Skip to main content

Efficient Hybrid Algorithms for Characterizing 3-D Doubly Periodic Structures, Finite Periodic Microstrip Patch Arrays, and Aperiodic Tilings

  • Chapter
  • First Online:
Book cover Computational Electromagnetics

Abstract

In this chapter, several efficient hybrid algorithms are proposed for fast characterization of periodic structures composed of bianisotropic media, large-scale finite periodic microstrip patch arrays, and aperiodic tiling structures. The first is a hybrid periodic finite-element/boundary-integral (FEBI) method developed for fast modeling of 3-D doubly-periodic structures with non-orthogonal lattices composed of bianisotropic media with arbitrarily-shaped metallic patches. The generalized FEBI formulations are accelerated through use of the adaptive integral method (AIM) and model-based parameter estimation (MBPE) techniques. The second algorithm extends the accurate sub-entire domain (SED) basis function method and is combined with the mixed potential integral equation (MPIE) for efficient analysis of large-scale finite periodic arrays of microstrip patches with non-orthogonal lattices. The third algorithm is the proposed two-level characteristic basis function method (CBFM) combined with the AIM for efficiently modeling electromagnetic (EM) scattering from large-scale aperiodic structures (e.g. aperiodic Penrose and Danzer tilings). The efficiency and accuracy of each of the hybrid methods proposed above is demonstrated by numerical tests that include the EM scattering from periodic or aperiodic structures, where appropriate for each code. The developed two-level “CBFM+AIM” hybrid algorithm is employed to investigate EM scattering properties from large-scale aperiodic tilings. The numerical results show that Penrose/Danzer tilings exhibit significantly improved grating lobe suppression as compared to their periodic counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu TK (ed) (1995) Frequency selective surface and grid array. Wiley, New York

    Google Scholar 

  2. Munk BA (2000) Frequency selective surfaces: theory and design. Wiley, New York

    Book  Google Scholar 

  3. Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley, New York

    Google Scholar 

  4. Sharp ED (1961) A triangular arrangement of planar-array elements that reduces the number needed. IRE Trans Antennas Propagat 9:126–129

    Article  Google Scholar 

  5. Werner DH, Mittra R (eds) (2000) Frontiers in electromagnetics. Wiley/IEEE Press, Hoboken

    Google Scholar 

  6. Werner DH, Petko JS, Spence TG (2007) Fractal antennas. In: Volakis JL (ed) The antenna engineering handbook, 4th edn. McGraw Hill, New York

    Google Scholar 

  7. Werner DH, Gregory MD, Namin F, Petko JS, Spence TG (2011) Ultra-wideband antenna arrays. In: Gross FB (ed) Frontiers in antennas: next generation design & engineering. McGraw Hill, New York

    Google Scholar 

  8. Werner DH, Haupt RL, Werner PL (1999) Fractal antenna engineering: the theory and design of fractal antenna arrays. IEEE Antennas Propagat Mag 41:37–59

    Article  Google Scholar 

  9. Werner DH, Kuhirun W, Werner PL (2003) The Peano-Gosper fractal array. IEEE Trans Antennas Propagat 51:2063–2072

    Article  MathSciNet  Google Scholar 

  10. Werner DH, Gingrich MA, Werner PL (2003) A self-similar fractal radiation pattern synthesis technique for reconfigurable multi-band arrays. IEEE Trans Antennas Propagat 51: 1486–1495

    Article  Google Scholar 

  11. Pierro V, Galdi V, Castaldi G, Pinto IM, Felsen LB (2005) Radiation properties of planar antenna arrays based on certain categories of aperiodic tilings. IEEE Trans Antennas Propagat 53:635–644

    Article  Google Scholar 

  12. Gregory MD, Petko JS, Spence TG, Werner DH (2010) Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays. IEEE Antennas Propagat Mag 52:28–45

    Article  Google Scholar 

  13. Bleszynski E, Bleszynski M (1996) AIM: adaptive integral method for solving large scale electromagnetic scattering and radiation problem. Radio Sci 31:1225–1251

    Article  Google Scholar 

  14. Miller EK (1998) Model-based parameter estimation in electromagnetics─Part III: Application to EM integral equations. IEEE Antennas Propagat Mag 40:49–66

    Article  Google Scholar 

  15. Lu WB, Cui TJ, Qian ZG, Yin XX, Hong W (2004) Accurate analysis of large-scale periodic structures using an efficient sub-entire domain basis function method. IEEE Trans Antennas Propagat 52:3078–3085

    Article  Google Scholar 

  16. Prakash VVS, Mittra R (2003) Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations. Microw Opt Technol Lett 36:95–100

    Article  Google Scholar 

  17. Mittra R, Chan CH, Cwik T (1988) Techniques for analyzing frequency selective surfaces – a review. IEEE Proc 76:1593–1614

    Article  Google Scholar 

  18. Wan C, Encinar JA (1995) Efficient computation of generalized scattering matrix for analyzing multilayered periodic structures. IEEE Trans Antennas Propagat 43:1233–1242

    Google Scholar 

  19. Yang HYD, Diaz R, Alexopoulos NG (1997) Reflection and transmission of waves from multilayer structures with planar implanted periodic material blocks. J Opt Soc Am B 14:2513–2521

    Article  Google Scholar 

  20. Tsay WJ, Pozar DM (1998) Radiation and scattering from infinite periodic printed antennas with inhomogeneous media. IEEE Trans Antennas Propagat 46:1641–1650

    Article  Google Scholar 

  21. Bozzi M, Perregrini L, Weinzierl J, Winnewisser C (2001) Efficient analysis of quasi-optical filters by a hybrid MoM/BI-RME method. IEEE Trans Antennas Propagat 49:1054–1064

    Article  Google Scholar 

  22. Chen NW, Shanker B, Michielssen E (2003) Integral-equation-based analysis of transient scattering from periodic perfectly conducting structures. Proc Inst Elect Eng Microw Antennas Propagat 150:120–124

    Article  Google Scholar 

  23. Trintinalia LC, Ling H (2004) Integral equation modeling of multilayered doubly-periodic lossy structures using periodic boundary condition and a connection scheme. IEEE Trans Antennas Propagat 52:2253–2261

    Article  MathSciNet  Google Scholar 

  24. Stevanovic I, Crespo-Valero P, Blagovic K, Bongard F, Mosig JR (2006) Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation. IEEE Trans Microw Theory Tech 54:3688–3697

    Article  Google Scholar 

  25. Usner BC, Sertel K, Volakis JL (2007) Doubly periodic volume-surface integral equation formulation for modeling metamaterials. IET Microw Antennas Propagat 1:150–157

    Article  Google Scholar 

  26. Güdü T, Alatan L (2009) Use of asymptotic waveform evaluation technique in the analysis of multilayer structures with doubly periodic dielectric gratings. IEEE Trans Antennas Propagat 57:2641–2649

    Article  Google Scholar 

  27. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Norwood

    Google Scholar 

  28. Tsay WJ, Pozar DM (1993) Application of the FDTD technique to periodic problems in scattering and radiation. IEEE Microw Guide Wave Lett 3:250–252

    Article  Google Scholar 

  29. Veysoglu ME, Shin RT, Kong JA (1993) A finite-difference time domain analysis of wave scattering from periodic structures: oblique incidence case. J Electromagn Waves Appl 7:1595–1607

    Article  Google Scholar 

  30. Harms P, Mittra R, Ko W (1994) Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures. IEEE Trans Antennas Propagat 42:1317–1324

    Article  Google Scholar 

  31. Roden JA, Gedney SD, Kessler MP, Maloney JG, Harms PH (1998) Time domain analysis of periodic structures at oblique incidence: orthogonal and non-orthogonal FDTD implementations. IEEE Trans Microw Theory Tech 46:420–427

    Article  Google Scholar 

  32. Holter H, Steyskal H (1999) Infinite phased-array analysis using FDTD periodic boundary conditions—pulse scanning in oblique directions. IEEE Trans Antennas Propagat 47: 1508–1514

    Article  MathSciNet  MATH  Google Scholar 

  33. Oh C, Escuti MJ (2006) Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation. Opt Express 14:11870–11884

    Article  Google Scholar 

  34. Aminian A, Rahmat-Samii Y (2006) Spectral FDTD: a novel technique for the analysis of oblique incident plane wave on periodic structures. IEEE Trans Antennas Propagat 54: 1818–1825

    Article  Google Scholar 

  35. ElMahgoub K, Yang F, Elsherbeni AZ, Demir V, Chen J (2010) FDTD analysis of periodic structures with arbitrary skewed grid. IEEE Trans Antennas Propagat 58:2649–2657

    Article  MathSciNet  Google Scholar 

  36. Shahmansouri A, Rashidian B (2011) Comprehensive three-dimensional split-field finite difference time-domain method for analysis of periodic plasmonic nanostructures: near- and far-field formulation. J Opt Soc Am B 28:2690–2700

    Article  Google Scholar 

  37. Jin JM (1993) The finite element method in electromagnetics. Wiley, New York

    MATH  Google Scholar 

  38. Volakis JL, Chatterjee A, Kempel LC (1998) Finite element method for electromagnetics. IEEE Press, New York

    Book  MATH  Google Scholar 

  39. Lou Z, Jin JM (2004) Finite-element analysis of phased-array antennas. Microw Opt Technol Lett 40:490–496

    Article  Google Scholar 

  40. Petersson LER, Jin JM (2006) Analysis of periodic structures via a time-domain finite-element formulation with a Floquet ABC. IEEE Trans Antennas Propagat 54:933–944

    Article  MathSciNet  Google Scholar 

  41. Vouvakis MN, Zhao K, Lee JF (2006) Finite-element analysis of infinite periodic structures with nonmatching triangulations. IEEE Trans Magn 42:691–694

    Article  Google Scholar 

  42. Jin JM, Lou Z, Li YJ, Riley N, Riley D (2008) Finite element analysis of complex antennas and arrays. IEEE Trans Antennas Propagat 56:2222–2240

    Article  MathSciNet  Google Scholar 

  43. Lee SC, Rawat V, Lee JF (2010) A hybrid finite/boundary element method for periodic structures on non-periodic meshes using an interior penalty formulation for Maxwell’s equations. J Comput Phys 229:4934–4951

    Article  MathSciNet  MATH  Google Scholar 

  44. Jin JM, Volakis JL (1993) Scattering and radiation analysis of three-dimensional cavity array via a hybrid finite-element method. IEEE Trans Antennas Propagat 41:1580–1586

    Article  Google Scholar 

  45. McGrath DT, Pyati VP (1994) Phased array antenna analysis with the hybrid finite element method. IEEE Trans Antennas Propagat 42:1625–1630

    Article  Google Scholar 

  46. Lucas EW, Fontana TP (1995) A 3-D hybrid finite element/boundary element method for the unified radiation and scattering analysis of general infinite periodic arrays. IEEE Trans Antennas Propagat 43:145–153

    Article  Google Scholar 

  47. Gonzalez MA, Encinar JA, Zapata J, Lambea M (1998) Full-wave analysis of cavity-backed and probe-fed microstrip patch arrays by a hybrid mode-matching generalized scattering matrix and finite-element method. IEEE Trans Antennas Propagat 46:234–242

    Article  Google Scholar 

  48. Eibert TF, Volakis JL, Wilton DR, Jackson DR (1999) Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation. IEEE Trans Antennas Propagat 45:843–850

    Article  Google Scholar 

  49. Eibert TF, Volakis JL (2000) Fast spectral domain algorithm for hybrid finite element/boundary integral modeling of doubly periodic structures. IEE Proc Microw Antennas Propagat 147:329–334

    Article  Google Scholar 

  50. Eibert TF, Erdemli YE, Volakis JL (2003) Hybrid finite element fast spectral domain multilayer boundary integral modeling of doubly periodic structures. IEEE Trans Antennas Propagat 51:2517–2519

    Article  MathSciNet  Google Scholar 

  51. Kong JA (1990) Electromagnetic wave theory. Wiley, New York

    Google Scholar 

  52. Lindell IV, Sihvola AH, Tretyakov SA, Viitanen AJ (1994) Electromagnetic waves in chiral and bi-isotropic media. Artech House, Norwood

    Google Scholar 

  53. Serdyukov AN, Semchenko IV, Tretyakov SA, Sihvola A (2001) Electromagnetics of bi-anisotropic materials: theory and applications. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  54. Tsalamengas JL (1992) Interaction of electromagnetic waves with general bianisotropic slabs. IEEE Trans Microw Theory Tech 40:1870–1878

    Article  Google Scholar 

  55. Sihvola AH, Juntunen JO, Erätuuli P (1996) Macroscopic electromagnetic properties of bi-anisotropic mixtures. IEEE Trans Antennas Propagat 44:836–843

    Article  Google Scholar 

  56. Grzegorczyk TM, Chen X, Pacheco J, Chen J, Wu BI, Kong JA (2005) Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials. Prog Electromagn Res 51:83–113

    Article  Google Scholar 

  57. Yang HY, Castaneda JA (1991) Infinite phased arrays of microstrip antennas on generalized anisotropic substrates. Electromagnetics 11:107–124

    Article  Google Scholar 

  58. Pozar DM (1992) Microstrip antennas and arrays on chiral substrates. IEEE Trans Antennas Propagat 40:1260–1263

    Article  Google Scholar 

  59. Bilotti F, Vegni L (2003) FEM-BIM formulation for analysis of cavity-backed patch antenna on chiral substrates. IEEE Trans Antennas Propagat 51:306–311

    Article  Google Scholar 

  60. Grzegorczyk TM, Nikku M, Chen X, Wu BI, Kong JA (2005) Refraction laws for anisotropic media and their application to left-handed metamaterials. IEEE Trans Microw Theory Tech 53:1443–1450

    Article  Google Scholar 

  61. Wongkasem N, Akyurtlu A, Marx KA, Dong Q, Li J, Goodhue WD (2007) Development of chiral negative refractive index metamaterials for the terahertz frequency regime. IEEE Trans Antennas Propagat 55:3052–3062

    Article  Google Scholar 

  62. Bilotti F, Vegni L, Toscano A (2003) Radiation and scattering features of patch antennas with bi-anisotropic substrates. IEEE Trans Antennas Propagat 51:449–456

    Article  Google Scholar 

  63. Chan YC, Li GY, Mok TS, Vardaxoglou JC (1996) Analysis of a tunable frequency-selective surface on an in-plane biased ferrite substrate. Microw Opt Technol Lett 13:59–63

    Article  Google Scholar 

  64. Campos ALPS, De Melo MAB, Assunção AG (2002) Scattering by FSS on anisotropic substrate for TE and TM excitation. IEEE Trans Microw Theory Tech 50:72–76

    Article  Google Scholar 

  65. Lin B, Liu S, Yuan N (2006) Analysis of frequency selective surfaces on electrically and magnetically anisotropic substrates. IEEE Trans Antennas Propagat 54:674–680

    Article  Google Scholar 

  66. Wang DX, Yung EKN, Chen RS (2007) Spectral domain analysis of frequency-selective surface on biaxially anisotropic substrate. IET Microw Antennas Propagat 1:335–340

    Article  Google Scholar 

  67. Kristensson G, Akerberg M, Poulsen S (2002) Scattering from a frequency selective surface supported by a bianisotropic substrate. Prog Electromagn Res 35:83–114

    Article  Google Scholar 

  68. Kristensson G, Poulsen S, Rikte S (2004) Propagators and scattering of electromagnetic waves in planar bianisotropic slabs – an application to frequency selective structures. Prog Electromagn Res 48:1–25

    Article  Google Scholar 

  69. Wang X, Kwon DH, Werner DH, Khoo IC, Kildishev AV, Shalaev VM (2007) Tunable optical negative-index metamaterials employing anisotropic liquid crystals. Appl Phys Lett 91:143122/1–3

    Google Scholar 

  70. Kwon DH, Wang X, Bayraktar Z, Weiner B, Werner DH (2008) Near-infrared metamaterial films with reconfigurable transmissive/reflective properties. Opt Lett 33:545–547

    Article  Google Scholar 

  71. Mao KY, Byun JK, Jin JM (2006) Enhancing the modeling capability of the FE-BI method for simulation of cavity-backed antennas and arrays. Electromagnetics 26:503–515

    Article  Google Scholar 

  72. Pillage LT, Rohrer RA (1990) Asymptotic waveform evaluation for timing analysis. IEEE Trans Comput Aided Des 9:352–366

    Article  Google Scholar 

  73. Werner DH, Allard RJ (2000) The simultaneous interpolation of antenna radiation patterns in both spatial and frequency domains using model-based parameter estimation. IEEE Trans Antennas Propagat 48:383–392

    Article  Google Scholar 

  74. Li L, Werner DH, Bossard JA, Mayer TS (2006) A model-based parameter estimation technique for wideband interpolation of periodic moment method impedance matrices with application to genetic algorithm optimization of frequency selective surfaces. IEEE Trans Antennas Propagat 54:908–924

    Article  Google Scholar 

  75. Wang X, Werner DH (2010) Improved model-based parameter estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selective surfaces and metamaterials. IEEE Trans Antennas Propagat 58:122–131

    Article  Google Scholar 

  76. Rao SM, Wilton DR, Glisson AW (1982) Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propagat 30:409–418

    Article  Google Scholar 

  77. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 64:253–287

    Article  MATH  Google Scholar 

  78. Jordan KE, Richter GR, Sheng P (1986) An efficient numerical evaluation of the Green’s function for the Helmholtz operator on periodic structures. J Comput Phys 63:222–235

    Article  MathSciNet  MATH  Google Scholar 

  79. Barrowes BE, Teixeira FL, Kong JA (2001) Fast algorithm for matrix–vector multiply of asymmetric multilevel block-Toeplitz matrices in 3-D scattering. Microw Opt Technol Lett 31:28–32

    Article  Google Scholar 

  80. Wang CF, Ling F, Jin JM (1998) A fast full-wave analysis of scattering and radiation from large finite arrays of microstrip antennas. IEEE Trans Antennas Propagat 46:1467–1474

    Article  Google Scholar 

  81. Ling F, Wang CF, Jin JM (2000) An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex-image method. IEEE Trans Microw Theory Tech 48:832–839

    Article  Google Scholar 

  82. Yuan N, Yeo TS, Nie X, Li LW (2003) A fast analysis of scattering and radiation of large microstrip antenna arrays. IEEE Trans Antennas Propagat 51:2218–2226

    Article  Google Scholar 

  83. Ling F, Song JM, Jin JM (1999) Multilevel fast multipole algorithm for analysis of large-scale microstrip structures. IEEE Microw Guide Waves Lett 9:508–510

    Article  Google Scholar 

  84. Zhao K, Lee JF (2004) A single-level dual rank IE-QR algorithm to model large microstrip antenna arrays. IEEE Trans Antennas Propagat 52:2580–2585

    Article  MathSciNet  Google Scholar 

  85. Janpugdee P, Pathak PH (2006) A DFT-based UTD ray analysis of large finite phased arrays on a grounded substrate. IEEE Trans Antennas Propagat 54:1152–1161

    Article  MathSciNet  Google Scholar 

  86. Mahachoklertwattana P, Pathak PH, Burkholder RJ (2008) A fast MoM approach for analyzing large arrays in a grounded multilayered medium. Radio Sci 43:RS6S05

    Article  Google Scholar 

  87. Suter E, Mosig J (2000) A subdomain multilevel approach for the MoM analysis of large planar antennas. Microw Opt Technol Lett 26:270–277

    Article  Google Scholar 

  88. Matekovits L, Laza VA, Vecchi G (2007) Analysis of large complex structures with the synthetic-functions approach. IEEE Trans Antennas Propagat 55:2509–2521

    Article  Google Scholar 

  89. Yeo J, Prakash VVS, Mittra R (2003) Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM). Microw Opt Technol Lett 39:456–464

    Article  Google Scholar 

  90. Lu WB, Cui TJ, Yin XX, Qian ZG, Hong W (2005) Fast algorithms for large-scale periodic structures using subentire domain basis functions. IEEE Trans Antennas Propagat 53: 1154–1162

    Article  Google Scholar 

  91. Lu WB, Cui TJ, Zhao H (2007) Acceleration of fast multipole method for large-scale periodic structures with finite sizes using sub-entire-domain basis functions. IEEE Trans Antennas Propagat 55:414–421

    Article  MathSciNet  Google Scholar 

  92. Michalski KA, Zheng D (1990) Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media—Part I: Theory. IEEE Trans Antennas Propagat 38: 335–344

    Article  Google Scholar 

  93. Hsu CIG, Harrington RF, Michalski KA, Zheng D (1993) Analysis of multiconductor transmission lines of arbitrary cross-section in multilayered uniaxial media. IEEE Trans Microw Theory Tech 41:70–78

    Article  Google Scholar 

  94. Michalski KA, Mosig JR (1997) Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propagat 45:508–519

    Article  Google Scholar 

  95. Mosig JR (1988) Integral equation techniques. In: Itoh T (ed) Numerical techniques for microwave and millimeter-wave passive structures. Wiley, New York

    Google Scholar 

  96. Hsieh RC, Kuo JT (1998) Fast full-wave analysis of planar microstrip circuit elements in stratified media. IEEE Trans Microw Theory Tech 46:1291–1297

    Article  Google Scholar 

  97. Cui TJ, Chew WC (1999) Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buried objects. IEEE Geosci Remote Sens 37:887–900

    Article  Google Scholar 

  98. Cai W, Yu T (2000) Fast calculations of dyadic Green’s functions for electromagnetic scattering in a multilayer medium. J Comput Phys 165:1–12

    Article  MathSciNet  MATH  Google Scholar 

  99. Fang DG, Yang JJ, Delisle GY (1988) Discrete image theory for horizontal electric dipole in a multilayer medium. Proc Inst Elect Eng pt H 135:297–303

    Google Scholar 

  100. Chow YL, Yang JJ, Fang DG, Howard GE (1991) A closed-form spatial Green’s function for the thick microstrip substrate. IEEE Trans Microw Theory Tech 39:588–592

    Article  Google Scholar 

  101. Aksun MI (1996) A robust approach for the derivation of closed-form Green’s functions. IEEE Trans Microw Theory Tech 44:651–658

    Article  Google Scholar 

  102. Hua Y, Sarkar TK (1989) Generalized pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans Antennas Propagat 37:229–234

    Article  Google Scholar 

  103. Ling F, Jin JM (1997) Scattering and radiation analysis of microstrip antennas using discrete complex image method and reciprocity theorem. Microw Opt Technol Lett 16:212–216

    Article  Google Scholar 

  104. Spence TG, Werner DH (2008) Design of broadband planar arrays based on the optimization of aperiodic tilings. IEEE Trans Antennas Propagat 56:76–86

    Article  Google Scholar 

  105. Gallina I, Villa AD, Galdi V, Pierro V, Capolino F, Enoch S, Tayeb T, Gerini G (2008) Aperiodic tiling based mushroom type high impedance surfaces. IEEE Antennas Wirel Propagat Lett 7:54–57

    Article  Google Scholar 

  106. Dal Negro L, Boriskina SV (2012) Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon Rev 6:178–218

    Article  Google Scholar 

  107. Engheta N, Murphy WD, Rokhlin V, Vassiliou MS (1992) The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Trans Antennas Propagat 40:634–641

    Article  MathSciNet  MATH  Google Scholar 

  108. Song JM, Lu CC, Chew WC (1997) Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propagat 45:1488–1493

    Article  Google Scholar 

  109. Sarkar TK, Arvas E, Rao SM (1986) Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies. IEEE Trans Antennas Propagat 34:635–640

    Article  Google Scholar 

  110. Phillips JR, White JK (1997) A precorrected-FFT method for electrostatic analysis of complicated 3-d structures. IEEE Trans Comput Aided Des Integr Circuits Syst 16: 1059–1072

    Article  Google Scholar 

  111. Seo SM, Lee JF (2005) A fast IE-FFT algorithm for solving PEC scattering problems. IEEE Trans Magn 41:1476–1479

    Article  Google Scholar 

  112. Garsia E, Delgado C, Diego IG, Catedra MF (2008) An iterative solution for electrically large problems combining the characteristic basis function method and the multilevel fast multipole algorithm. IEEE Trans Antennas Propagat 56:2363–2371

    Article  Google Scholar 

  113. Maaskant R, Mittra R, Tijhuis AG (2008) Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm. IEEE Trans Antennas Propagat 56:3440–3451

    Article  Google Scholar 

  114. Hu L, Li LW, Mittra R (2010) Electromagnetic scattering by finite periodic arrays using the characteristic basis function and adaptive integral methods. IEEE Trans Antennas Propagat 58:3086–3090

    Article  MathSciNet  Google Scholar 

  115. Lee SC, Vouvakis MN, Lee JF (2005) A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays. J Comput Phys 203:1–21

    Article  MathSciNet  MATH  Google Scholar 

  116. Li Y, Jin JM (2006) A vector dual-primal finite element tearing and interconnecting method for solving 3-d large-scale electromagnetic problems. IEEE Trans Antennas Propagat 54:3000–3009

    Article  MathSciNet  Google Scholar 

  117. Kindt R, Sertel K, Topsakal E, Volakis J (2003) Array decomposition method for accurate analysis of large finite arrays. IEEE Trans Antennas Propagat 51:1364–1372

    Article  Google Scholar 

  118. Lucente E, Monorchio A, Mittra R (2008) An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems. IEEE Trans Antennas Propagat 56:999–1007

    Article  Google Scholar 

  119. Bucci OM, Franceschetti G (1989) On the degrees of freedom of scattered fields. IEEE Trans Antennas Propagat 37:918–926

    Article  MathSciNet  MATH  Google Scholar 

  120. Delgado C, Cátedra MF, Mittra R (2008) Efficient multilevel approach for the generation of characteristic basis functions for large scatters. IEEE Trans Antennas Propagat 56:2134–2137

    Article  Google Scholar 

  121. Delgado C, Garcia E, Cátedra F, Mittra R (2009) Generation of characteristic basis functions defined over large surfaces by using a multilevel approach. IEEE Trans Antennas Propagat 57:1299–1301

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation’s Material Research Science and Engineering Center (MRSEC) Grant No. DMR-0820404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiande Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, X., Werner, D.H., Turpin, J.P., Werner, P.L. (2014). Efficient Hybrid Algorithms for Characterizing 3-D Doubly Periodic Structures, Finite Periodic Microstrip Patch Arrays, and Aperiodic Tilings. In: Mittra, R. (eds) Computational Electromagnetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4382-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4382-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4381-0

  • Online ISBN: 978-1-4614-4382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics