Skip to main content

Quantum Mechanics: The Unavoidable Path

  • Chapter
  • First Online:
  • 1031 Accesses

Abstract

In a lecture delivered on February 16, 1901, “on the molecular hypothesis,” Jean Perrin explained:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See p. 52.

  2. 2.

    Blue has a wavelength roughly two times smaller than red.

  3. 3.

    He finds that the curve is a function of the product λT of the wavelength of the radiation multiplied by the temperature T.

  4. 4.

    His exponential law was: \(\rho (\nu,T) = \alpha {\nu }^{3}{\mathrm{e}}^{-\beta \nu /T}\), where ν is the frequency of the radiation. The constants α and β are chosen so as to fit the experimental data and they are not given physical meaning.

  5. 5.

    The longest wavelength of visible light is in the red and equal to about 0.8 μm. The micrometer (μ)m is equal to one thousandth of a millimeter.

  6. 6.

    A temperature of 300K corresponds to \(300 - 273 = 27\) C, which is the temperature of a hot summer day.

  7. 7.

    The formula of Raleigh is \(\rho= \frac{8\pi {\nu }^{2}} {{c}^{3}} kT\), where ν is the frequency, k Boltzmann’s constant, and c the speed of light.

  8. 8.

    Meaning that he did not hold a chair.

  9. 9.

    For one mole of a perfect gas, that is, for 22.4 l at a temperature of 20C at atmospheric pressure, the constant R, multiplied by the absolute temperature T (which is the usual measured temperature plus 273C), is equal to the pressure of the gas multiplied by its volume.

  10. 10.

    See p. 69.

  11. 11.

    The theory of radiation and quanta.

  12. 12.

    See p. 54.

  13. 13.

    See p. 133.

  14. 14.

    See p. 56.

  15. 15.

    With the presently known values of the mass and charge of the electron, the value of Rydberg’s constant is 3.2899 ×1015s−1.

  16. 16.

    See p. 24.

  17. 17.

    Here stands for h∕2π. See below p. 50.

  18. 18.

    By purposely crazy reasoning, they “derived” the formula \({T}_{0} = -(2/\alpha- 1)\) degrees.

  19. 19.

    See p. 59.

  20. 20.

    There exist 15 elements which are called “rare earths” or lanthanides. Their atomic number range from 57 to 71: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Promethium was the last to be identified in 1947.

  21. 21.

    Recall that orbits with one, two, three… quanta are orbits whose principal quantum number n is one, two, three…. The number n determines approximately the size of the orbit, and its quantum number k the elongation (eccentricity) of the orbit. See p. 28.

  22. 22.

    See p. 32.

  23. 23.

    Today, the town is in Poland and it is called Wrocław.

  24. 24.

    See p. 11.

  25. 25.

    However, the name of Einstein was not mentioned in Compton’s paper.

  26. 26.

    The factor g is still used today. It is no longer a mystery and it still called the Landé factor.

  27. 27.

    When n = 2, k can acquire the two values k = 1,2; when k = 1, only the value m = 0 is allowed; when k = 2, the three values \(m = -1\), m = 0 and m = 1 are allowed; all together, when n = 2, there are four sets of allowed values for k and m and for each set, two values of m 2, which amounts to a total of eight.

  28. 28.

    The following account is, for the most part, taken from the introduction, by Klaus Stolzenburg, to the Volume 5 of the Collected Works of Niels Bohr.

  29. 29.

    See p. 15.

  30. 30.

    The word photon was proposed in 1926 by the American physicist Gilbert Lewis [93]. It was quickly adopted by physicists.

  31. 31.

    See p. 43.

  32. 32.

    That is the content of Newton’s famous equation f = ma where f is the force acting on the electron with a mass m. The electron undergoes an acceleration a.

  33. 33.

    We will describe later (p. 222) the Wilson chamber, in which an electrically charged particle, such as an electron, induces the condensation of small water droplets, a mist, which gives a material and visible form to the particle trajectory, in a fashion similar to the one of the white trail which is often observed behind high altitude jet planes in the sky.

  34. 34.

    See the footnote (p. 148) and the description of the Wilson cloud chamber( p. 222).

  35. 35.

    The momentum p of the electron is equal to the product mv of its mass m by it velocity v.

  36. 36.

    See p. 327–331.

References

  1. Le Verrier, U. J. J., “Recherches sur les mouvements d’Uranus”, Comptes Rendus de l’Académie des Sciences 22, 907–918, session of June 1, 1846.

    Google Scholar 

  2. Le Verrier, U. J. J., “Sur la planète qui produit les anomalies observées dans le mouvement d’Uranus”, Comptes Rendus de l’Académie des Sciences 43, 428–438, session of August 31, 1846.

    Google Scholar 

  3. Newton, I., Opticks, 1704, p. 314.

    Google Scholar 

  4. Wien, W., “Über die Energievertheilung im Emissionsspektrum eines schwarzen Körpers”, Annalen der Physik, Leipzig 58, 662–669, 1896.

    Google Scholar 

  5. Rubens, H. and Kurlbaum, F., “Über die Emission langwelliger Wärmestrahlen durch den schawarzen Körper bei verschiedenen Temperaturen”, Sitzungsberichte der Kaiserliche Preussischen Akademie der Wissenschaften zu Berlin, No. 2, 929–941, session of October 25, 1900.

    Google Scholar 

  6. Rayleigh, John William Strutt, Baron, “Remarks upon the Law of Complete Radiation”, Philosophical Magazine 49, 539–540, June 1900.

    Google Scholar 

  7. Planck, M., Scientific Autobiography and other papers, Williams & Norgate, London, 1950.

    Google Scholar 

  8. Hermann, A., Max Planck in Selbstzeugnissen und Bilddokumenten, Rowohlt, Reinbek bei Hamburg, 1973.

    Google Scholar 

  9. Heilbron, J. L., The dilemmas of an upright man: Max Planck as spokesman for German science, University of California Press, Berkeley, 1986.

    Google Scholar 

  10. Hermann, A., The Genesis of Quantum Theory (1899-1913), M.I.T. Press, Cambridge, 1971.

    Google Scholar 

  11. Planck, M., “Über eine Verbesserung der Wien’schen Spektralgleichung”, Verhandlungen der deutschen physikalischen Gesellschaft 2, 202–204, session of October 19, 1900.

    Google Scholar 

  12. Planck, M., “Die Entstehung und bisherige Entwickelung der Quantentheorie”, in Les prix Nobel en 1919 et 1920 (published in 1922), pp. 1–14, Imprimerie Royale, P. A. Norsted & Söner, Stockholm, 1920.

    Google Scholar 

  13. Planck, M., “letter to Robert Wood, dated October 7, 1931”, cited by A. Hermann, The Genesis of Quantum Theory, Cambridge, The M.I.T. Press, 1971, p. 23.

    Google Scholar 

  14. Planck, M., “Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum”, Verhandlungen der Deutsche physikalischen Gesellschaft 2, 237–245, session of December 14, 1900.

    Google Scholar 

  15. Planck, M., “Über das Gesetz der Energieverteilung im Normalspektrum”, Annalen der Physik 4, 553–563, 1901.

    Google Scholar 

  16. Frank, P., Einstein, his life and times, Johathan Cape, London, 1948.

    Google Scholar 

  17. Pais, A., Subtle is the Lord…. The Science and the Life of Albert Einstein, Oxford University Press, Oxford, 1982.

    Google Scholar 

  18. Fölsing, A., Albert Einstein: a biography, Viking, New York, 1997.

    Google Scholar 

  19. Einstein, A., “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtpunkt”, Annalen der Physik, Leipzig 17, 132–148, 1905.

    Google Scholar 

  20. Soler, L., “Les quanta de lumière d’Einstein en 1905, comme point focal d’un réseau argumentatif complexe”, Philosophia Scientiæ 3, 107–144, 1999.

    Google Scholar 

  21. Einstein, A., “Über die Entwickelung unserer Anschauungen über das Wesen und die Konstitution der Strahlung”, Verhandlungen der deutschen physikalischen Gesellschaft zu Berlin 7, 482–500, 1909.

    Google Scholar 

  22. Einstein, A., letter to Michele Besso, dated July 29, 1918, in Albert Einstein/Michele Besso: Correspondance 1903-1955, edited by Speziali, P., Hermann, Paris, p. 131.

    Google Scholar 

  23. Millikan, R. A., “A Direct Photoelectric Determination of Planck’s Constant “h””, Physical Review 7, 355–388, March 1916.

    Google Scholar 

  24. Dulong, P. L. and Petit, A. T., “Sur quelques points importants de la théorie de la chaleur”, Annales de Chimie et de Physique, Paris 10, 395–413, 1819.

    Google Scholar 

  25. Einstein, A., “Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme”, Annalen der Physik, Leipzig 22, 180–190, 1907.

    Google Scholar 

  26. Mehra, J., The Solvay Conferences on physics : aspects of the development of physics since 1911, D. Reidel, Dordrecht, 1975.

    Google Scholar 

  27. Marage, P. and Wallenborn, G. (editors), Les Conseils Solvay et les débuts de la physique moderne, Université Libre de Bruxelles, Bruxelles, 1995.

    Google Scholar 

  28. de Broglie, M., Les premiers conseils de physique Solvay et l’orientation de la physique depuis 1911, Albin Michel, Paris, 1951.

    Google Scholar 

  29. Langevin, P. and de Broglie, M. (editors), La théorie du rayonnement et les quanta, rapports et discussions de la Réunion tenue à Bruxelles du 30 octobre au 3 novembre 1911, Gauthier-Villars, Paris, 1912.

    Google Scholar 

  30. Rozental, S. (editor), Niels Bohr; his life and work as seen by his friends and colleagues, North-Holland Pub. Co., Amsterdam, 1967.

    Google Scholar 

  31. Pais, A., Niels Bohr Times, Clarendon Press, Oxford, 1991.

    Google Scholar 

  32. Rozental, S., Niels Bohr: memoirs of a working relationship, Christian Ejlers, Copenhagen, 1998.

    Google Scholar 

  33. Rutherford, E., Radioactive substances and their radiations, Cambridge University Press, Cambridge, 1913.

    Google Scholar 

  34. Heisenberg, W., Physics and Beyond, Harper & Row, New York and London, 1971, p. 39.

    Google Scholar 

  35. Heilbron, J. L. and Kuhn, T., “The Genesis of the Bohr Atom”, Historical Studies in the Physical Sciences 1, 211–290, 1969.

    Google Scholar 

  36. Niels Bohr, Collected Works. Volume 2, p. 110.

    Google Scholar 

  37. Bohr, N., “Reminiscences of the founder of nuclear science and some developments based on his work”, in Rutherford at Manchester, pp. 114–167.

    Google Scholar 

  38. Bohr, N., “On the Constitution of Atoms and Molecules”, Philosophical Magazine 26, 1–25, July 1913.

    Google Scholar 

  39. Bohr, N., Collected Works. Volume 2, p. 103.

    Google Scholar 

  40. Jammer, M., The Conceptual Development of Quantum Mechanics, McGraw Hill, New York, 1996, p. 85.

    Google Scholar 

  41. Bohr, N., “On the Constitution of Atoms and Molecules. Part II : Systems containing only a single nucleus”, Philosophical Magazine 26, 476–502, 1913.

    Google Scholar 

  42. Pickering, E. C., “Stars Having Peculiar Spectra : New Variable Stars in Crux and Cygnus”, Astrophysical Journal 4, 369–370, December 1896.

    Google Scholar 

  43. Bohr, N., “On the Constitution of Atoms and Molecules. Part III : Systems containing several nuclei”, Philosophical Magazine 26, 857–875, November 1913.

    Google Scholar 

  44. Pais, A., Niels Bohr Times, 1991, p. 152–155.

    Google Scholar 

  45. Bohr, H., letter to Niels Bohr, fall 1913, in Niels Bohr collected works, Vol. 1, p. 567.

    Google Scholar 

  46. Bohr, N., “The spectra of helium and hydrogen”, Nature 92, 231–232, October 23, 1913.

    Google Scholar 

  47. Franck, J. and Hertz, G. L., “Über Zusammenstöße zwischen Elektronen und den Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselben”, Verhandlungen der deutschen physikalischen Gesellschaft zu Berlin 16, 457–467, session of April 24, published May 30, 1914.

    Google Scholar 

  48. Michelson, A. A., “On the Application of interference methods to spectroscopic measurements”, Philosophical Magazine 31, 338–346, April 1891.

    Google Scholar 

  49. Michelson, A. A., “On the Application of interference methods to spectroscopic measurements”, Philosophical Magazine 34, 280–299, September 1892.

    Google Scholar 

  50. Zeeman, P., “Over den invloed eener magnetisatie op den aard van het door een stof uitgezonden licht”, Verslagen van de gewone vergaderingen der Wis- en Natuurkundige der Koninklijke Akademie van Wetenschappen te Amsterdam 5, 181–184, Session of October 31, 1896.

    Google Scholar 

  51. Zeeman, P., “On the Influence of Magnetism on the Nature of the Light emitted by a Substance”, Philosophical Magazine 43, 226–239, March 1897.

    Google Scholar 

  52. Zeeman, P., “Doublets and Triplets in the Spectrum produced by External Magnetic Forces”, Philosophical Magazine 44, 55–60, July 1897.

    Google Scholar 

  53. Zeeman, P., “The Effect of Magnetisation on the Nature of Light Emitted by a Substance”, Nature 55, 347, February 11, 1897.

    Google Scholar 

  54. Preston, T., “Radiation phenomena in a strong magnetic field”, Scientific Transactions of the Royal Dublin Society 6, 385–391, 1898. Read December 22, 1897.

    Google Scholar 

  55. Paschen, F. and Back, E., “Normale und anomale Zeemaneffekte”, Annalen der Physik, Leipzig 39, 897–932, 1912.

    Google Scholar 

  56. Stark, J., “Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien. I. Quereffelt”, Annalen der Physik, Leipzig 43, 965–982, 1914.

    Google Scholar 

  57. Einstein, A., letter to Michele Besso, dated August 11, 1916, in Albert Einstein/Michele Besso : Correspondance 1903-1955, p. 78.

    Google Scholar 

  58. Epstein, P. S., “Zur Theorie des Starkeffekts”, Physikalische Zeitschrift 17, 148–150, April 15, 1916.

    Google Scholar 

  59. Schwarzschild, K., “Zur Quantentheorie”, Sitzungsberichte der Preussische Akademie der Wissenschaften pp. 548–568, 1916.

    Google Scholar 

  60. Sommerfeld, A., Atombau und Spektrallinien, Vieweg, Braunschweig, 1919.

    Google Scholar 

  61. Sommerfeld, A., Atomic structure and spectral lines, Methuen, London, 1923. Translated from the 3rd German edition, 1922.

    Google Scholar 

  62. Atomes et électrons, rapports et discussions du Conseil de Physique Solvay tenu à Bruxelles du 1 er au 6 avril 1921, Gauthier-Villars, Paris, 1923.

    Google Scholar 

  63. Bohr, N., “Le principe de correspondance”, in Atomes et électrons, rapports et discussions du Conseil de Physique Solvay tenu à Bruxelles du 1 er au 6 avril 1921, pp. 248–254.

    Google Scholar 

  64. Bohr, N., “Über die Anwendung der Quantentheorie auf den Atombau. I. Die Grundpostulaten der Qnantentheorie”, Zeitschrift für Physik 13, 117–165, 1923.

    Google Scholar 

  65. Bohr, N., “On the application of the quantum theory to atomic structure. I. The fundamental postulates”, Proceedings of the Cambridge Philosophical Society. Supplement, 1924.

    Google Scholar 

  66. Kossel, W. L., “Über Molekülbildung als Frage des Atombaus”, Annalen der Physik, Leipzig 49, 229–362, 1916.

    Google Scholar 

  67. Bohr, N., “Atomic Structure”, Nature 107, 104–107, March 24, 1921.

    Google Scholar 

  68. Bohr, N., “Atomic structure”, Nature 108, 208–209, October 13, 1921.

    Google Scholar 

  69. Bohr, N., “Unsere heutige Kenntnis vom Atom”, Die Umschau 25, 229–234, 1921. English translation in Niels Bohr Collected Works, vol. 2, p. 84.

    Google Scholar 

  70. Pauli, W., “Relativitätstheorie”, in Encyklopädie der mathematischen Wissenschaften, Vol. 5, part 2, pp. 539–775, B. G. Teubner, Leipzig, 1921.

    Google Scholar 

  71. Enz, C. P., No Time to Be Brief: A Scientific Biography of Wolfgang Pauli, Oxford University Press, Oxford, 2002.

    Google Scholar 

  72. Pauli, W., “Zur Theorie der Gravitation und der Elektrizität von Hermann Weyl”, Physikalische Zeitschrift 20, 457–67, October 15, 1919.

    Google Scholar 

  73. Pauli, W., “Über die Energiekomponenten des Gravitationsfeldes”, Physikalische Zeitschrift 20, 25–27, January 15, 1919.

    Google Scholar 

  74. Pauli, W., “Mercurperihelbewegung und Strahlenablenkung in Weyls Gravitationstheorie”, Verhandlungen der deutschen physikalischen Gesellschaft zu Berlin 21, 742–750, session of December 5, 1919.

    Google Scholar 

  75. Born, M., My Life and my Views, Charles Scribner’s Sons, New York, 1968.

    Google Scholar 

  76. Born, M., My life: recollections of a Nobel Laureate, Taylor and Francis, London, 1978. Translation of ‘Mein Leben: Erinnerungen des Nobelpreisträgers’, Nymphenburger, München, 1975.

    Google Scholar 

  77. Heisenberg, W., Foreword to The Born Einstein Letters : correspondence between Albert Einstein and Max and Hedwig Born from 1916 to 1955 with commentaries by Max Born., Macmillan, London, Basingstoke, 1971, p. viii.

    Google Scholar 

  78. Ibid., p. ix.

    Google Scholar 

  79. Niels Bohr Collected Works. Volume 2, p. 341.

    Google Scholar 

  80. Pauli, W., “Remarks on the History of the Exclusion Principle”, Science 103, 213–215, February 22, 1946.

    Google Scholar 

  81. Pauli, W., “Quantentheorie und Magneton”, Physikalische Zeitschrift 21, 615–617, 1920.

    Google Scholar 

  82. Einstein, A. and Ehrenfest, P., “Quantentheoretische Bemerkungen zum Experiment von Stern und Gerlach”, Zeitschrift für Physik 11, 31–34, 1922.

    Google Scholar 

  83. Compton, A. H., “A Quantum Theory of the Scattering of X-Rays by Light Elements”, Physical Review 21, 483–502, May 1923.

    Google Scholar 

  84. Pauli, W., “Über den Einfluss der Geschwindigkeitsabhängigkeit der Elektronenenmasse auf den Zeemaneffekt”, Zeitschrift für Physik 31, 373–385, 1925.

    Google Scholar 

  85. Pauli, W., “Über den Zusammenhang des Abschlusses der Elektronengruppen in Atom mit der Komplexstruktur der Spektren”, Zeitschrift für Physik 31, 765–783, 1925.

    Google Scholar 

  86. Uhlenbeck, G. E. and Goudsmit, S. A., “Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jeden einzelnen Elektrons”, Naturwissenschaften 13, 353–354, November 20, 1925.

    Google Scholar 

  87. Klein, M. J., Paul Ehrenfest, North-Holland, Amsterdam & New York, 1985.

    Google Scholar 

  88. Niels Bohr Collected Works. Volume 5, p. 234.

    Google Scholar 

  89. Uhlenbeck, G. E. and Goudsmit, S. A., “Spinning Electrons and the Structure of Spectra”, Nature 117, 264–265, February 20, 1926.

    Google Scholar 

  90. de Broglie, L., Recherches sur la théorie des quanta, Masson, Paris, 1963, p. 4.

    Google Scholar 

  91. de Broglie, L., “Ondes et quanta”, Comptes Rendus de l’Académie des Sciences 177, 507–510, session of September 10, 1923.

    Google Scholar 

  92. de Broglie, L., “Quanta de lumière, diffraction et interférences”, Comptes Rendus de l’Académie des Sciences 177, 548–550, session of September 24, 1923.

    Google Scholar 

  93. Lewis, G. N., “The conservation of photons”, Nature 118, 874–875, December 18, 1926.

    Google Scholar 

  94. Einstein, A., letter to Paul Langevin, dated December 16, 1924, in Œuvres choisies. Vol. 4: Correspon- dances françaises, edited by Biezunski, M., Éditions du Seuil/Éditions du CNRS, 1989, p. 172.

    Google Scholar 

  95. Einstein, A., letter to H. A. Lorentz, dated December 16, 1924, in The Scientific Correspondence of H. A. Lorentz, edited by Kox, A. J., p. 568, Springer, New York, 2008.

    Google Scholar 

  96. de Broglie, L., “Recherches sur la théorie des quanta”, Annales de Physique (Paris) 3, 22–128, 1925.

    Google Scholar 

  97. Davisson, C. J. and Germer, L. H., “The scattering of electrons by a single crystal of nickel”, Nature 119, 558–560, April 16, 1927.

    Google Scholar 

  98. Thomson, G. P., “Diffraction of a cathode ray by a thin film”, Nature 119, 890, June 18, 1927.

    Google Scholar 

  99. Thomson, G. P., “Experiments on the Diffraction of Cathode Rays”, Proceedings of the Royal Society, London A117, 600–609, 1928.

    Google Scholar 

  100. Hermann, A., Werner Heisenberg, 1901-1976, Inter Nationes, Bonn, 1976. Translated from German by Timothy Nevill. Original publication : Heisenberg, Rowolt, 1976.

    Google Scholar 

  101. Heisenberg, E., Inner exile : recollections of a life with Werner Heisenberg, Birkhäuser, Boston, 1984.

    Google Scholar 

  102. Cassidy, D. C., Uncertainty : the life and science of Werner Heisenberg, Freeman, New York, 1992. Heisenberg-1971p38,Born-1978p212

    Google Scholar 

  103. Heisenberg, W., Physics and Beyond, p. 38.

    Google Scholar 

  104. Born, M., My life, p. 212.

    Google Scholar 

  105. Heisenberg, W., Stabilität und Turbulenz von Flüssigkeitsströmen, Ph.D. thesis, Ludwig-Maximilian, 1923.

    Google Scholar 

  106. Heisenberg, W., Physics and Beyond, p. 61.

    Google Scholar 

  107. Born, M., letter to Albert Einstein, dated July 15, 1925, in The Born Einstein Letters: correspondence between Albert Einstein and Max and Hedwig Born from 1916 to 1955 with commentaries by Max Born., p. 84, Macmillan press, London, Basingstoke, 1971. Translated by Irene Born. Original edition: Albert Einstein/Hedwig and Max Born: Briefwechsel 1916–1955, Nymphenburger, München, 1969.

    Google Scholar 

  108. Heisenberg, W., “Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen”, Zeitschrift für Physik 33, 879–893, 1925.

    Google Scholar 

  109. Born, M. and Jordan, E. P., “Zur Quantenmechanik”, Zeitschrift für Physik 34, 858–888, 1925.

    Google Scholar 

  110. Born, M., Heisenberg, W. and Jordan, E. P., “Zur Quantenmechanik. II”, Zeitschrift für Physik 35, 557–615, 1926.

    Google Scholar 

  111. Bohr, N., “On the law of conservation of energy”, Nature 116, 262, August 25, 1925.

    Google Scholar 

  112. Omnès, R., Quantum philosophy: understanding and interpreting contemporary science, Princeton University Press, Woodstock, 1999.

    Google Scholar 

  113. Einstein, A., letter to Michele Besso, dated December 25, 1925, in Albert Einstein/Michele Besso: Correspondance 1903-1955, p. 128.

    Google Scholar 

  114. Einstein, A., letter to H. A. Lorentz, dated March 13, 1926, in The Scientific Correspondence of H. A. Lorentz, p. 592.

    Google Scholar 

  115. Pauli, W., “Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik”, Zeitschrift für Physik 36, 336–363, 1926.

    Google Scholar 

  116. Moore, W. J., Schrödinger: life and thought, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  117. Bloch, F., “Heisenberg and the early days of quantum mechanics”, Physics Today, December 1976.

    Google Scholar 

  118. Einstein, A., “Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung”, Sitzungsberichte der Preussischen Akademie der Wissenschaften pp. 3–14, 1925.

    Google Scholar 

  119. Schrödinger, E., letter to Einstein, dated November 3, 1925, in Walter Moore, Schrödinger, life and thought, p. 192.

    Google Scholar 

  120. Moore, W. J., Schrödinger: life and thought, p. 194.

    Google Scholar 

  121. Schrödinger, E., “Quantisierung als Eigenwertproblem. Erste Mitteilung”, Annalen der Physik 79, 361–376, 1926. English translation in E. Schrödinger, Collected papers on wave mechanics, London: Blackie, 1928.

    Google Scholar 

  122. Przibram, K. (editor), Schrödinger, Planck, Einstein, Lorentz : Briefe zur Wellenmechanik, Springer Verlag, Vienne, 1963.

    Google Scholar 

  123. Schrödinger, E., “An Undulatory Theory of the Mechanics of Atoms and Molecules”, Physical Review 28, 1049–1070, December 1926.

    Google Scholar 

  124. Schrödinger, E., “Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen”, Annalen der Physik 79, 734–756, 1926. English translation in E. Schrödinger, Collected papers on wave mechanics, London: Blackie, 1928.

    Google Scholar 

  125. Born, M., “Zur Quantenmechanik der Stoßvorgänge (Vorläufige Mitteilung)”, Zeitschrift für Physik 37, 863–867, 1926.

    Google Scholar 

  126. Born, M., “Zur Quantenmechanik der Stoßvorgänge”, Zeitschrift für Physik 38, 807–827, 1926.

    Google Scholar 

  127. Pauli, W., “Zur Quantenmechanik des magnetisches Elektrons”, Zeitschrift für Physik 43, 601–623, 1927.

    Google Scholar 

  128. Wali, K. C. (editor), Satyendra Nath Bose, his life and times. Selected works (with commentary), World Scientific, Singapore, 2009.

    Google Scholar 

  129. Bose, S., “Plancks Gesetz und Lichtquantenhypothese”, Zeitschrift für Physik 26, 178–181, 1924.

    Google Scholar 

  130. Einstein, A., “Quantentheorie des einatomigen idealen Gases”, Sitzungsberichte der Preussischen Akademie der Wissenschaften pp. 261–267, 1924.

    Google Scholar 

  131. Einstein, A., “Zur Quantentheorie des idealen Gases”, Sitzungsberichte der Preussischen Akademie der Wissenschaften pp. 18–25, 1925.

    Google Scholar 

  132. Jin, D. S., Ensher, J. R., Matthews, M. R., Wieman, C. E. and Cornell, E. A., “Collective Excitations of a Bose-Einstein Condensate in a Dilute Gas”, Physical Review 77, 420–423, July 15, 1996.

    Google Scholar 

  133. Ouellet, D., Franco Rasetti, physicien et naturaliste, Guérin, Montréal, 2000.

    Google Scholar 

  134. Fermi, L., Atoms in the family. My life with Enrico Fermi, The University of Chicago Press, Chicago, 1954, p. 36.

    Google Scholar 

  135. Fermi, E., “Zur Quantelung des idealen einatomigen Gases”, Zeitschrift für Physik 36, 902–912, 1926.

    Google Scholar 

  136. Kursunoglu, B. N. and Wigner, E. P. (editors), Reminiscences about a great physicist: Paul Adrien Maurice Dirac, Cambridge University Press, Cambridge, Mass., 1987.

    Google Scholar 

  137. Farmelo, G., The Strangest Man. The hidden life of Paul Dirac, quantum genius, Faber and Faber, 2009.

    Google Scholar 

  138. Dirac, P. A. M., “Recollections of an exciting era”, in History of Twentieth Century Physics, International School of Physics ‘Enrico Fermi’ LVII, Varenna on Lake Como, pp. 109–146, Academic Press, London et New York, 1977.

    Google Scholar 

  139. Darrigol, O., From c-Numbers to q-Numbers: The Classical Analogy in the History of Quantum Theory, University of California Press, Berkeley, 1992. http://ark.cdlib.org/ark:/13030/ft4t1nb2gv/.

  140. Dirac, P. A. M., “The fundamental equations of quantum mechanics”, Proceedings of the Royal Society, London A109, 642–53, 1925.

    Google Scholar 

  141. Dirac, P. A. M., “Quantum mechanics and a preliminary investigation of the hydrogen atom”, Proceedings of the Royal Society, London A110, 561–79, 1926.

    Google Scholar 

  142. Dirac, P. A. M., “On the Theory of Quantum Mechanics”, Proceedings of the Royal Society, London A112, 661–677, Received August 26, 1926.

    Google Scholar 

  143. Dirac, P. A. M., “The Quantum Theory of the Electron”, Proceedings of the Royal Society, London A117, 610–624, 1928.

    Google Scholar 

  144. Gordon, W., “Der Comptoneffekt nach der Schrödingerschen Theorie”, Zeitschrift für Physik 40, 117–133, 1926.

    Google Scholar 

  145. Klein, O., “Elektrodynamik und Wellenmechanik vom Standpunkt des Korrespondenzprinzips”, Zeitschrift für Physik 41, 407–442, 1927.

    Google Scholar 

  146. Heisenberg, W., in Électrons et photons, rapports et discussions du cinquième conseil de physique Solvay tenu à Bruxelles du 24 au 29 octobre 1927, p. 269.

    Google Scholar 

  147. Dennison, D. M., “A note on the Specific Heat of the Hydrogen Molecule”, Proceedings of the Royal Society, London A115, 483–486, 1927.

    Google Scholar 

  148. Hori, T., “Über die Analyse des Wasserstoffbandenspektrums im äußersten Ultraviolet”, Zeitschrift für Physik 44, 834–854, 1927.

    Google Scholar 

  149. Pauli, W., “The Connexion between Spin and Statistics”, Physical Review 58, 716–722, October 1940.

    Google Scholar 

  150. Heisenberg, W., Physics and Beyond, p. 63.

    Google Scholar 

  151. Descartes, R., Meditations and other metaphysical writings, Translated with an introduction by Desmond M. Clarke. Penguin, London, 1998. Original edition: Meditationes de prima philosophia, L. & D. Elzevirios, Amsterdam, 1641.

    Google Scholar 

  152. Heisenberg, W., “The Development of the Interpretation of the Quantum Theory”, in Niels Bohr and the development of physics, edited by Pauli, W., pp. 12–29, Pergamon Press, London, 1955.

    Google Scholar 

  153. Heisenberg, W., Physics and Beyond, p. 77.

    Google Scholar 

  154. Heisenberg, W., “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik”, Zeitschrift für Physik 43, 172–98, 1927.

    Google Scholar 

  155. Électrons et photons, rapports et discussions du cinquième conseil de physique Solvay tenu à Bruxelles du 24 au 29 octobre 1927, Gauthier-Villars, Paris, 1928.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fernandez, B. (2013). Quantum Mechanics: The Unavoidable Path. In: Unravelling the Mystery of the Atomic Nucleus. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4181-6_3

Download citation

Publish with us

Policies and ethics