAS  Google Scholar 

  54. De Young L, Chung E, Kovac JR, Romano W, Brock GB (2012) Daily use of sildenafil improves endothelial function in men with type 2 diabetes. J Androl 33:176–180

    Google Scholar 

  55. Sairam MR, Wang M, Danilovich N, Javeshghani D, Maysinger D (2006) Early obesity and age-related mimicry of metabolic syndrome in female mice with sex hormonal imbalances. Obesity (Silver Spring) 14:1142–1154

    CAS  Google Scholar 

  56. López-López R, Huerta R, Malacara JM (1999) Age at menopause in women with type 2 diabetes mellitus. Menopause 6:174–178

    PubMed  Google Scholar 

  57. Rosano GMC, Vitale C, Marazzi G, Volterrani M (2007) Menopause and cardiovascular disease: the evidence. Climacteric 10:19–24

    PubMed  CAS  Google Scholar 

  58. Catalano PM, Thomas AJ, Huston LP, Fung CM (1998) Effect of maternal metabolism on fetal growth and body composition. Diabetes Care 21(Suppl 2):B85–B90

    PubMed  Google Scholar 

  59. Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92

    PubMed  CAS  Google Scholar 

  60. Cameron EZ (2004) Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: evidence for a mechanism. Proc Biol Sci 271:1723–1728

    PubMed  Google Scholar 

  61. Cameron EZ, Lemons PR, Bateman PW, Bennett NC (2008) Experimental alteration of litter sex ratios in a mammal. Proc Royal Soc B 275:323–327

    Google Scholar 

  62. Mathews F, Johnson PJ, Neil A (2008) You are what your mother eats: evidence for maternal preconception diet influencing foetal sex in humans. Proc Biol Sci 275:1661–1668

    PubMed  Google Scholar 

  63. Larson MA, Kimura K, Kubisch HM, Roberts RM (2001) Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-τ. Proc Natl Acad Sci USA 98:9677–9682

    PubMed  CAS  Google Scholar 

  64. Williams RJ, Gloster SP (1992) Human sex ratio as it relates to caloric availability. Soc Biol 39:285–291

    PubMed  CAS  Google Scholar 

  65. Houde AA, Murphy BD, Mathieu O, Bordignon V, Palin MF (2008) Characterization of swine adiponectin and adiponectin receptor polymorphisms and their association with reproductive traits. Anim Genet 39:249–257

    PubMed  CAS  Google Scholar 

  66. Chansomboon C, Elzo MA, Suwanasopee T, Koonawootrittriron S (2009) Genotypic polymorphisms for adiponectin and follicle stimulating hormone receptor genes related to weaning-to-first service interval and litter traits in a swine population in northern Thailand. Thai J Agric Sci 42:237–245

    Google Scholar 

  67. Ledoux S et al (2006) Adiponectin induces periovulatory changes in ovarian follicular cells. Endocrinology 147:5178–5186

    PubMed  CAS  Google Scholar 

  68. Chappaz E et al (2008) Adiponectin enhances in vitro development of swine embryos. Domest Anim Endocrinol 35:198–207

    PubMed  CAS  Google Scholar 

  69. Čikoš Š et al (2010) Expression of adiponectin receptors and effects of adiponectin isoforms in mouse preimplantation embryos. Hum Reprod 25: 2247–2255

    PubMed  Google Scholar 

  70. Chappaz E (2006) Influence of adiponectin on porcine oogenesis. University of McGill, http://digitool.Library.McGill.CA:80/R/-?func=dbin-jump-full&objectid=99329&silolibrary=GEN01

  71. Groth SW (2010) Adiponectin and polycystic ovary syndrome. Biol Res Nurs 12:62–72

    PubMed  CAS  Google Scholar 

  72. Sepilian V, Nagamani M (2005) Adiponectin levels in women with polycystic ovary syndrome and severe insulin resistance. J Soc Gynecol Investig 12:129–134

    PubMed  CAS  Google Scholar 

  73. Carmina E et al (2005) Evidence for altered adipocyte function in polycystic ovary syndrome. Eur J Endocrinol 152:389–394

    PubMed  CAS  Google Scholar 

  74. Panidis D et al (2003) Serum adiponectin levels in women with polycystic ovary syndrome. Hum Reprod 18:1790–1796

    PubMed  CAS  Google Scholar 

  75. Ghazanfari S, Nobari K, Yamauchi T (2011) Adiponectin: a novel hormone in birds. Asian J Anim Vet Adv 6:429–439

    CAS  Google Scholar 

  76. Ocón-Grove OM, Krzysik-Walker SM, Maddineni SR, Hendricks GL, Ramachandran R (2008) Adiponectin and its receptors are expressed in the chicken testis: influence of sexual maturation on testicular ADIPOR1 and ADIPOR2 mRNA abundance. Reproduction 136:627–638

    PubMed  Google Scholar 

  77. Caminos JE et al (2008) Novel expression and direct effects of adiponectin in the rat testis. Endocrinology 149:3390–3402

    PubMed  CAS  Google Scholar 

  78. Shang L et al (2009) Relationship of adiponectin and visfatin with fetus intrauterine growth. Zhonghua Fu Chan Ke Za Zhi 44:246–248

    PubMed  CAS  Google Scholar 

  79. Nanda S, Akolekar R, Sarquis R, Mosconi AP, Nicolaides KH (2011) Maternal serum adiponectin at 11 to 13 weeks of gestation in the prediction of macrosomia. Prenat Diagn 31:479–483

    PubMed  CAS  Google Scholar 

  80. Schumacher MA (2009) Placental signaling mechanisms linking maternal obesity, high-fat diet, and adiponectin levels during pregnancy to fetal overgrowth. MS thesis, University of Cincinnati

    Google Scholar 

  81. Caminos JE et al (2005) Expression and regulation of adiponectin and receptor in human and rat placenta. J Clin Endocrinol Metab 90:4276–4286

    PubMed  CAS  Google Scholar 

  82. Jansson N, Greenwood SL, Johansson BR, Powell TL, Jansson T (2003) Leptin stimulates the activity of the system A amino acid transporter in human placental villous fragments. J Clin Endocrinol Metab 88:1205–1211

    PubMed  CAS  Google Scholar 

  83. Sladek C (2008) The effects of human chorionic somatomammotropin and estradiol on gluconeogenesis and hepatic glycogen formation in the rat. Horm Metab Res 7:50–54

    Google Scholar 

  84. Martin LJ et al (2006) Adiponectin is present in human milk and is associated with maternal factors. Am J Clin Nutr 83:1106–1111

    PubMed  CAS  Google Scholar 

  85. Connor EE et al (2008) Effects of increased milking frequency on gene expression in the bovine mammary gland. BMC Genomics 9:362

    PubMed  Google Scholar 

  86. Yong LC et al (1994) Relationship between dietary intake and plasma concentrations of carotenoids in premenopausal women: application of the USDA-NCI carotenoid food-composition database. Am J Clin Nutr 60:223–230

    PubMed  CAS  Google Scholar 

  87. Feng Z et al (1995) Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J Cell Biol 131:1095–1103

    PubMed  CAS  Google Scholar 

  88. Berg MN, Dharmarajan AM, Waddell BJ (2002) Glucocorticoids and progesterone prevent apoptosis in the lactating rat mammary gland. Endocrinology 143:222–227

    PubMed  CAS  Google Scholar 

  89. Terry PM, Banerjee MR, Lui RM (1977) Hormone-inducible casein messenger RNA in a serum-free organ culture of whole mammary gland. Proc Natl Acad Sci USA 74:2441–2445

    PubMed  CAS  Google Scholar 

  90. Devinoy E, Houdebine L-M, Delouis C (1978) Role of prolactin and glucocorticoids in the expression of casein genes in rabbit mammary gland organ culture. Quantification of casein mRNA. Biochim Biophys Acta 517:360–366

    PubMed  CAS  Google Scholar 

  91. Houdebine L-M, Devinoy E, Delouis C (1978) Stabilization of casein mRNA by prolactin and glucocorticoids. Biochimie 60:57–63

    PubMed  CAS  Google Scholar 

  92. Linzell JL (1967) The effect of infusions of glucose, acetate and amino acids in hourly milk yield in fed, fasted and insulin-treated goats. J Physiol 190:347–357

    PubMed  CAS  Google Scholar 

  93. Sullivan EC, Hinde K, Mendoza SP, Capitanio JP (2011) Cortisol concentrations in the milk of rhesus monkey mothers are associated with confident temperament in sons, but not daughters. Dev Psychobiol 53:96–104

    PubMed  CAS  Google Scholar 

  94. Peters RH (1986) The ecological implications of body size. Cambridge University Press, Cambridge

    Google Scholar 

  95. Calder WA (1996) Size, function, and life history. Courier Dover Publications, Mineola, NY

    Google Scholar 

  96. Klöting N, Blüher M (2005) Extended longevity and insulin signaling in adipose tissue. Exp Gerontol 40:878–883

    PubMed  Google Scholar 

  97. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    PubMed  CAS  Google Scholar 

  98. Unger RH (2006) Klotho-induced insulin resistance: a blessing in disguise? Nat Med 12:56–57

    PubMed  CAS  Google Scholar 

  99. Blüher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    PubMed  Google Scholar 

  100. Bartke A, Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63:189–225

    PubMed  CAS  Google Scholar 

  101. Rushton JP (1996) Race, genetics, and human reproductive strategies. Genet Soc Gen Psychol Monogr 122:21–53

    PubMed  CAS  Google Scholar 

  102. Southwick CH (1967) An experimental study of intragroup agonistic behavior in rhesus monkeys (macaca mulatta). Behaviour 28:182–209

    PubMed  CAS  Google Scholar 

  103. Alexander BK, Roth EM (1971) The effects of acute crowding on aggressive behavior of Japanese monkeys. Behaviour 39:73–90

    PubMed  CAS  Google Scholar 

  104. Nijman HLI, Rector G (1999) Crowding and aggression on inpatient psychiatric wards. Psychiatr Serv 50:830–831

    PubMed  CAS  Google Scholar 

  105. Ng B, Kumar S, Ranclaud M, Robinson E (2001) Ward crowding and incidents of violence on an acute psychiatric inpatient unit. Psychiatr Serv 52:521–525

    PubMed  CAS  Google Scholar 

  106. Owen C, Tarantello C, Jones M, Tennant C (1998) Violence and aggression in psychiatric units. Psychiatr Serv 49:1452–1457

    PubMed  CAS  Google Scholar 

  107. Calhoun JB (1973) Death squared. Proc R Soc Med 66:80–88

    PubMed  CAS  Google Scholar 

  108. Anderson BV, Elton RH (1977) The social behavior of a group of baboons (Papio anubis) under artificial crowding. Primates 18:225–234

    Google Scholar 

  109. Hazlett BA (1968) Effects of crowding on the agonistic behavior of the hermit crab pagurus bernhardus. Ecology 49:573–575

    Google Scholar 

  110. Wolkenten ML, Davis JM, Gong ML, Waal FBM (2006) Coping with acute crowding by cebus apella. Int J Primatol 27:1241–1256

    Google Scholar 

  111. Aureli F, De Waal FBM (1997) Inhibition of social behavior in chimpanzees under high-density conditions. Am J Primatol 41:213–228

    PubMed  CAS  Google Scholar 

  112. Bercovitch FB, Lebrón MR (1991) Impact of artificial fissioning and social networks on levels of aggression and affiliation in primates. Aggress Behav 17:17–25

    Google Scholar 

  113. Harvey PW, Chevins PFD (1985) Crowding pregnant mice affects attack and threat behavior of male offspring. Horm Behav 19:86–97

    PubMed  CAS  Google Scholar 

  114. Van Loo PLP, Mol JA, Koolhaas JM, Van Zutphen BFM, Baumans V (2001) Modulation of aggression in male mice: influence of group size and cage size. Physiol Behav 72:675–683

    PubMed  Google Scholar 

  115. Sannen A, Elsacker LV, Eens M (2004) Effect of spatial crowding on aggressive behavior in a bonobo colony. Zoo Biol 23:383–395

    Google Scholar 

  116. de Waal FB, Aureli F, Judge PG (2000) Coping with crowding. Sci Am 282:76–81

    PubMed  Google Scholar 

  117. Wongwitdecha N, Marsden CA (1996) Social isolation increases aggressive behaviour and alters the effects of diazepam in the rat social interaction test. Behav Brain Res 75:27–32

    PubMed  CAS  Google Scholar 

  118. Matsumoto K, Pinna G, Puia G, Guidotti A, Costa E (2005) Social isolation stress-induced aggression in mice: a model to study the pharmacology of neurosteroidogenesis. Stress 8:85–93

    PubMed  CAS  Google Scholar 

  119. Hodge GK, Butcher LL (1975) Catecholamine correlates of isolation-induced aggression in mice. Eur J Pharmacol 31:81–93

    PubMed  CAS  Google Scholar 

  120. Sánchez C, Arnt J, Hyttel J, Moltzen EK (1993) The role of serotonergic mechanisms in inhibition of isolation-induced aggression in male mice. Psychopharmacology 110:53–59

    PubMed  Google Scholar 

  121. Aiello JR, Nicosia G, Thompson DE (1979) Physiological, social, and behavioral consequences of crowding on children and adolescents. Child Dev 50:195–202

    PubMed  CAS  Google Scholar 

  122. Regoeczi WC (2003) When context matters: a multilevel analysis of household and neighbourhood crowding on aggression and withdrawal. J Environ Psychol 23:457–470

    Google Scholar 

  123. Pontier D, Auger P, Bravo de la Parra R, Sánchez E (2000) The impact of behavioral plasticity at individual level on domestic cat population dynamics. Ecol Model 133:117–124

    Google Scholar 

  124. Auger P, Pontier D (1998) Fast game theory coupled to slow population dynamics: the case of domestic cat populations. Math Biosci 148:65–82

    PubMed  CAS  Google Scholar 

  125. Judge PG, De Waal FM (1997) Rhesus monkey behaviour under diverse population densities: coping with long-term crowding. Anim Behav 54:643–662

    PubMed  Google Scholar 

  126. Lamba S et al (2007) A possible novel function of dominance behaviour in queen-less colonies of the primitively eusocial wasp Ropalidia marginata. Behav Processes 74:351–356

    PubMed  Google Scholar 

  127. Albert DJ, Jonik RH, Walsh ML (1992) Hormone-dependent aggression in male and female rats: experiential, hormonal, and neural foundations. Neurosci Biobehav Rev 16:177–192

    PubMed  CAS  Google Scholar 

  128. Rubenstein DR, Wikelski M (2005) Steroid hormones and aggression in female Galápagos marine iguanas. Horm Behav 48:329–341

    PubMed  CAS  Google Scholar 

  129. Hu PJ (2007) Dauer. In: Worm Book. doi:10.1895/wormbook.1.144.1

    Google Scholar 

  130. Fielenbach N, Antebi A (2008) C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 22:2149–2165

    PubMed  CAS  Google Scholar 

  131. Yajnik CS et al (2003) Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord 27:173–180

    PubMed  CAS  Google Scholar 

  132. Baig U, Belsare P, Watve M, Jog M (2011) Can thrifty gene(s) or predictive fetal programming for thriftiness lead to obesity? J Obes 2011:1–11

    Google Scholar 

  133. Ramachandran A, Snehalatha C, Latha E, Vijay V, Viswanathan M (1997) Rising prevalence of NIDDM in an urban population in India. Diabetologia 40:232–237

    PubMed  CAS  Google Scholar 

  134. Riste L, Khan F, Cruickshank K (2001) High prevalence of type 2 diabetes in all ethnic groups, including Europeans, in a British inner city: relative poverty, history, inactivity, or 21st century Europe? Diabetes Care 24:1377–1383

    PubMed  CAS  Google Scholar 

  135. Ellaway A, Macintyre S, Bonnefoy X (2005) Graffiti, greenery, and obesity in adults: secondary analysis of European cross sectional survey. Brit Med J 331:611–612

    PubMed  Google Scholar 

  136. A Local National and Worldwide Scourge. http://berkeleycitizen.org/radiation/radiation2.htm

  137. New Diabetes Report Documents Devastating Effects In New York City. New York city department of health and mental hygiene. http://www.nyc.gov/html/doh/html/pr2007/pr060-07.shtml

  138. Then as now – New York’s Shifting Ethnic Mosaic. http://www.nytimes.com/interactive/2011/01/23/nyregion/20110123-nyc-ethnic-neighborhoods-map.html

  139. New York Population Map. http://en.wikipedia.org/wiki/File:New_York_Population_Map.png

  140. Center for Urban Research – Long Island Index 2008. http://www.urbanresearch.org/projects/long-island-index-2008

  141. Zimmet P, Dowse G, Finch C, Serjeantson S, King H (1990) The epidemiology and natural history of NIDDM–lessons from the South Pacific. Diabetes Metab Rev 6:91–124

    PubMed  CAS  Google Scholar 

  142. Snehalatha C, Ramachandran A, Vijay V, Viswanathan M (1994) Differences in plasma insulin responses in urban and rural Indians: a study in southern-Indians. Diabet Med 11:445–448

    PubMed  CAS  Google Scholar 

  143. Al-Nuaim AR (1997) Prevalence of glucose intolerance in urban and rural communities in Saudi Arabia. Diabet Med 14:595–602

    PubMed  CAS  Google Scholar 

  144. Archana N (2009) The genetic architecture of fitness-related traits in populations of three species of drosophila subjected to selection for adaptation to larval crowding. PhD thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watve, M. (2012). Why Population Density Matters. In: Doves, Diplomats, and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4409-1_9

Download citation

Publish with us

Policies and ethics