Skip to main content

An Introduction to the Analysis of Functional Magnetic Resonance Imaging Data

  • Chapter
  • First Online:

Part of the book series: Fields Institute Communications ((FIC,volume 63))

Abstract

Functional magnetic resonance imaging (fMRI) is a brain imaging technology primarily used to investigate how cognitive processes affect neural activity. Due to its non-invasiveness and high spatial resolution, this technology has quickly become one of the most important research tools in cognitive neuroscience and has played a growing role in a number of clinical applications. The interpretation of the results of an fMRI experiment involves the analysis of massive amounts of noisy, complex, multivariate data, resolved both spatially and temporally. The extraction of information from this data is a difficult and articulated task, which relies on methodologies lying at the intersection between image processing, statistics, and machine learning. We here introduce the reader to the rich and diverse literature in the fascinating field of fMRI data analysis, providing an overview of its main challenges and of the most common approaches to overcome them.

Mathematics Subject Classification (2010): Primary 54C40, 14E20, Secondary 46E25, 20C20

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weissko, B.P. Poncelet, D.N. Kennedy, B.E. Hoppel, M.S. Cohen, R. Turner, H.M. Cheng, T.J. Brady, B.R. Rosen, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. (USA) 89, 5675–5679 (1992)

    Article  Google Scholar 

  2. N. Logothetis, A. Wandell, Interpreting the bold signal. Ann. Rev. Physiol. 66, 735–769 (2004)

    Article  Google Scholar 

  3. P. Belin, R. Zatorre, R. Hoge, A. Evans, B. Pike, Event-related fmri of the auditory cortex. NeuroImage 10, 417–429 (1999)

    Article  Google Scholar 

  4. R. Buckner, J. Goodman, M. Burock, M. Rotte, W. Koutstaal, D. Schacter, B. Rosen, A. Dale, Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fmri. Neuron 20, 285–296 (1998)

    Article  Google Scholar 

  5. K. Ochsner, A. Bunge, J. Gross, J. Gabrieli, Rethinking feelings: An fmri study of the cognitive regulation of emotion. J. Neurosci. 14, 1215–1229 (2002)

    Google Scholar 

  6. E. Falk, E. Berkman, T. Mann, B. Harrison, M. Lieberman, Predicting persuasion-induced behavior change from the brain. J. Neurosci. 30, 8421–8424 (2010)

    Article  Google Scholar 

  7. A. Sanfey, J. Rilling, J. Aronson, L. Nystrom, J. Cohen, The neural basis of economic decision-making in the ultimatum game. Science 300, 1755–1758 (2003)

    Article  Google Scholar 

  8. J. Sepulcre, H. Liu, T. Talukdar, I. Martincorena, T. Yeo, R. Buckner, The organization of local and distant functional connectivity in the human brain. PLoS Comput. Biol. 6, e1000808 (2010)

    Article  MathSciNet  Google Scholar 

  9. H. Whalley, E. Simonotto, S. Flett, I. Marshall, K. Ebmeier, D. Owens, N. Goddard, E. Johnstone, S. Lawrie, fmri correlates of state and trait effects in subjects at genetically enhanced risk of schizophrenia. Brain 127, 478–490 (2004)

    Article  Google Scholar 

  10. G. Honey, E. Pomarol-Clotet, P. Corlett, R. Honey, P. McKenna, E. Bullmore, P. Fletcher, Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain 128, 2597–2611 (2005)

    Article  Google Scholar 

  11. M. Wengenroth, M. Blatow, J. Guenther, M. Akbar, V. Tronnier, C. Stippich, Diagnostic benefits of presurgical fmri in patients with brain tumours in the primary sensorimotor cortex. Eur. Radiol. 21, 1517–1525 (2011)

    Article  Google Scholar 

  12. R. Marshall, E. Zarahn, L. Alon, B. Minzer, R. Lazar, J. Krakauer, Early imaging correlates of subsequent motor recovery after stroke. Ann. Neurol. 65, 596–602 (2009)

    Article  Google Scholar 

  13. R. Wise, I. Tracey, The role of fmri in drug discovery. J. Magn. Reson. Imag. 23, 862–876 (2006)

    Article  Google Scholar 

  14. D. Borsook, L. Becerra, R. Hargreaves, A role for fmri in optimizing cns drug development. Nat. Rev. Drug Discov. 5, 411–424 (2006)

    Article  Google Scholar 

  15. M. Lindquist, The statistical analysis of fmri data. Stat. Sci. 23, 439–464 (2008)

    Article  MathSciNet  Google Scholar 

  16. E. Amaro Jr., G. Barker, Study design in fmri: Basic principles. Brain Cognit. 60, 220–232 (2006)

    Article  Google Scholar 

  17. W. Machielsen, S. Rombouts, F. Barkhof, P. Scheltens, M. Witter, fmri of visual encoding: Reproducibility of activation. Hum. Brain Mapp. 9, 156–164 (2000)

    Article  Google Scholar 

  18. K. Friston, E. Zarahn, O. Josephs, R. Henson, A. Dale, Stochastic designs in event-related fmri. NeuroImage 10, 607–619 (1999)

    Google Scholar 

  19. O. Josephs, R. Turner, K. Friston, Event-related fmri. human brain mapping. Hum. Brain Mapp. 9, 243–257 (1997)

    Google Scholar 

  20. R. Buxton, K. Uludag, D. Dubowitz, T. Liu, Modeling the hemodynamic response to brain activation. NeuroImage 23, S220–S233 (2004)

    Article  Google Scholar 

  21. D. Donaldson, S. Petersen, J. Ollinger, R. Buckner, Dissociating state and item components of recognition memory using fmri. NeuroImage 13, 129–142 (2001)

    Article  Google Scholar 

  22. M. Greicius, K. Supekar, V. Menon, R. Dougherty, Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebr. Cortex 19, 72–78 (2009)

    Article  Google Scholar 

  23. J.V. Hajnal, R. Myers, A. Oatridge, J.E. Schwieso, I.R. Young, G.M. Bydder, Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn. Reson. Med. 31, 283–291 (1994)

    Article  Google Scholar 

  24. S. Hamdy, D. Mikulis, A. Crawley, S. Xue, H. Lau, S. Henry, N. Diamant, Identifying global anatomical differences: Deformation-based morphometry. Am. J. Phisiol. 277, G219–G225 (1999)

    Google Scholar 

  25. T. Stephan, E. Marx, H. Bruckmann, T. Brandt, M. Dieterich, Lid closure mimics head movement in fmri. Neuroimage 16, 1156–1158 (2002)

    Article  Google Scholar 

  26. D. Abbott, H. Opdam, R. Briellman, G. Jackson, Brief breath holding may confound functional magnetic resonance imaging studies. Hum. Brain Mapp. 24, 284–290 (2005)

    Article  Google Scholar 

  27. X. Hu, T.H. Le, T. Parrish, P. Erhard, Retrospective estimation and correction of physiological fluctuation in functional mri. Magn. Reson. Med. 34, 201–212 (1995)

    Article  Google Scholar 

  28. A. Moelker, P.M.T. Pattynama, Acoustic noise concerns in functional magnetic resonance imaging. Hum. Brain Mapp. 20, 123–141 (2003)

    Article  Google Scholar 

  29. A. Gordon, R. Smith, K. Keramatian, B. Luus, A. Weinberg, J. Smallwood, J. Schooler, K. Christoff, Mind-wandering, awareness, and task performance: An fmri study. Can. J. Exp. Psychol. 61, 210–216 (2007)

    Google Scholar 

  30. J. Ashburner, C. Hutton, R. Frackowiak, I. Johnsrude, C. Price, K. Friston, Identifying global anatomical differences: Deformation-based morphometry. Hum. Brain Mapp. 6, 348–357 (1998)

    Article  Google Scholar 

  31. S.M. Smith, in Preparing fmri Data for Statistical Analysis, ed. by P. Jezzard, P.M. Matthews, S.M. Smith. Functional MRI: An Introduction to Methods (Oxford University Press, Oxford, 2001)

    Google Scholar 

  32. J. Tanabe, D. Miller, J. Tregellas, R. Freedman, F.G. Meyer, Comparison of detrending methods for optimal fmri preprocessing. NeuroImage 15, 902–907 (2002)

    Article  Google Scholar 

  33. M.J. Brammer, in Head Motion and Its Correction, ed. by P. Jezzard, P.M. Matthews, S.M. Smith. Functional MRI: An Introduction to Methods (Oxford University Press, Oxford, 2001)

    Google Scholar 

  34. L. Freire, J.F. Mangin, Motion correction algorithms may create spurious brain activations in the absence of subject motion. NeuroImage 14, 709–722 (2001)

    Article  Google Scholar 

  35. G. Glover, T.-Q. Li, D. Ress, Image-based method for retrospective correction of physiological motion effects in fmri: Retroicor. Magn. Reson. Med. 44, 162–167 (2000)

    Article  Google Scholar 

  36. K.-H. Chuang, J.-H. Chen, Impact: Image-based physiological artifacts estimation and correction technique for functional mri. Magn. Reson. Med. 46, 344–353 (2000)

    Article  Google Scholar 

  37. F. Crivello, T. Schormann, N. Tzourio-Mazoyer, P. Roland, K. Zilles, B. Mazoyer, Comparison of spatial normalization procedures and their impact on functional maps. Hum. Brain Mapp. 16, 228–250 (2002)

    Article  Google Scholar 

  38. J. Talairach, P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988)

    Google Scholar 

  39. A. Evans, D. Collins, S. Mills, E. Brown, L. Kelly, T. Peters, in 3d Statistical Neuroanatomical Models from 305 mri Volumes. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, vol. 3, pp. 1813–1817 (1993)

    Google Scholar 

  40. P. Fransson, K.-D. an Merboldt, K.M. Petersson, M. Ingvar, J. Frahm, On the effects of spatial filtering: A comparative fmri study of episodic memory encoding at high and low resolution. NeuroImage 16, 977–984 (2002)

    Google Scholar 

  41. G. Aguirre, E. Zarahn, M. D’Esposito, The variability of human, bold hemodynamic responses. NeuroImage 8, 360–369 (1998)

    Article  Google Scholar 

  42. R. Menon, S. Ogawa, J. Strupp, P. Andersen, K. Ugurbil, Bold based functional mri at 4 tesla includes a capillary bed contribution: Echo-planar imaging mirrors previous optical imaging using intrinsic signals. Magn. Reson. Med. 33, 453–459 (1995)

    Article  Google Scholar 

  43. G. Glover, Deconvolution of impulse response in event-related bold fmri. NeuroImage 9, 416–129 (1999)

    Article  Google Scholar 

  44. J. Rajapske, F. Kruggel, J. Maisog, D. Von Cramon, Modeling hemodynamic response for analysis of functional mri time-series. Hum. Brain Mapp. 6, 283–300 (1998)

    Article  Google Scholar 

  45. N. Lazar, The Statistical Analysis of Functional MRI Data (Springer, New York, 2008)

    MATH  Google Scholar 

  46. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer, New York, 2009)

    MATH  Google Scholar 

  47. T. Mitchell, R. Hutchinson, R.S. Niculescu, F. Pereira, X. Wang, M. Just, S. Newman, Learning to decode cognitive states from brain images. Mach. Learn. 57, 145–175 (2004)

    Article  MATH  Google Scholar 

  48. F. Pereira, T. Mitchell, M. Botvinick, Machine learning classifiers and fmri: A tutorial overview. NeuroImage 45, S199–S209 (2009)

    Article  Google Scholar 

  49. F. Pereira, G. Gordon, in The Support Vector Decomposition Machine. Proceedings of the International Conference on Machine Learning (ICML) (2006)

    Google Scholar 

  50. V. Calhoun, T. Adali, G. Pearlson, J. Pekar, Spatial and temporal independent component analysis of functional mri data containing a pair of task-related waveforms. Hum. Brain Mapp. 13, 43–53 (2001)

    Article  Google Scholar 

  51. Y. Shimizu, M. Barth, C. Windischberger, E. Moser, S. Thurner, Wavelet-based multifractal analysis of fmri time series. Neuroimage 22, 1195–1202 (2004)

    Article  Google Scholar 

  52. C. Neil, H. Trevor, J. Iain, Statistical models for image sequences. Technical report, Stanford University (1998)

    Google Scholar 

  53. N. Lange, S. Zeger, Non-linear fourier time series analysis for human brain mapping by functional magnetic resonance imaging. J. Roy. Stat. Soc. C (Appl. Stat.) 46, 1–29 (1997)

    Google Scholar 

  54. M. Misaki, Y. Kim, P. Bandettini, N. Kriegeskorte, Comparison of multivariate classifiers and response normalizations for pattern-information fmri. Neuroimage 53, 103–118 (2010)

    Article  Google Scholar 

  55. J. Haxby, I. Gobbini, M. Furey, A. Ishai, J. Schouten, P. Pietrini, Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001)

    Article  Google Scholar 

  56. N. Kriegeskorte, R. Goebel, P. Bandettini, Information-based functional brain mapping. Proc. Natl. Acad. Sci. U.S.A. 103, 3863–3868 (2006)

    Article  Google Scholar 

  57. L.K. Hansen, J. Larsen, F.A. Nielsen, S.C. Strother, E. Rostrup, R. Savoy, N. Lange, J. Sidtis, C. Svarer, O.B. Paulson, Generalizable patterns in neuroimaging: How many principal components? NeuroImage 9, 534–544 (1999)

    Article  Google Scholar 

  58. F. De Martino, F. Gentile, F. Esposito, M. Balsi, F. Di Salle, R. Goebel, E. Formisano, Classification of fmri independent components using ic-fingerprints and support vector machine classifiers. NeuroImage 34, 177–194 (2007)

    Article  Google Scholar 

  59. K. Norman, S. Polyn, G. Detre, J. Haxby, Beyond mind-reading: multi-voxel pattern analysis of fmri data. Trends Cognit. Sci. 10, 424–430 (2006)

    Article  Google Scholar 

  60. S. LaConte, S. Peltier, X. Hu, Real-time fmri using brain-state classification. Hum. Brain Mapp. 28, 1033–1044 (2007)

    Article  Google Scholar 

  61. D. Cox, L. Savoy, Functional magnetic resonance imaging (fmri) ’brain reading’: detecting and classifying distributed patterns of fmri activity in human visual cortex. Neuroimage 19, 261–270 (2003)

    Article  Google Scholar 

  62. X. Wang, R. Hutchinson, T. Mitchell, in Training fmri Classifiers to Detect Cognitive States Across Multiple Human Subjects. NIPS03 (2003)

    Google Scholar 

  63. S. LaConte, S. Strother, V. Cherkassky, J. Anderson, X. Hu, Support vector machines for temporal classification of block design fmri data. NeuroImage 26, 317–329 (2005)

    Article  Google Scholar 

  64. T. Mitchell, R. Hutchinson, M. Just, R. Niculescu, F. Pereira, X. Wang, in Classifying Instantaneous Cognitive States from fmri Data. AMIA Annual Symposium Proceedings, pp. 465–469 (2003)

    Google Scholar 

  65. C. Cortes, V. Vapnik, Support vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  66. S. Ryali, K. Supekar, D.A. Abrams, V. Menon, Sparse logistic regression for whole-brain classification of fmri data. Neuroimage 51, 752–764 (2010)

    Article  Google Scholar 

  67. C. Baudelet, B. Gallez, Cluster analysis of bold fmri time series in tumors to study the heterogeneity of hemodynamic response to treatment. Magn. Reson. Med. 49, 135–145 (2003)

    Article  Google Scholar 

  68. J. Lancaster, M. Woldorff, L. Parsons, M. Liotti, C. Freitas, L. Rainey, P. Kochunov, D. Nickerson, S. Mikiten, P. Fox, Automated talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000)

    Article  Google Scholar 

  69. R. Heller, D. Stanley, D. Yekutieli, N. Rubin, Y. Benjaminia, Cluster-based analysis of fmri data. Neuroimage 33, 599–608 (2006)

    Google Scholar 

  70. C. Goutte, P. Toft, E. Rostrup, F.A. Nielsen, K.L. Hansen, On clustering fmri time series. Neuroimage 9, 298–310 (1999)

    Google Scholar 

  71. J. Ye, N. Lazar, Y. Li, Geostatistical analysis in clustering fmri time series. Stat. Med. 28, 2490–2508 (2009)

    Article  MathSciNet  Google Scholar 

  72. D. Balslev, F.A. Nielsen, S.A. Frutiger, J.J. Sidtis, T.B. Christiansen, C. Svarer, S.C. Strother, D.A. Rottenberg, L.K. Hansen, O.B. Paulson, I. Law, Cluster analysis of activity-time series in motor learning. Hum. Brain Mapp. 15, 135–145 (2002)

    Article  Google Scholar 

  73. M.J. Fadili, S. Ruan, D. Bloyet, B. Mazoyer, A multistep unsupervised fuzzy clustering analysis of fmri time series. Hum. Brain Mapp. 10, 160–178 (2000)

    Article  Google Scholar 

  74. L. Stanberry, R. Nandy, D. Cordes, Cluster analysis of fmri data using dendrogram sharpening. Hum. Brain Mapp. 20, 201–219 (2003)

    Article  Google Scholar 

  75. J. MacQueen, in Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, CA, 1967), pp. 281–297

    Google Scholar 

  76. J. Bezdek, R. Ehrlich, W. Full, Fcm: The fuzzy c-means clustering algorithm. Comp. Geosci. 10, 191–203 (1984)

    Article  Google Scholar 

  77. B. Yeo, W. Ou, Clustering fmri time series. http://people.csail.mit.edu/ythomas/unpublished/6867fMRI.pdf. 2004

  78. P. Filzmoser, R. Baumgartner, E. Moser, A hierarchical clustering method for analyzing functional mr images. Magn. Reson. Imag. 17, 817–826 (1999)

    Article  Google Scholar 

  79. R. Baumgartner, C. Windischberger, E. Moser, Quantification in functional magnetic resonance imaging: Fuzzy clustering vs. correlation analysis. Magn. Reson. Imag. 16, 115–125 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Art Chaovalitwongse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gazzola, G., Chou, CA., Jeong, M.K., Chaovalitwongse, W.A. (2013). An Introduction to the Analysis of Functional Magnetic Resonance Imaging Data. In: Pardalos, P., Coleman, T., Xanthopoulos, P. (eds) Optimization and Data Analysis in Biomedical Informatics. Fields Institute Communications, vol 63. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4133-5_7

Download citation

Publish with us

Policies and ethics