Skip to main content

Numerical Techniques for Efficient Analysis of FSSs, EBGs and Metamaterials

  • Chapter
  • First Online:
Computational Electromagnetics

Abstract

In this chapter, we present a numerically efficient and accurate technique for the analysis of doubly-infinite periodic arrays, which find applications as Frequency Selective Surfaces (FSSs), Electronic Bandgap (EBGs) structures, plasmonic sensors at optical wavelength and Metamaterials (MTMs), all of which often utilize periodic elements. The method derives its efficiency by deriving, via extrapolation, the solution to the infinite array problem from that of a corresponding truncated array of relatively small size, typically comprising of only four to six concentric rings surrounding the center element. Furthermore, it reduces the matrix size needed to solve for the induced current to only two or three.

Another feature of the method is that it involves Reciprocity Principle (RP) to compute the reflection and transmission coefficients of the array, by using a technique that avoids the need to integrate the currents induced on the unit cell via the periodic Green’s function, as well as the evaluation of the latter integral in the far-field. The results derived are compared with those derived by using commercial software tools, to assess the validity of the approach and to demonstrate the time advantage of the present scheme over the existing techniques. By its very nature, the method presented herein is readily extendable to truncated periodic structures, and to those with random perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mittra R, Chan CH, Cwik T (1988) Techniques for analyzing frequency selective surfaces—a review. IEEE Proc 76(12):1593–1615

    Article  Google Scholar 

  2. Wu TK (1995) Frequency selective surface and grid array. Wiley, New York

    Google Scholar 

  3. Munk BA (2000) Frequency selective surfaces: theory and design. Wiley, New York

    Book  Google Scholar 

  4. Harrington RF (1968) Field computation by moment method. The Macmillan Company, New York

    Google Scholar 

  5. Peterson AF, Ray SL, Mittra R (1998) Computational methods for electromagnetics. IEEE Press, New York

    Google Scholar 

  6. Yu W, Yang X, Liu Y, Mittra R (2009) Electromagnetic simulation techniques based on the FDTD method. Wiley, Hoboken

    Google Scholar 

  7. Volakis JL, Chatterjee A, Kempel LC (1998) Finite element method for electromagnetics: antennas, microwave circuits, and scattering applications. Wiley-IEEE, Piscataway

    Book  MATH  Google Scholar 

  8. Chan CH, Mittra R (1990) On the analysis of frequency-selective surfaces using subdomain basis functions. IEEE Trans Antennas Propagat 38(1):40–50

    Article  Google Scholar 

  9. Blackburn J, Arnaut LR (2005) Numerical convergence in periodic method of moments of frequency-selective surfaces based on wire elements. IEEE Trans Antennas Propagat 53:3308–3315

    Article  Google Scholar 

  10. Stevanovi’c I, Crespo-Valero P, Blagovic K, Bongard F, Mosig JR (2006) Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation. IEEE Trans Microwave Theory Tech 54(10):3688–3697

    Article  Google Scholar 

  11. Capolino F, Wilton DW, Johnson WA (2005) Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method. IEEE Trans Antennas Propagat 53:2977–2984

    Article  MathSciNet  Google Scholar 

  12. Mittra R, Pelletti C, Tsitsas NL, Bianconi G (2012) A new technique for efficient and accurate analysis of FSSs, EBGs and metamaterials. Microw Opt Technol Lett 54(4):1108–1116

    Article  Google Scholar 

  13. Yoo K, Mehta N, Mittra R (2011) A new numerical technique for analysis of periodic structures. Microw Opt Technol Lett 53(10):2332–2340

    Article  Google Scholar 

  14. Rashidi A, Mosallaei H, Mittra R (2011) Scattering analysis of plasmonic nanorod antennas: a novel numerically efficient computational scheme utilizing macro basis functions. J Appl Phys 109(12):123109–123111

    Article  Google Scholar 

  15. Rashidi A, Mosallaei H, Mittra R (2013) Numerically efficient analysis of array of plasmonic nanorods illuminated by an obliquely incident plane wave using the characteristic basis function method. J Comput Theor Nanosci 10:427–445

    Article  Google Scholar 

  16. Mehta N (2010) Numerical analysis of frequency selective surfaces. M.S. dissertation, The Pennsylvania State University

    Google Scholar 

  17. Yoo K (2010) Modeling and simulation of electromagnetic band gap structures and metamaterials. Ph.D. dissertation, The Pennsylvania State University

    Google Scholar 

  18. Hua Y, Sarkar T (1989) Generalized pencil-of-functions method for extracting poles of an EM system from its transient response. IEEE Trans Antennas Propagat 37(2):229–234

    Article  Google Scholar 

  19. Mittra R, Pelletti C, Arya RK, Bianconi G, McManus T, Monorchio A, Tsitsas N (2012) New numerical techniques for efficient and accurate analysis of FSSs, EBGs and metamaterials. In: 6th European conference on antennas and propagation (EuCAP), Prague, 26–30 Mar 2012

    Google Scholar 

  20. Mittra R, Pelletti C, Arya RK (2012) A new computationally efficient technique for modeling periodic structures with applications to EBG, FSSs and metamaterials. In: International conference on microwave and millimeter wave technology (ICMMT), Shenzhen, 5–8 May 2012

    Google Scholar 

  21. Prakash VVS, Mittra R (2003) Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations. Microw Opt Technol Lett 36(2):95–100

    Article  Google Scholar 

  22. Lucente E, Monorchio A, Mittra R (2008) An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems. IEEE Trans Antennas Propagat 56:999–1007

    Article  Google Scholar 

  23. Jordan EC, Balmain KG (1968) Electromagnetic waves and radiating systems. 2nd ed., Prentice-Hall, Englewood Cliffs, N.J

    Google Scholar 

  24. Pelletti C (2011) Numerically efficient techniques for electromagnetic scattering calculations in the frequency domain. Ph.D. dissertation, University of Pisa

    Google Scholar 

  25. Pelletti C, Bianconi G, Mittra R, Monorchio A, Panayappan K (2012) Numerically efficient method-of-moments formulation valid over a wide frequency band including very low frequencies. IET Microw Antennas Propagat 6:46–51

    Article  Google Scholar 

  26. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  27. Wang G, Moses D, Heeger AJ, Zhang H, Narasimhan M, Demaray RE (2004) Poly(3-hexylthiophene) field-effect transistors with high dielectric constant gate insulator. J Appl Phys 95(1):316–322

    Article  Google Scholar 

  28. O’Carroll DM, Hofmann CE, Atwater HA (2010) Conjugated polymer/metal nanowire heterostructure plasmonic antennas. Adv Mater 22(11):1223–1227

    Article  Google Scholar 

  29. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  Google Scholar 

  30. Taminiau TH, Stefani FD, van Hulst NF (2008) Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt Express 16(14):10858–10866

    Article  Google Scholar 

  31. Rashidi A, Mosallaei H (2010) Array of plasmonic particles enabling optical near-field concentration: a nonlinear inverse scattering design approach. Phys Rev B 82, 035117:1–8

    Google Scholar 

  32. Righini M, Ghenuche P, Cherukulappurath S, Myroshnychenko V, García de Abajo FJ, Quidant R (2009) Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. Nano Lett 9(10):3387–3391

    Article  Google Scholar 

  33. Yeo J, Prakash VVS, Mittra R (2003) Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM). Microw Opt Tech Lett 39(6):456–464

    Article  Google Scholar 

  34. Pelletti C, Bianconi G, Mittra R, Monorchio A (2013) Volume integral equation analysis of thin dielectric sheet using sinusoidal macro-basis functions. IEEE Antennas Wireless Propag Lett 12:441–444

    Article  Google Scholar 

  35. Challacombe M, White C, Head-Gordon M (1997) Periodic boundary conditions and the fast multipole method. J Chem Phys 107(23):10131–10140

    Article  Google Scholar 

  36. Mittra R, Pelletti C, Panayappan K, Monorchio A (2011) The dipole moment (DM) and recursive update in frequency domain (RUFD) methods: two novel techniques in computational electromagnetics. URSI Radio Sci Bull 338:7–24

    Google Scholar 

  37. Ahmadi A, Ghadarghadr S, Mosallaei H (2010) An optical reflectarray nanoantenna: the concept and design. Opt Express 18(1):123–133

    Article  Google Scholar 

  38. Ghadarghadr S, Hao Z, Mosallaei H (2009) Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics. Opt Express 17(21):18556–18570

    Article  Google Scholar 

  39. Ricardo H (2010) A modern introduction to linear algebra. CRC Press, New York

    MATH  Google Scholar 

  40. Wang J, Yang CC, Kiang Y (2007) Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method. Opt Express 15(14):9048–9062

    Article  Google Scholar 

  41. Valerio G, Baccarelli P, Burghignoli P, Galli A (2007) Comparative analysis of acceleration techniques for 2-D and 3-D Green’s functions in periodic structures along one and two directions. IEEE Trans Antennas Propagat 55(6):1630–1643

    Article  MathSciNet  Google Scholar 

  42. Jorgenson RE, Mittra R (1990) Efficient calculation of the free-space periodic Green’s function. IEEE Trans Antennas Propagat 38(5):633–642

    Article  MathSciNet  MATH  Google Scholar 

  43. Singh S, Richards WF, Zinecker JR, Wilton DR (1990) Accelerating the convergence of series representing the free space periodic Green’s function. IEEE Trans Antennas Propagat 38(12):1958–1962

    Article  Google Scholar 

  44. Singh S, Singh R (1991) Efficient computation of the free-space periodic Green’s function. IEEE Trans Antennas Propagat 39(7):1226–1229

    Google Scholar 

  45. Capolino F, Albani M, Maci S, Felsen LB (2000) Frequency-domain Green’s function for a planar periodic semi-infinite phased array—Part I: truncated floquet wave formulation. IEEE Trans Antennas Propagat 48(1):67–74

    Article  MathSciNet  MATH  Google Scholar 

  46. Sadiku MNO (2000) Numerical techniques in electromagnetics. CRC Press, Boca Raton

    Book  Google Scholar 

  47. Torquato S, Stillinger FH (2013) Periodic boundary conditions and the fast multipole method. Phys Rev E 68(4):041113:1–25

    Google Scholar 

  48. Chaumet PC, Rahmani A, Bryant GW (2003) Generalization of the coupled dipole method to periodic structures. Phys Rev B 67(16):165404:1–5

    Google Scholar 

  49. Shan Y, Klepeis JL, Eastwood MP, Dror RO, Shaw DE (2005) Gaussian split Ewald: a fast Ewald mesh method for molecular simulation. J Chem Phys 122(4):054101:1–13

    Google Scholar 

  50. Tuchscherer P, Rewitz C, Voronine DV, García de Abajo FJ, Pfeiffer W, Brixner T (2009) Analytic coherent control of plasmon propagation in nanostructures. Opt Express 17(16):14235–14259

    Article  Google Scholar 

  51. Malits P (2010) Doubly periodic array of thin rigid inclusions in an elastic solid. Q J Mech Appl Math 63(2):115–144

    Article  MathSciNet  MATH  Google Scholar 

  52. Chen HC (1983) Theory of electromagnetic waves: a coordinate-free approach. McGraw-Hill, New York

    Google Scholar 

  53. Taflove A, Hagness SC (2005) Computational electromagnetics: the finite-difference time-domain method. Arthech. House Inc., Norwood

    Google Scholar 

  54. Pelletti C, Mittra R (2012) Three-dimensional FSS elements with wide frequency and angular responses. In: IEEE Antennas and Propagation Society international symposium, Chicago, IL, July 2012

    Google Scholar 

  55. Papoulis A (1968) Systems and transforms with applications in optics. McGraw-Hill, New York

    Google Scholar 

  56. Chew WC (1995) Waves and fields in inhomogeneous media. IEEE Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Pelletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pelletti, C., Arya, R.K., Rashidi, A., Mosallaei, H., Mittra, R. (2014). Numerical Techniques for Efficient Analysis of FSSs, EBGs and Metamaterials. In: Mittra, R. (eds) Computational Electromagnetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4382-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4382-7_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4381-0

  • Online ISBN: 978-1-4614-4382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics