Skip to main content

Digital Video

  • Chapter
  • First Online:
Multimedia Signals and Systems

Abstract

Video signals, as a specific type of multimedia data, require sophisticated processing algorithms. In this chapter, we focus on the video compression algorithms from the MPEG (MPEG-1, MPEG-2, and MPEG-4) and VCEG (H.261, H.263, and H.264) groups. As one of the newest standards, the H.264/MPEG-4 has been extensively elaborated (five types of frames, quarter pixel precision in motion estimation, prediction modes, etc.). The second part of the chapter is devoted to the QoS parameters and multimedia protocols (H.323 and SIP). The advanced level examples at the end of the chapter considers some recently published video compression results based on the Hermite expansion method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Akbulut O, Urhan O, Ertürk S (2006) Fast sub-pixel motion estimation by means of one-bit transform. In: Proceedings of ISCIS. Springer, Berlin, pp 503–510

    Google Scholar 

  2. Djurović I, Stanković S (2003) Estimation of time-varying velocities of moving objects in video-sequences by using time-frequency representations. IEEE Trans Image Process 12(5):550–562

    Article  Google Scholar 

  3. Djurović I, Stanković S, Oshumi A, Ijima H (2004) Motion parameters estimation by new propagation approach and time-frequency representations. Signal Process Image Commun 19(8):755–770

    Article  Google Scholar 

  4. Furth B, Smoliar S, Zhang H (1996) Video and image processing in multimedia systems. Kluwer Academic Publishers, Boston

    Google Scholar 

  5. Grob B, Herdon C (1999) Basic television and video systems. McGraw-Hill, New York

    Google Scholar 

  6. Karczewicz M, Kurceren R (2001) A proposal for SP-frames. ITU-T Video Coding Experts Group meeting, Eibsee, Germany, Doc. VCEG-L-27

    Google Scholar 

  7. Karczewicz M, Kurceren R (2003) The SP- and SI-frames design for H.264/AVC. IEEE Trans Circuit Syst Video Technol 13(7):637–644

    Article  Google Scholar 

  8. Kaup A (1999) Object-based texture coding of moving video in MPEG-4. IEEE Trans Circuit Syst Video Technol 9(1):5–15

    Article  MathSciNet  Google Scholar 

  9. Lie WN, Yeh HC, Lin TCI, Chen CF (2005) Hardware-efficient computing architecture for motion compensation interpolation in H.264 video coding. IEEE Int Symp Circuit Syst 3:2136–2139

    Google Scholar 

  10. Malvar HS, Hallapuro A, Karczevicz M, Kerofsky L (2003) Low-complexity transform and quantization in H.264/AVC. IEEE Trans Circuit Syst Video Technol 13(7):598–603

    Article  Google Scholar 

  11. Marpe D, Wiegand T, Sullivan GJ (2006) The H.264/MPEG-4 advanced video coding standard and its applications. IEEE Commun Mag 44(8):134–143

    Article  Google Scholar 

  12. Nisar H, Choi TS (2009) Fast and efficient fractional pixel motion estimation for H.264/AVC video coding. In: International conference on image processing (ICIP 2009), Cairo, Egypt, pp 1561–1564

    Google Scholar 

  13. Richardson I (2010) The H.264 Advanced video compression standard. Wiley, Chichester

    Book  Google Scholar 

  14. Richardson I (2002) Video codec design. Wiley, Chichester

    Book  Google Scholar 

  15. Salomon D, Motta G, Bryant D (2009) Handbook of data compression. Springer, London

    Google Scholar 

  16. Stanković S, Djurović I (2001) Motion parameter estimation by using time frequency representations. Electron Lett 37(24):1446–1448

    Article  Google Scholar 

  17. Stanković S, Orović I, Krylov A (2010) Video frames reconstruction based on time-frequency analysis and Hermite projection method. EURASIP J Adv Signal Process, Special Issue Time-Freq Anal Appl Multimedia Signals, Article ID 970105, 11 pages

    Google Scholar 

  18. Steinmetz R, Nahrstedt K (2004) Multimedia systems. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  19. Sullivan GJ, Wiegand T (2005) Video compression – from concepts to the H.264/AVC standard. Proc IEEE 93(1):18–31

    Article  Google Scholar 

  20. Sullivan GJ, Topiwala P, Luthra A (2004) The H.264/AVC advanced video coding standard: overview and introduction to the fidelity range extensions. In: SPIE conference on applications of digital image processing, vol 454. http://dx.doi.org/10.1117/12.564457

  21. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuit Syst Video Technol 13(7):560–576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdjan Stanković .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stanković, S., Orović, I., Sejdić, E. (2012). Digital Video. In: Multimedia Signals and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4208-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4208-0_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4207-3

  • Online ISBN: 978-1-4614-4208-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics