Skip to main content

Abstract

The antioxidant capacity of natural products has been measured by a variety of methods and is determined by several factors and thus it should be mentioned which factor is being measured by the method employed. There is no universal method that can measure the antioxidant capacity very accurately and quantitatively because the antioxidant activity estimation is highly affected by the ROS or RNS employed in the assay, even though the chemical structure of the selected antioxidant molecule primarily determines its antioxidant capacity. It is thus important to employ multiple antioxidant assays to characterize the nature of the selected antioxidant preparation. This chapter reviews the different antioxidant capacity assays that have been employed to evaluate the antioxidant properties of natural compounds in foods, botanicals, nutraceuticals, dietary supplements, and biological fluids. The important advantages and shortcomings of each method are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhijith KS, Kumar Sujith PV, Kumar MA (2007) Immobilized tyrosinase-based biosensor for the detection of tea polyphenols. Anal Bioanal Chem 389:2227–2234

    Article  CAS  Google Scholar 

  • Aiyegoro OA, Okoh AI (2010) Preliminary phytochemical screening and in vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complement Altern Med 10:21

    Article  CAS  Google Scholar 

  • Ak T, Gulcin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37

    Article  CAS  Google Scholar 

  • Akoh CC (1994) Oxidative stability of fat substitutes and vegetable-oils by the oxidative stability index method. J Am Oil Chem Soc 71:211–216

    Article  CAS  Google Scholar 

  • Alho H, Leinonen J (1999) Total antioxidant activity measured by chemiluminescence methods. Methods Enzymol 299:3–15

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  Google Scholar 

  • AOCS (1992) Method Cd 12b-92. Official methods and recommended practices of the American Oil Chemists Society, 5th edn. American Oil Chemists Society, Champaign, IL

    Google Scholar 

  • Apak R, Guclu K, Ozyurek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52:7970–7981

    Article  CAS  Google Scholar 

  • Apak R, Guclu K, Ozyurek M, Esin Karademir S, Ercag E (2006) The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int J Food Sci Nutr 57:292–304

    Article  CAS  Google Scholar 

  • Apak R, Guclu K, Ozyurek M, Celik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160:413–419

    Article  CAS  Google Scholar 

  • Apak R, Guclu K, Ozyurek M, Bektasoglu B, Bener M (2010) Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers. Methods Mol Biol 594:215–239

    Article  CAS  Google Scholar 

  • Arnao MB, Cano A, Hernandez-Ruiz J, Garcia-Canovas F, Acosta M (1996) Inhibition by L-ascorbic acid and other antioxidants of the 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase: a new approach for determining total antioxidant status of foods. Anal Biochem 236:255–261

    Article  CAS  Google Scholar 

  • Arnao MB, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73:239–244

    Article  CAS  Google Scholar 

  • Aruoma OI (1994) Deoxyribose assay for detecting hydroxyl radicals. In: Packer L (ed) Oxygen radicals in biological systems, Part C. Methods in enzymology, vol 233, 1st edn. Academic, San Diego, CA, pp 57–66

    Chapter  Google Scholar 

  • Aruoma OI, Murcia A, Butler J, Halliwell B (1993) Evaluation of the antioxidant and pro-oxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880–1885

    Article  CAS  Google Scholar 

  • Bartosz G, Janaszewska A, Ertel D, Bartosz M (1998) Simple determination of peroxyl radical-trapping capacity. Biochem Mol Biol Int 46(3):519–528

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Bekdeser B, Ozyurek M, Guclu K, Apak R (2011) tert-Butylhydroquinone as a spectroscopic probe for the superoxide radical scavenging activity assay of biological samples. Anal Chem 83:5652–5660

    Article  CAS  Google Scholar 

  • Bentayeb K, Rubio C, Nerin C (2012) Study of the antioxidant mechanisms of Trolox and eugenol with 2,2′-azobis(2-amidinepropane)dihydrochloride using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Analyst 137:459–470

    Article  CAS  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    Article  CAS  Google Scholar 

  • Benzie IF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  CAS  Google Scholar 

  • Benzie IF, Szeto YT (1999) Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 47(2):633–636

    Article  CAS  Google Scholar 

  • Benzie IF, Chung WY, Strain JJ (1999) “Antioxidant” (reducing) efficiency of ascorbate in plasma is not affected by concentration. J Nutr Biochem 10:146–150

    Article  CAS  Google Scholar 

  • Berliner JA, Heinecke JW (1996) The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 5:707–727

    Article  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200

    Article  Google Scholar 

  • Bors W, Michel C, Saran M, Lengfelder E (1978) The involvement of oxygen radicals during the autoxidation of adrenalin. Biochim Biophys Acta 540:162–172

    Article  CAS  Google Scholar 

  • Bors W, Michel C, Saran M (1984) Inhibition of bleaching of the carotenoid crocin, a rapid test for quantifying antioxidant activity. Biochem Biophys Acta 796:312–319

    Article  CAS  Google Scholar 

  • Bortolomeazzi R, Sebastianutto N, Toniolo R, Pizzariello A (2007) Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential. Food Chem 100:1481–1489

    Article  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Ann Rev Plant Biol 43:83–116

    Article  CAS  Google Scholar 

  • Brand ND, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  • Brannan RG, Connolly BJ, Decker EA (2001) Peroxynitrite: a potential initiator of lipid oxidation in food. Trends Food Sci Technol 12:164–173

    Article  CAS  Google Scholar 

  • Briante R, Febbraio F, Nucci R (2003) Antioxidant properties of low molecular weight phenols present in Mediterranean diet. J Agric Food Chem 51:6575–6981

    Article  CAS  Google Scholar 

  • Buss JL, Torti FM, Torti SV (2003) The role of iron chelation in cancer therapy. Curr Med Chem 10:1021–1034

    Article  CAS  Google Scholar 

  • Calliste CA, Trouillas P, Allais DP, Simon A, Duroux JL (2001) Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants. J Agric Food Chem 49:3321–3327

    Article  CAS  Google Scholar 

  • Campos C, Guzman R, Lopez-Fernandez E, Casado A (2009) Evaluation of the copper(II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: the CUPRAC-BCS assay. Anal Biochem 392(1):37–44

    Article  CAS  Google Scholar 

  • Cano A, Hernandez-Ruiz J, Garcia-Canovas F, Acosta M, Arnao MB (1998) An end-point method for estimation of the total antioxidant activity in plant material. Phytochem Anal 9:196–202

    Article  CAS  Google Scholar 

  • Cano A, Acosta M, Arnao MB (2000) A method to measure antioxidant activity in organic media: application to lipophilic vitamins. Redox Rep 5:365–370

    Article  CAS  Google Scholar 

  • Cao GH, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14:303–311

    Article  CAS  Google Scholar 

  • Cao G, Wu AH, Wang H, Prior RL (1995) Automated assay of oxygen radical absorbance capacity with the cobas fara II. Clin Chem 41:1738–1744

    CAS  Google Scholar 

  • Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 22:749–760

    Article  CAS  Google Scholar 

  • Carini M, Aldini G, Piccone M, Facino RM (2000) Fluorescent probes as markers of oxidative stress in keratinocyte cell lines following UVB exposure. Farmaco 55:526–534

    Article  CAS  Google Scholar 

  • Celik SE, Ozyurek M, Guclu K, Apak R (2010) Determination of antioxidants by a novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) assay with post-column detection. Anal Chim Acta 674:79–88

    Article  CAS  Google Scholar 

  • Chen J, Lindmark-Mansson H, Gorton L, Akesson B (2003) Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int Dairy J 13:927–935

    Article  CAS  Google Scholar 

  • Chen IC, Chang HC, Yang HW, Cheng GL (2004) Evaluation of total antioxidant activity of several popular vegetables and Chinese herbs: a fast approach with ABTS/H2O2/HRP system in microplates. J Food Drug Anal 12:29–33

    CAS  Google Scholar 

  • Cheng Z, Moore J, Yu L (2006) A high-throughput relative DPPH radical scavenging capacity (RDSC) assay. J Sci Food Agric 54:7429–7436

    Article  CAS  Google Scholar 

  • Cheng Z, Zhou H, Yin JJ, Yu L (2007) ESR estimation of hydroxyl radical scavenging capacity for lipophilic antioxidants. J Agric Food Chem 55:3325–3333

    Article  CAS  Google Scholar 

  • Corral-Aguayo RD, Yahia EM, Carrillo-Lopez A, Gonzalez-Aguilar G (2008) Correlation between some nutritional components and the total antioxidant capacity measured with six different assays in eight horticultural crops. J Agric Food Chem 56:10498–10504

    Article  CAS  Google Scholar 

  • Damien Dorman HJ, Shikov AN, Pozharitskaya ON, Hiltunen R (2011) Antioxidant and pro-oxidant evaluation of a Potentilla alba L. rhizome extract. Chem Biodivers 8:1344–1356

    Article  CAS  Google Scholar 

  • Davalos S, Gomez-Cordoves C, Bartolome B (2004) Extending applicability of the oxygen radical absorbance capacity (ORAC fluorescein) assay. J Agric Food Chem 52:48–54

    Article  CAS  Google Scholar 

  • De Beer D, Joubert E, Gelderblom WCA, Manley M (2003) Antioxidant activity of South African red and white wines: free radical scavenging. J Agric Food Chem 51:902–909

    Article  CAS  Google Scholar 

  • DeLange RJ, Glazer AN (1989) Phycoerythrin fluorescence-based assay for peroxy radicals: a screen for biologically relevant protective agents. Anal Biochem 177:300–306

    Article  CAS  Google Scholar 

  • Di Majo D, Giammanco M, LaGuardia M, Tripoli E, Giammanco S, Finotti E (2005) Flavanones in citrus fruit: structure-antioxidant activity relationships. Food Res Int 38:1161–1166

    Article  CAS  Google Scholar 

  • Diez L, Livertoux MH, Stark AA, Rousseau MW, Leroy P (2001) High-performance liquid chromatographic assay of hydroxyl free radical using salicylic acid hydroxylation during in vitro experiments involving thiols. J Chromatogr B Biomed Sci Appl 763:185–193

    Article  CAS  Google Scholar 

  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999a) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  CAS  Google Scholar 

  • Dimmeler S, Herman C, Galle J, Zeiher AM (1999b) Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol 19:656–664

    Article  CAS  Google Scholar 

  • Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  CAS  Google Scholar 

  • Finotti E, Di Majo D (2003) Influence of solvents on the antioxidant property of flavonoids. Nahrung 47:186–187

    Article  CAS  Google Scholar 

  • Fiore A, La Fauci L, Cervellati R, Guerra MC, Speroni E, Costa S, Galvano G, De Lorenzo A, Bacchelli V, Fogliano V, Galvano F (2005) Antioxidant activity of pasteurized and sterilized commercial red orange juices. Mol Nutr Food Res 49:1129–1135

    Article  CAS  Google Scholar 

  • Flohe L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104

    Article  CAS  Google Scholar 

  • Fogliano V, Verde V, Randazzo G, Ritieni A (1999) Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J Agric Food Chem 47:1035–1040

    Article  CAS  Google Scholar 

  • Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73:627–650

    CAS  Google Scholar 

  • Foti MC, Daquino C, Geraci C (2004) Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH(*) radical in alcoholic solutions. J Org Chem 69:2309–2314

    Article  CAS  Google Scholar 

  • Frankel EN (1993) In search of better methods to evaluate natural antioxidants and oxidative stability in food lipids. Trends Food Sci Technol 4:220–225

    Article  CAS  Google Scholar 

  • Frankel EN, Meyer AS (2000) The problems of using one dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric 80:1925–1941

    Article  CAS  Google Scholar 

  • Fujita H, Morita I, Murota S (2000) Hydrogen peroxide induced apoptosis of endothelial cells concomitantly with cycloheximide. J Atheroscler Thromb 7:209–215

    CAS  Google Scholar 

  • Fukutomi J, Fukuda A, Fukuda S, Hara M, Terada A, Yoshida M (2006) Scavenging activity of indole compounds against cisplatin-induced reactive oxygen species. Life Sci 80:254–257

    Article  CAS  Google Scholar 

  • Furuno K, Akasako T, Sugihara N (2002) The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids. Biol Pharm Bull 25(1):19–23

    Article  CAS  Google Scholar 

  • Gamella M, Campuzano S, Reviego AJ (2006) Electrochemical estimation of the polyphenol index in wines using a laccase biosensor. J Agric Food Chem 54:7960–7967

    Article  CAS  Google Scholar 

  • Ghiselli A, Serafini M, Maiani G, Azzini E, Ferro-Luzzi A (1995) A fluorescence-based method for measuring total plasma antioxidant capability. Free Radic Biol Med 18:29–36

    Article  CAS  Google Scholar 

  • Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29(11):1106–1114

    Article  CAS  Google Scholar 

  • Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM, Kader AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589

    Article  CAS  Google Scholar 

  • Giokas DL, Vlessidis AG, Evmiridis NP (2007) On-line selective detection of antioxidants free-radical scavenging activity based on Co(II)/EDTA-induced luminol chemiluminescence by flow injection analysis. Anal Chim Acta 589:59–65

    Article  CAS  Google Scholar 

  • Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. Wiley, New York, pp F1.2.1–F1.2.6

    Google Scholar 

  • Glazer AN (1990) Phycoerythrin fluorescence-based assay for reactive oxygen species. Methods Enzymol 186:161–168

    Article  CAS  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC (2006) Use of fluorescence probes for detection of reactive nitrogen species: a review. J Fluoresc 16:119–139

    Article  CAS  Google Scholar 

  • Gulcin I (2008) Measurement of antioxidant ability of melatonin and serotonin by the DMPD and CUPRAC methods as trolox equivalent. J Enzyme Inhib Med Chem 23:871–876

    Article  CAS  Google Scholar 

  • Gulcin I, Dastan A (2007) Synthesis of dimeric phenol derivatives and determination of in vitro antioxidant and radical scavenging activities. J Enzyme Inhib Med Chem 22(6):685–695

    Article  CAS  Google Scholar 

  • Gulcin I, Beydemir S, Alici HA, Elmastas M, Buyukokuroglu ME (2004) In vitro antioxidant properties of morphine. Pharmacol Res 49:59–66

    Article  CAS  Google Scholar 

  • Gulcin I, Bursal E, Sehitoglu MH, Bilsel M, Goren AC (2010) Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem Toxicol 48:2227–2238

    Article  CAS  Google Scholar 

  • Gulcin I, Topal F, Cakmakcı R, Goren AC, Bilsel M, Erdogan U (2011) Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). J Food Sci 76:C585–C593

    Article  CAS  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfield PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    Article  CAS  Google Scholar 

  • Halliwell B (2002) Food-derived antioxidants: how to evaluate their importance in food and in-vivo. In: Cadens E, Packer L (eds) Handbook of antioxidants, 2nd edn. Marcel Dekker, New York, pp 1–45

    Google Scholar 

  • Haro-Vicente JF, Martinez-Gracia C, Ros G (2006) Optimization of in vitro measurement of available iron from different fortificants in citric fruit juices. Food Chem 98:639–648

    Article  CAS  Google Scholar 

  • Hazra B, Biswas S, Mandal N (2008) Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement Altern Med 8:63

    Article  CAS  Google Scholar 

  • Hazra B, Sarkar R, Biswas S, Mandal N (2010) Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis. BMC Complement Altern Med 10:20

    Article  Google Scholar 

  • Hou YC, Janczuk A, Wang PG (1999) Current trends in the development of nitric oxide donors. Curr Pharm Des 5:417–441

    CAS  Google Scholar 

  • Huang D, Ou B, Hampsch-Woodil M, Flanagan JA, Prior RL (2002a) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444

    Article  CAS  Google Scholar 

  • Huang D, Ou B, Hampsch-Woodil M, Flanagan JA, Deemer EK (2002b) Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated β-cyclodextrin as the solubility enhancer. J Agric Food Chem 50:1815–1821

    Article  CAS  Google Scholar 

  • Huang D, Boxin O, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  • Ignatov S, Shishniashvili D, Ge B, Scheller FW, Lisdat F (2002) Amperometric biosensor based on a functionalized gold electrode for the detection of antioxidants. Biosens Bioelectron 17(3):191–199

    Article  CAS  Google Scholar 

  • Jagtap UB, Panaskar SN, Bapat VA (2010) Evaluation of antioxidant capacity and phenol content in jackfruit (Artocarpus heterophyllus Lam.) fruit pulp. Plant Foods Hum Nutr 65:99–104

    Article  CAS  Google Scholar 

  • Jarosz-Wilkolazka A, Ruzgas T, Gorton L (2004) Use of laccase-modified electrode for amperometric detection of plant flavonoids. Enzyme Microb Technol 35:238–241

    Article  CAS  Google Scholar 

  • Jimenez-Escrig A, Jimenez-Jimenez I, Sanchez-Moreno C, Saura-Calixto F (2000) Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picrylhydrazyl. J Sci Food Agric 80:1686–1690

    Article  CAS  Google Scholar 

  • Kamiyama M, Kishimoto Y, Tani M, Andoh K, Utsunomiya K, Kondo K (2009) Inhibition of low-density lipoprotein oxidation by Nagano purple grape (Vitis vinifera x Vitis labrusca). J Nutr Sci Vitaminol (Tokyo) 55:471–478

    Article  CAS  Google Scholar 

  • Kampa M, Nistikaki A, Tsaousis V, Maliaraki N, Notas G, Castanas E (2002) A new automated method for the determination of the Total Antioxidant Capacity (TAC) of human plasma, based on the crocin bleaching assay. BMC Clin Pathol 2:3

    Article  Google Scholar 

  • Kilinc E (2005) Determination of the hydroxyl radical by its adduct formation with phenol and liquid chromatography/electrochemical detection. Talanta 65:876–881

    Article  CAS  Google Scholar 

  • Kohri S, Fujii H, Oowada S, Endoh N, Sueishi Y, Kusakabe M, Shimmei M, Kotake Y (2009) An oxygen radical absorbance capacity-like assay that directly quantifies the antioxidant’s scavenging capacity against AAPH-derived free radicals. Anal Biochem 386(2):167–171

    Article  CAS  Google Scholar 

  • Kong B, Xiong YL (2006) Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J Agric Food Chem 54:6059–6068

    Article  CAS  Google Scholar 

  • Kontogianni VG, Gerothanassis IP (2012) Phenolic compounds and antioxidant activity of olive leaf extracts. Nat Prod Res 26:186–189

    Article  CAS  Google Scholar 

  • Kozlowski D, Trouillas P, Calliste C, Marsal P, Lazzaroni R, Duroux JL (2007) Density functional theory study of the conformational, electronic and antioxidant properties of natural chalcones. J Phys Chem 111:1138–1145

    Article  CAS  Google Scholar 

  • Krishnamurthy K, John VD (2005) Synthesis, characterization and antitumor studies of metal chelates of some synthetic curcuminoids. Transit Metal Chem 30:229–233

    Article  CAS  Google Scholar 

  • Lee G, Rossi MR, Coichev N, Moya HD (2011) The reduction of Cu(II)/neocuproine complexes by some polyphenols: total polyphenols determination in wine samples. Food Chem 126:679–686

    Article  CAS  Google Scholar 

  • Leinonen J, Rantalaiho V, Lehtimäki T, Koivula T, Wirta O, Pasternack A, Alho H (1998) The association between the total antioxidant potential of plasma and the presence of coronary heart disease and renal dysfunction in patients with NIDDM. Free Radic Res 29:273–281

    Article  CAS  Google Scholar 

  • Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers AEMF, Rietjens IMCM (2001) The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic Biol Med 31:869–881

    Article  CAS  Google Scholar 

  • Leonard SS, Keil D, Mehlman T, Proper S, Shi X, Harris GK (2006) Essiac tea: scavenging of reactive oxygen species and effects on DNA damage. J Ethnopharmacol 103:288–296

    Article  CAS  Google Scholar 

  • Li B, Gutierrez PL, Blough NV (1997) Trace determination of hydroxyl radical in biological systems. Anal Chem 69:4295–4302

    Article  CAS  Google Scholar 

  • Li L, Abe Y, Kanagawa K, Usui N, Imai K, Mashino T, Mochizuki M, Miyata N (2004) Distinguishing the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method. Anal Chim Acta 512:121–124

    Article  CAS  Google Scholar 

  • Li YF, Liu ZM, Liu YL (2006) A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal Biochem 349:33–40

    Article  CAS  Google Scholar 

  • Liang C, Schwarzer K (1998) Comparison of four accelerated stability methods for lard and tallow with and without antioxidants. J Am Oil Chem Soc 75:1441–1443

    Article  CAS  Google Scholar 

  • Litescu SC, Eremia S, Radu GL (2010) Biosensors for the determination of phenolic metabolites. Adv Exp Med Biol 698:234–240

    Article  CAS  Google Scholar 

  • Litwinienko G, Ingold KU (2004) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69(18):5888–5896

    Article  CAS  Google Scholar 

  • Litwinienko G, Ingold KU (2005) Abnormal solvent effects on hydrogen atom abstraction. 3. Novel kinetics in sequential proton loss electron transfer chemistry. J Org Chem 70(22):8982–8990

    Article  CAS  Google Scholar 

  • Liu ZD, Hider RC (2002) Design of iron chelators with therapeutic applications. Coord Chem Rev 232:151–171

    Article  CAS  Google Scholar 

  • Liu HY, Qiu HH, Ding HH, Yao RQ (2008) Polyphenol contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res Int 42(4):363–370

    Article  CAS  Google Scholar 

  • Lodge JK, Traber MG, Packer L (1998) Thiol chelation of Cu2+ by dihydrolipoic acid prevents human low density lipoprotein peroxidation. Free Radic Med Biol 25:287–297

    Article  CAS  Google Scholar 

  • Lucas M, Solano F (1992) Coelenterazine is a superoxide anion-sensitive chemiluminescent probe: its usefulness in the assay of respiratory burst in neutrophils. Anal Biochem 206:273–277

    Article  CAS  Google Scholar 

  • MacDonald-Wicks LK, Wood LG, Garg ML (2006) Methodology for the determination of biological antioxidant capacity in vitro: a review. J Sci Food Agric 86:2046–2056

    Article  CAS  Google Scholar 

  • Magalhaes LM, Segundo MA, Reis S, Lima JLFC, Rangel AOSS (2006) Automatic method for the determination of Folin-Ciocalteu reducing capacity in food products. J Agric Food Chem 54:5241–5246

    Article  CAS  Google Scholar 

  • Magalhaes LM, Segundo MA, Reis S, Lima JLFC (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1–19

    Article  CAS  Google Scholar 

  • Manning P, McNeil CJ, Cooper JM, Hillhouse EW (1998) Direct, real-time sensing of free radical production by activated human glioblastoma cells. Free Radic Biol Med 24(7–8): 1304–1309

    Article  CAS  Google Scholar 

  • Mao SJT, Yates MT, Rechtin AE, Jackson RL, Sickle WAV (1991) Antioxidant activity of probucol and its analogues in hypercholesterolemic watanabe rabbits. J Med Chem 34:298–302

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  Google Scholar 

  • Medina-Remon A, Barrionuevo-Gonzalez A, Zamora-Ros R, Andres-Lacueva C, Estruch R, Martinez-Gonzalez MA, Diez-Espino J, Lamuela-Raventos RM (2009) Rapid Folin-Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Anal Chim Acta 634(1):54–60

    Article  CAS  Google Scholar 

  • Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industry. Food Chem 77:237–256

    Article  CAS  Google Scholar 

  • Mello LD, Sotomayor MDPT, Kubota LT (2003) HRP-based amperometric biosensor for the polyphenols determination in vegetable extracts. Sens Actuators B 96:636–645

    Article  CAS  Google Scholar 

  • Miguel MG (2010) Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragr J 25:291–312

    Article  CAS  Google Scholar 

  • Milardovic S, Ivekovic D, Ruwenjak V, Grabaric BS (2005) Use of DPPH/DPPH redox couple for biamperometric determination of antioxidant activity. Electroanalysis 17:1847–1853

    Article  CAS  Google Scholar 

  • Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412

    CAS  Google Scholar 

  • Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384:240–242

    Article  CAS  Google Scholar 

  • Moore J, Yin J, Yu L (2006) Novel fluorometric assay for hydroxyl radical scavenging capacity (HOSC) estimation. J Agric Food Chem 54:617–626

    Article  CAS  Google Scholar 

  • Mukherjee S, Pawar N, Kulkarni O, Nagarkar B, Thopte S, Bhujbal A, Pawar P (2011) Evaluation of free-radical quenching properties of standard Ayurvedic formulation Vayasthapana Rasayana. BMC Complement Altern Med 11:38

    Article  Google Scholar 

  • Musialik M, Litwinienko G (2005) Scavenging of dpph* radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org Lett 7(22): 4951–4954

    Article  CAS  Google Scholar 

  • Musialik M, Kuzmicz R, Pawłowski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74(7):2699–2709

    Article  CAS  Google Scholar 

  • Nakajima K (1996) BUNSEKI 7:518–524

    Google Scholar 

  • Nakatani N, Tachibana Y, Kikuzaki H (2001) Establishment of a model substrate oil for antioxidant activity assessment by Oil Stability Index method. J Am Oil Chem Soc 78:19–23

    Article  CAS  Google Scholar 

  • Natella F, Nardini M, De Felice M, Scaccini C (1999) Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J Agric Food Chem 47:1453–1459

    Article  CAS  Google Scholar 

  • Nenadis N, Lazaridou O, Tsimidou MZ (2007) Use of reference compounds in antioxidant activity assessment. J Agric Food Chem 55:5452–5460

    Article  CAS  Google Scholar 

  • Niederländer HA, van Beek TA, Bartasiute A, Koleva II (2008) Antioxidant activity assays on-line with liquid chromatography. J Chromatogr A 1210(2):121–134

    Article  CAS  Google Scholar 

  • Niki E (1990) Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol 186:100–108

    Article  CAS  Google Scholar 

  • Niki E, Noguchi N (2000) Evaluation of antioxidant capacity. What capacity is being measured by which method? IUBMB Life 50(4-5):323–329

    Article  CAS  Google Scholar 

  • Nkhili E, Brat P (2011) Reexamination of the ORAC assay: effect of metal ions. Anal Bioanal Chem 400(5):1451–1458

    Article  CAS  Google Scholar 

  • Nobushi Y, Uchikura K (2010) Selective detection of hydroxyl radical scavenging capacity based on electrogenerated chemiluminescence detection using Tris(2,2′-bipyridine)ruthenium(III) by flow injection analysis. Chem Pharm Bull 58(1):117–120

    Article  CAS  Google Scholar 

  • Notas G, Miliaraki N, Kampa M, Dimoulios F, Matrella E, Hatzidakis A, Castanas E, Kouroumalis E (2005) Patients with primary biliary cirrhosis have increased serum total antioxidant capacity measured with the crocin bleaching assay. World J Gastroenterol 11(27):4194–4198

    Google Scholar 

  • Offen D, Gilgun-Sherki Y, Barhum Y, Benhar M, Grinberg L, Reich R, Melamed E, Atlas D (2004) A low molecular weight copper chelator crosses the blood-brain barrier and attenuates experimental autoimmune encephalomyelitis. J Neurochem 89:1241–1251

    Article  CAS  Google Scholar 

  • Ogasawara Y, Namai T, Yoshino F, Lee MC, Ishii K (2007) Sialic acid is an essential moiety of mucin as a hydroxyl radical scavenger. FEBS Lett 581:2473–2477

    Article  CAS  Google Scholar 

  • Ogawa A, Arai H, Tanizawa H, Miyahara T, Toyo’oka T (1999) On-line screening method for antioxidants by liquid-chromatography with chemiluminescence detection. Anal Chim Acta 383:221–230

    Article  CAS  Google Scholar 

  • Olojo RO, Xia RH, Abramson JJ (2005) Spectrophotometric and fluorometric assay of superoxide ion using 4-chloro-7-nitrobenzo-3-oxa-1,3-diazole. Anal Biochem 339:338–344

    Article  CAS  Google Scholar 

  • Ono M, Yamamoto M, Masuoka C, Ito Y, Yamashita M, Nohara T (1999) Diterpenes form the fruits of Vitex rotundifolia. J Nat Prod 62:1532–1537

    Article  CAS  Google Scholar 

  • Ordoudi SA, Tsimidou MZ (2006a) Crocin bleaching assay step by step: observations and suggestions for an alternative validated protocol. J Agric Food Chem 54(5):1663–1671

    Article  CAS  Google Scholar 

  • Ordoudi SA, Tsimidou MZ (2006b) Crocin bleaching assay (CBA) in structure-radical scavenging activity studies of selected phenolic compounds. J Agric Food Chem 54(25):9347–9356

    Article  CAS  Google Scholar 

  • Ordoudi SA, Tsimidou MZ, Vafiadis A, Bakalbassis EG (2006) Structure-DPPH scavenging activity relationships: a parallel study of catechol and guaiacol acid derivatives. J Agric Food Chem 54:5763–5768

    Article  CAS  Google Scholar 

  • Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626

    Article  CAS  Google Scholar 

  • Ou B, Hampsch-Woodill M, Flanagan J, Deemer EK, Prior RL, Huang DJ (2002a) Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J Agric Food Chem 50:2772–2777

    Article  CAS  Google Scholar 

  • Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002b) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50(11):3122–3128

    Article  CAS  Google Scholar 

  • Ozenırler S, Erkan G, Gulbahar O, Bostankolu O, Ozbas Demırel O, Bılgıhan A, Akyol G (2011) Serum levels of advanced oxidation protein products, malonyldialdehyde, and total radical trapping antioxidant parameter in patients with chronic hepatitis C. Turk J Gastroenterol 22(1):47–53

    Google Scholar 

  • Ozturk M, Aydogmus-Ozturk F, Duru ME, Topcu G (2007) Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): an edible medicinal plant. Food Chem 103:623–630

    Article  CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrile in health and disease. Physiol Rev 87:315–424

    Article  CAS  Google Scholar 

  • Pascual C, Delcastillo MD, Romay C (1992) A new luminal sensitized chemiluminescence method for determination of superoxide-dismutase. Anal Lett 25:837–849

    Article  CAS  Google Scholar 

  • Patil RP, Pai SR, Pawar NV, Shimpale VB, Patil RM, Nimbalkar MS (2012) Chemical characterization, mineral analysis, and antioxidant potential of two underutilized berries (Carissa carandus and Eleagnus conferta) from the Western Ghats of India. Crit Rev Food Sci Nutr 52: 312–320

    Article  CAS  Google Scholar 

  • Paya M, Halliwell B, Hoult JRS (1992) Interactions of a series of coumarins with reactive oxygen species. Biochem Pharmacol 44:205–214

    Article  CAS  Google Scholar 

  • Pekal A, Drozdz P, Biesaga M, Pyrzynska K (2011) Evaluation of the antioxidant properties of fruit and flavoured black teas. Eur J Nutr 50(8):681–688

    Article  CAS  Google Scholar 

  • Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819

    CAS  Google Scholar 

  • Perez-Jimenez J, Saura-Calixto F (2006) Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Res Int 39:791–800

    Article  CAS  Google Scholar 

  • Petersen AB, Gniadecki R, Vicanova J, Thorn T, Wulf HC (2000) Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes. Photochem Photobiol B 59:123–131

    Article  CAS  Google Scholar 

  • Pinto PCAG, Saraiva MFSL, Reis S (2005) Automatic sequential determination of the hydrogen peroxide scavenging activity and evaluation of the antioxidant potential by the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay in wines by sequential injection analysis. Anal Chim Acta 531:25–32

    Article  CAS  Google Scholar 

  • Porter NA, Caldwell SE, Mills KA (1995) Mechanism of free radical oxidation of unsaturated lipids. Lipids 30:277–290

    Article  CAS  Google Scholar 

  • Prasad KN, Chew LY, Khoo HE, Kong KW, Azlan A, Ismail A (2010) Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum Miq. fruit. J Biomed Biotechnol 2010. pii:871379

    Google Scholar 

  • Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27:1173–1181

    Article  CAS  Google Scholar 

  • Prior RL, Cao G, Martin A, Sofic E, McEwen OB, Lischner N, Mainland CM (1998) Antioxidant capacity as influenced by total phenol and anthocyanin content, maturity and variety of Vaccinium species. J Agric Food Chem 46:2686–2693

    Article  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

  • Qiang L, Zhou J (2009) Determination of nitric oxide using horseradish peroxidase by UV second-order derivative spectrometry. Anal Sci 25(12):1467–1470

    Article  CAS  Google Scholar 

  • Rahman MM, Ichiyanagi T, Komiyama T, Hatano Y, Konishi T (2006) Superoxide radical- and peroxynitrite-scavenging activity of anthocyanins; structure-activity relationship and their synergism. Free Radic Res 40(9):993–1002

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Rice-Evans C, Miller NJ (1994) Total antioxidant status in plasma and body fluids. Methods Enzymol 234:279–293

    Article  CAS  Google Scholar 

  • Rice-Evans AC, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  Google Scholar 

  • Robak J, Gryglewski RJ (1988) Flavanoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841

    Article  CAS  Google Scholar 

  • Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92:235–254

    Article  CAS  Google Scholar 

  • Rota C, Chignell CF, Mason RP (1999) Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescin by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med 27:873–881

    Article  CAS  Google Scholar 

  • Roura E, Andres-Lacueva C, Estruch R, Lamuela-Raventos RM (2006) Total polyphenol intake estimated by a modified Folin-Ciocalteu assay of Urine. Clin Chem 52(4):749–752

    Article  CAS  Google Scholar 

  • Saleh L, Plieth C (2009) Fingerprinting antioxidative activities in plants. Plant Methods 5:2

    Article  CAS  Google Scholar 

  • Samadi A, Soriano E, Revuelta J, Valderas C, Chioua M, Garrido I, Bartolomé B, Tomassolli I, Ismaili L, González-Lafuente L, Villarroya M, García AG, Oset-Gasque MJ, Marco-Contelles J (2011) Synthesis, structure, theoretical and experimental in vitro antioxidant/pharmacological properties of α-aryl, N-alkyl nitrones, as potential agents for the treatment of cerebral ischemia. Bioorg Med Chem 19(2):951–960

    Article  CAS  Google Scholar 

  • Sanchez-Moreno C (2002) Review: methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Intern 8:121–137

    CAS  Google Scholar 

  • Sanchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270–276

    Article  CAS  Google Scholar 

  • Scalzo J, Mezzetti B, Battino M (2005) Total antioxidant capacity evaluation: critical steps for assaying berry antioxidant features. Biofactors 23(4):221–227

    Article  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101(1):7–12

    CAS  Google Scholar 

  • Schlesier K, Harwat M, Böhm V, Bitsch R (2002) Assessment of antioxidant activity by using different in vitro methods. Free Radic Res 36:177–187

    Article  CAS  Google Scholar 

  • Schwarzlander M, Fricker MD, Marty L, Brach T, Novak J, Sweetlove LJ, Meyer AJ (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microsc 231(2):299–316

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 16:144–158

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–179

    Article  CAS  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Viticult 28:49–55

    CAS  Google Scholar 

  • Soldera S, Sebastianutto N, Bortolomeazzi R (2008) Composition of phenolic compounds and antioxidant activity of commercial aqueous smoke flavorings. J Agric Food Chem 56(8): 2727–2734

    Article  CAS  Google Scholar 

  • Somogyi A, Rosta K, Pusztai P, Tulassay Z, Nagy G (2007) Antioxidant measurements. Physiol Meas 28(4):R41–R55

    Article  Google Scholar 

  • Sreejayan N, Rao MNA (1997) Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49:105–107

    Article  CAS  Google Scholar 

  • Stasko A, Brezova V, Biskupic S, Misik V (2007) The potential pitfalls of using 1, 1-diphenyl-2-picrylhydrazyl to characterize antioxidants in mixed water solvents. Free Radic Res 41:379–390

    Article  CAS  Google Scholar 

  • Stevanato R, Fabris S, Momo F (2004) New enzymatic method for the determination of total phenolic content in tea and wine. J Agric Food Chem 52:6287–6293

    Article  CAS  Google Scholar 

  • Su L, Yin JJ, Charles D, Zhou K, Moore J, Yu L (2007) Total phenolic contents, chelating capacities and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem 100:990–997

    Article  CAS  Google Scholar 

  • Tai C, Gu XX, Zou H, Guo QH (2002) A new simple and sensitive fluorometric method for the determination of hydroxyl radical and its application. Talanta 58:661–667

    Article  CAS  Google Scholar 

  • Taira J, Nanbu H, Ueda K (2009) Nitric oxide-scavenging compounds in Agrimonia pilosa Ledeb on LPS-induced RAW264.7 macrophages. Food Chem 115:1221–1227

    Article  CAS  Google Scholar 

  • Takemura G, Onodera T, Millrd RW, Ashraf M (1993) Demonstration of hydroxyl radical and its role in hydrogen peroxide-induced myocardial injury: hydroxyl radical dependent and independent mechanisms. Free Radic Biol Med 15:13–25

    Article  CAS  Google Scholar 

  • Takeshita K, Ozawa T (2004) Recent progress in vivo ESR spectroscopy. J Radiat Res (Tokyo) 45(3):373–384

    Article  CAS  Google Scholar 

  • Tammeveski K, Tenno TT, Mashirin AA, Hillhouse EW, Manning P, McNeil CJ (1998) Superoxide electrode based on covalently immobilized cytochrome c: modelling studies. Free Radic Biol Med 25(8):973–978

    Article  CAS  Google Scholar 

  • Tang B, Zhang L, Geng Y (2005) Determination of the antioxidant capacity of different food natural products with a new developed flow injection spectrofluorimetry detecting hydroxyl radicals. Talanta 65:769–775

    Article  CAS  Google Scholar 

  • Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286(3):R431–R444

    Article  CAS  Google Scholar 

  • Taubert D, Breitenbach T, Lazar A, Censarek P, Harlfinger S, Berkels R, Klaus W, Roesen R (2003) Reaction rate constants of superoxide scavenging by plant antioxidants. Free Radic Biol Med 35(12):1599–1607

    Article  CAS  Google Scholar 

  • Tobin D, Arvanitidis M, Bisby RH (2002) One-electron oxidation of “photo-Fenton” reagents and inhibition of lipid peroxidation. Biochem Biophys Res Commun 299:155–159

    Article  CAS  Google Scholar 

  • Tubaro F, Micossi E, Ursini F (1996) The antioxidant capacity of complex mixtures by kinetic analysis of crocin bleaching inhibition. J Am Oil Chem Soc 73:173–179

    Article  CAS  Google Scholar 

  • Turkkan B, Ozyurek M, Bener M, Guclü K, Apak R (2012) Synthesis, characterization and antioxidant capacity of naringenin-oxime. Spectrochim Acta A Mol Biomol Spectrosc 85(1):235–240

    Article  CAS  Google Scholar 

  • Tutem E, Apak R, Baykut F (1991) Spectrophotometric determination of trace amounts of copper(I) and reducing agents with neocuproine in the presence of copper(II). Analyst 116:89–94

    Article  CAS  Google Scholar 

  • Tyrakowska B, Soffers AEMF, Szymusiak H, Boeren S, Marelle GB, Lemanska K, Vervoort J, Rietjens IMCM (1999) TEAC antioxidant activity of 4-hydroxy-benzoates. Free Radic Biol Med 27:1427–1436

    Article  CAS  Google Scholar 

  • Ukeda H (2004) Bunseki Kagaku 53:221–231

    Google Scholar 

  • Van Acker SABE, Tromp MNJL, Haenen GRMM, Vand Der Vijgh WJF, Bast A (1995) Flavonoids as scavengers of nitric oxide radical. Biochem Biophys Res Commun 214:755–759

    Article  Google Scholar 

  • Van Beek TA, Tetala KKR, Koleva II, Dapkevicius A, Exarchou V, Jeurissen SMF, Classen FW, Van Der Klift EJC (2009) Recent developments in the rapid analysis of plants and tracking their bioactive constituents. Phytochem Rev 8:387–399

    Article  CAS  Google Scholar 

  • Van den Berg R, Haenen GRMM, Van den Berg H, Bast A (1999) Applicability of an improved trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66:511–517

    Article  Google Scholar 

  • Vriesman MF, Haenen GR, Westerveld GJ, Paquay JB, Voss HP, Bast A (1997) A method for measuring nitric oxide radical scavenging activity. Scavenging properties of sulfur-containing compounds. Pharm World Sci 19(6):283–286

    Article  CAS  Google Scholar 

  • Wang H, Cao G, Prior R (1996) Total antioxidant capacity of fruits. J Agric Food Chem 22:701–705

    Article  Google Scholar 

  • Wang M, Han Y, Nie Z, Lei C, Huang Y, Guo M, Yao S (2010) Development of a novel antioxidant assay technique based on G-quadruplex DNAzyme. Biosens Bioelectron 26(2):523–529

    Article  CAS  Google Scholar 

  • Wang J, Xu M, Chen M, Jiang Z, Chen G (2012) Study on sonodynamic activity of metallophthalocyanine sonosensitizers based on the sonochemiluminescence of MCLA. Ultrason Sonochem 19(2):237–242

    Article  CAS  Google Scholar 

  • Wayner DD, Burton GW, Ingold KU, Locke S (1985) Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett 187:33–37

    Article  CAS  Google Scholar 

  • Wayner DD, Burton GW, Ingold KU, Barclay LR, Locke SJ (1987) The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 924(3):408–419

    Article  CAS  Google Scholar 

  • Wei Y, Zhang Y, Liu Z, Guo M (2010) A novel profluorescent probe for detecting oxidative stress induced by metal and H2O2 in living cells. Chem Commun (Cambridge) 46:4472–4474

    Article  CAS  Google Scholar 

  • Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123(6):1173–1183

    Article  CAS  Google Scholar 

  • Xu W, Huang HC, Lin CJ, Jiang ZF (2010) Chitooligosaccharides protect rat cortical neurons against copper induced damage by attenuating intracellular level of reactive oxygen species. Bioorg Med Chem Lett 20(10):3084–3088

    Article  CAS  Google Scholar 

  • Yamaguchi F, Ariga T, Yoshimura Y, Nakazawa H (2000) Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. J Agric Food Chem 48:180–185

    Article  CAS  Google Scholar 

  • Yang X, Guo X (2001) Fe(II)-EDTA chelate-induced aromatic hydroxylation of terephthalate as a new method for the evaluation of hydroxyl radical-scavenging ability. Analyst 126:928–932

    Article  CAS  Google Scholar 

  • Yang WJ, Li DP, Li JK, Li MH, Chen YL, Zhang PZ (2009) Synergistic antioxidant activities of eight traditional Chinese herb pairs. Biol Pharm Bull 32(6):1021–1026

    Article  CAS  Google Scholar 

  • Yoshida A, Yoshino F, Tsubata M, Ikeguchi M, Nakamura T, Lee MC (2011) Direct assessment by electron spin resonance spectroscopy of the antioxidant effects of French maritime pine bark extract in the maxillofacial region of hairless mice. J Clin Biochem Nutr 49(2):79–86

    Article  CAS  Google Scholar 

  • Zhang L, Huang D, Kondo M, Fan E, Ji H, Kou Y, Ou B (2009) Novel high-throughput assay for antioxidant capacity against superoxide anion. J Agric Food Chem 57(7):2661–2667

    Article  CAS  Google Scholar 

  • Zhou K, Su L, Yu L (2004) Phytochemical and antioxidant properties in wheat bran. J Agric Food Chem 52:6108–6114

    Article  CAS  Google Scholar 

  • Zhou K, Yin J, Yu L (2005) Phenolic acid, tocopherol and carotenoid compositions, and antioxidant functions of hard red winter wheat bran. J Agric Food Chem 53:3916–3922

    Article  CAS  Google Scholar 

  • Zhou C, Sun C, Chen K, Li X (2011) Flavonoids, phenolics, and antioxidant capacity in the flower of Eriobotrya japonica Lindl. Int J Mol Sci 12(5):2935–2945

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Charles, D.J. (2012). Antioxidant Assays. In: Antioxidant Properties of Spices, Herbs and Other Sources. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4310-0_2

Download citation

Publish with us

Policies and ethics