Skip to main content

Diabetes in a Textbook

  • Chapter
  • First Online:
Book cover Doves, Diplomats, and Diabetes
  • 1134 Accesses

Abstract

Before we start thinking about the evolutionary origins of diabetes and related disorders, I need to briefly sketch what is currently known and well accepted about diabetes. This chapter tries to compile a textbook picture of diabetes [1–3] only to serve as a background. Readers who have studied physiology or medicine may skip this chapter straightaway since it does not contain any new argument. It may be necessary and useful for readers who need a fair amount of background information about diabetes before appreciating the paradoxes and puzzles associated with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kronenberg H, Williams RH (2008) Williams textbook of endocrinology. Saunders/Elsevier, Philadelphia, PA

    Google Scholar 

  2. Pickup JC, Williams G (2003) Textbook of diabetes. Blackwell Science, Oxford

    Google Scholar 

  3. Guyton AC, Hall JE (2006) Textbook of medical physiology. Saunders, Philadelphia, PA

    Google Scholar 

  4. Leçons de physiologie opératoire: Bernard, Claude, 1813–1878: Free Download & Streaming: Internet Archive. http://www.archive.org/details/leonsdephysiol00bernard

  5. Monzillo LU, Hamdy O (2003) Evaluation of insulin sensitivity in clinical practice and in research settings. Nutr Rev 61:397–412

    Article  PubMed  Google Scholar 

  6. Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  7. Goran MI, Ball GDC, Cruz ML (2003) Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab 88:1417–1427

    Article  PubMed  CAS  Google Scholar 

  8. Diamond J (2003) The double puzzle of diabetes. Nature 423:599–602

    Article  PubMed  CAS  Google Scholar 

  9. Cowie CC et al (2006) Prevalence of diabetes and impaired fasting glucose in adults in the U.S. population. Diabetes Care 29:1263–1268

    Article  PubMed  Google Scholar 

  10. Mokdad AH et al (2001) The continuing epidemics of obesity and diabetes in the United States. J Am Med Assoc 286:1195–1200

    Article  CAS  Google Scholar 

  11. Harris MI, Eastman RC, Cowie CC, Flegal KM, Eberhardt MS (1997) Comparison of diabetes diagnostic categories in the U.S. population according to 1997 American Diabetes Association and 1980–1985 World Health Organization diagnostic criteria. Diabetes Care 20:1859–1862

    Article  PubMed  CAS  Google Scholar 

  12. Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR (1990) Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 113:909–915

    PubMed  CAS  Google Scholar 

  13. Haffner SM et al (1990) Diminished insulin sensitivity and increased insulin response in nonobese, nondiabetic Mexican Americans. Metab Clin Exp 39:842–847

    Article  PubMed  CAS  Google Scholar 

  14. Groop L (2000) Genetics of the metabolic syndrome. Br J Nutr 83(Suppl 1):S39–S48

    PubMed  CAS  Google Scholar 

  15. Lehtovirta M et al (2000) Insulin sensitivity and insulin secretion in monozygotic and dizygotic twins. Diabetologia 43:285–293

    Article  PubMed  CAS  Google Scholar 

  16. Mayer EJ et al (1996) Genetic and environmental influences on insulin levels and the insulin resistance syndrome: an analysis of women twins. Am J Epidemiol 143:323–332

    Article  PubMed  CAS  Google Scholar 

  17. Hong Y, Pedersen NL, Brismar K, de Faire U (1997) Genetic and environmental architecture of the features of the insulin-resistance syndrome. Am J Hum Genet 60:143–152

    PubMed  CAS  Google Scholar 

  18. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S (1987) Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metab Clin Exp 36:54–59

    Article  PubMed  CAS  Google Scholar 

  19. Brambilla P et al (1994) Peripheral and abdominal adiposity in childhood obesity. Int J Obes Relat Metab Disord 18:795–800

    PubMed  CAS  Google Scholar 

  20. Berman DM et al (2001) Racial disparities in metabolism, central obesity, and sex hormone-binding globulin in postmenopausal women. J Clin Endocrinol Metab 86:97–103

    Article  PubMed  CAS  Google Scholar 

  21. Hu FB et al (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345:790–797

    Article  PubMed  CAS  Google Scholar 

  22. Tuomilehto J et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350

    Article  PubMed  CAS  Google Scholar 

  23. Must A et al (1999) The disease burden associated with overweight and obesity. J Am Med Assoc 282:1523–1529

    Article  CAS  Google Scholar 

  24. Després JP, Tremblay A, Pérusse L, Leblanc C, Bouchard C (1988) Abdominal adipose tissue and serum HDL-cholesterol: association independent from obesity and serum triglyceride concentration. Int J Obes 12:1–13

    PubMed  Google Scholar 

  25. Larsson B et al (1984) Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed) 288:1401–1404

    Article  CAS  Google Scholar 

  26. Landin K, Krotkiewski M, Smith U (1989) Importance of obesity for the metabolic abnormalities associated with an abdominal fat distribution. Metab Clin Exp 38:572–576

    Article  PubMed  CAS  Google Scholar 

  27. Bronnegard M, Arner P, Hellstorm L, Akner G, Gustafsson J-Å (1990) Glucocorticoid receptor messenger ribonucleic acid in different regions of human adipose tissue. Endocrinology 127:1689–1696

    Article  PubMed  CAS  Google Scholar 

  28. Nicklas BJ, Rogus EM, Colman EG, Goldberg AP (1996) Visceral adiposity, increased adipocyte lipolysis, and metabolic dysfunction in obese postmenopausal women. Am J Physiol 270:E72–E78

    PubMed  CAS  Google Scholar 

  29. Mittelman SD et al (2000) Longitudinal compensation for fat-induced insulin resistance includes reduced insulin clearance and enhanced β-cell response. Diabetes 49:2116–2125

    Article  PubMed  CAS  Google Scholar 

  30. Paolisso G et al (1995) A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 38:1213–1217

    Article  PubMed  CAS  Google Scholar 

  31. Charles MA et al (1997) The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia 40:1101–1106

    Article  PubMed  CAS  Google Scholar 

  32. Pan DA et al (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46:983–988

    Article  PubMed  CAS  Google Scholar 

  33. Carlson LA, Ekelund LG, Fröberg SO (1971) Concentration of triglycerides, phospholipids and glycogen in skeletal muscle and of free fatty acids and β-hydroxybutyric acid in blood in man in response to exercise. Eur J Clin Invest 1:248–254

    PubMed  CAS  Google Scholar 

  34. Laws A, Reaven GM (1990) Effect of physical activity on age-related glucose intolerance. Clin Geriatr Med 6:849–863

    PubMed  CAS  Google Scholar 

  35. Gollnick PD, Saltin B (1982) Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 2:1–12

    Article  PubMed  CAS  Google Scholar 

  36. Turcotte LP, Richter EA, Kiens B (1992) Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Physiol 262:E791–E799

    PubMed  CAS  Google Scholar 

  37. Romijn JA, Klein S, Coyle EF, Sidossis LS, Wolfe RR (1993) Strenuous endurance training increases lipolysis and triglyceride-fatty acid cycling at rest. J Appl Physiol 75:108–113

    PubMed  CAS  Google Scholar 

  38. Kelley DE, Simoneau JA (1994) Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest 94:2349–2356

    Article  PubMed  CAS  Google Scholar 

  39. Kelley DE, Mandarino LJ (1990) Hyperglycemia normalizes insulin-stimulated skeletal muscle glucose oxidation and storage in noninsulin-dependent diabetes mellitus. J Clin Invest 86:1999–2007

    Article  PubMed  CAS  Google Scholar 

  40. Ruderman NB, Saha AK, Vavvas D, Witters LA (1999) Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol 276:E1–E18

    PubMed  CAS  Google Scholar 

  41. Dean D et al (2000) Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. Diabetes 49:1295–1300

    Article  PubMed  CAS  Google Scholar 

  42. Hancock CR et al (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA 105:7815–7820

    Article  PubMed  CAS  Google Scholar 

  43. Knauf C et al (2008) Brain glucagon-like peptide 1 signaling controls the onset of high-fat diet-induced insulin resistance and reduces energy expenditure. Endocrinology 149:4768–4777

    Article  PubMed  CAS  Google Scholar 

  44. Knauf C et al (2005) Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 115:3554–3563

    Article  PubMed  CAS  Google Scholar 

  45. Perrin C, Knauf C, Burcelin R (2004) Intracerebroventricular infusion of glucose, insulin, and the adenosine monophosphate-activated kinase activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, controls muscle glycogen synthesis. Endocrinology 145:4025–4033

    Article  PubMed  CAS  Google Scholar 

  46. Darleen S (2008) CNS GLP-1 regulation of peripheral glucose homeostasis. Physiol Behav 94:670–674

    Article  Google Scholar 

  47. Båvenholm PN, Pigon J, Östenson C-G, Efendic S (2001) Insulin sensitivity of suppression of endogenous glucose production is the single most important determinant of glucose tolerance. Diabetes 50:1449–1454

    Article  PubMed  Google Scholar 

  48. Mitrakou A et al (1992) Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med 326:22–29

    Article  PubMed  CAS  Google Scholar 

  49. Rebrin K, Steil GM, Mittelman SD, Bergman RN (1996) Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest 98:741–749

    Article  PubMed  CAS  Google Scholar 

  50. Mittelman SD, Fu YY, Rebrin K, Steil G, Bergman RN (1997) Indirect effect of insulin to suppress endogenous glucose production is dominant, even with hyperglucagonemia. J Clin Invest 100: 3121–3130

    Article  PubMed  CAS  Google Scholar 

  51. McCall RH, Wiesenthal SR, Shi ZQ, Polonsky K, Giacca A (1998) Insulin acutely suppresses glucose production by both peripheral and hepatic effects in normal dogs. Am J Physiol 274:E346–E356

    PubMed  CAS  Google Scholar 

  52. Hother-Nielsen O, Beck-Nielsen H (1991) Insulin resistance, but normal basal rates of glucose production in patients with newly diagnosed mild diabetes mellitus. Acta Endocrinol 124:637–645

    PubMed  CAS  Google Scholar 

  53. Groop LC, Bonadonna RC, Shank M, Petrides AS, DeFronzo RA (1991) Role of free fatty acids and insulin in determining free fatty acid and lipid oxidation in man. J Clin Invest 87:83–89

    Article  PubMed  CAS  Google Scholar 

  54. Hother-Nielsen O, Beck-Nielsen H (1990) On the determination of basal glucose production rate in patients with type 2 (non-insulin-dependent) diabetes mellitus using primed-continuous 3-3 H-glucose infusion. Diabetologia 33:603–610

    Article  PubMed  CAS  Google Scholar 

  55. Pick A et al (1998) Role of apoptosis in failure of β-cell mass compensation for insulin resistance and β-cell defects in the male Zucker diabetic fatty rat. Diabetes 47:358–364

    Article  PubMed  CAS  Google Scholar 

  56. Cockburn BN et al (1997) Changes in pancreatic islet glucokinase and hexokinase activities with increasing age, obesity, and the onset of diabetes. Diabetes 46:1434–1439

    Article  PubMed  CAS  Google Scholar 

  57. Kahn SE et al (1993) Quantification of the relationship between insulin sensitivity and β-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42:1663–1672

    Article  PubMed  CAS  Google Scholar 

  58. Toffolo G, Bergman RN, Finegood DT, Bowden CR, Cobelli C (1980) Quantitative estimation of β cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog. Diabetes 29:979–990

    Article  PubMed  CAS  Google Scholar 

  59. Weir GC, Bonner-Weir S (2004) Five stages of evolving Β-cell dysfunction during progression to diabetes. Diabetes 53:S16–S21

    Article  PubMed  CAS  Google Scholar 

  60. Sako Y, Grill VE (1990) Coupling of β-cell desensitization by hyperglycemia to excessive stimulation and circulating insulin in glucose-infused rats. Diabetes 39:1580–1583

    Article  PubMed  CAS  Google Scholar 

  61. Leahy JL, Bumbalo LM, Chen C (1994) Diazoxide causes recovery of β-cell glucose responsiveness in 90% pancreatectomized diabetic rats. Diabetes 43:173–179

    Article  PubMed  CAS  Google Scholar 

  62. Poitout V, Robertson RP (2002) Minireview: secondary β-cell failure in type 2 diabetes – a convergence of glucotoxicity and lipotoxicity. Endocrinology 143:339–342

    Article  PubMed  CAS  Google Scholar 

  63. Robertson RP, Harmon JS, Tanaka Y, Trang PO, Poitout V (2004) Glucose toxicity of the β-cell cellular and molecular mechanisms. In: LeRoith D, Taylor SI, Olefsky J (eds) Diabetes mellitus: a fundamental and clinical text. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  64. Gleason CE, Gonzalez M, Harmon JS, Robertson RP (2000) Determinants of glucose toxicity and its reversibility in the pancreatic islet β-cell line, HIT-T15. Am J Physiol Endocrinol Metab 279:E997–E1002

    PubMed  CAS  Google Scholar 

  65. Moran A et al (1997) Differentiation of glucose toxicity from β cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15. J Clin Invest 99:534–539

    Article  PubMed  CAS  Google Scholar 

  66. Donath MY, Gross DJ, Cerasi E, Kaiser N (1999) Hyperglycemia-induced β-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 48:738–744

    Article  PubMed  CAS  Google Scholar 

  67. McGarry JD, Dobbins RL (1999) Fatty acids, lipotoxicity and insulin secretion. Diabetologia 42:128–138

    Article  PubMed  CAS  Google Scholar 

  68. Shimabukuro M et al (1998) Lipoapoptosis in β-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem 273:32487–32490

    Article  PubMed  CAS  Google Scholar 

  69. Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet Β cells in diabetes. J Biol Chem 279: 42351–42354

    Article  PubMed  CAS  Google Scholar 

  70. Modak MA, Parab PB, Ghaskadbi SS (2009) Pancreatic islets are very poor in rectifying oxidative DNA damage. Pancreas 38:23–29

    Article  PubMed  CAS  Google Scholar 

  71. Verchere CB et al (1996) Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic Β cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:3492–3496

    Article  PubMed  CAS  Google Scholar 

  72. Höppener JW et al (1999) Extensive islet amyloid formation is induced by development of Type II diabetes mellitus and contributes to its progression: pathogenesis of diabetes in a mouse model. Diabetologia 42:427–434

    Article  PubMed  Google Scholar 

  73. Soeller WC et al (1998) Islet amyloid-associated diabetes in obese Avy/A mice expressing human islet amyloid polypeptide. Diabetes 47:743–750

    Article  PubMed  CAS  Google Scholar 

  74. Røder ME, Porte D Jr, Schwartz RS, Kahn SE (1998) Disproportionately elevated proinsulin levels reflect the degree of impaired Β cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 83:604–608

    Article  PubMed  Google Scholar 

  75. Porte D Jr, Kahn SE (1989) Hyperproinsulinemia and amyloid in NIDDM. Clues to etiology of islet β-cell dysfunction? Diabetes 38:1333–1336

    Article  PubMed  CAS  Google Scholar 

  76. Hoehn KL et al (2009) Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA 106:17787–17792

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watve, M. (2012). Diabetes in a Textbook. In: Doves, Diplomats, and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4409-1_2

Download citation

Publish with us

Policies and ethics