Skip to main content

Endophyte Mycotoxins in Animal Health

  • Chapter
  • First Online:

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 42))

Abstract

Fescue toxicosis and perennial ryegrass staggers are two of the most common toxic plant diseases plaguing livestock in the United States, and result from consumption of forage containing the endophyte-produced mycotoxins ergovaline and lysergic acid (fescue toxicosis) and lolitrem B (ryegrass staggers). Our group has developed analytical assays for detecting these compounds, which serve a dual purpose (1) high-performance liquid chromatography-fluorescence assays are used to measure these compounds in feed material in order to promote “safe feed” through diagnostic testing in a service laboratory environment, and (2) highly sensitive and specific liquid chromatography-tandem mass spectrometry assays are utilized to study the fate and metabolism of these compounds in a diversity of livestock matrices so that a more refined understanding as to the etiology of the diseases these compounds cause can be achieved. A discussion applying these techniques to both current and anticipated studies is given, with an emphasis on impacts to trade and food safety regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

HPLC:

High-performance liquid chromatography

LC-MS/MS:

Liquid chromatography-tandem mass spectrometry

SPE:

Solid phase extraction

DCM:

Dichloromethane

ACN:

Acetonitrile

LOD:

Limit of detection

LOQ:

Limit of quantitation

ELISA:

Enzyme-linked immunosorbent assay

ESI(+):

Electrospray ionization in the positive ion mode

MRM:

Multiple reaction monitoring

APCI(+):

Positive atmospheric pressure chemical ionization

ppb:

Parts per billion

References

  1. Belesky DP, Bacon CW (2009) Tall fescue and associated mutualistic toxic fungal endophytes in agroecosystems. Toxin Rev 28:102–117

    Article  CAS  Google Scholar 

  2. Strickland JR, et al (2009) Physiological basis of fescue toxicosis. In: Fribourg HA, et al. (eds) Tall fescue for the twenty-first century. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, pp 203–227

    Google Scholar 

  3. Young CA et al (2009) Indole-diterpene biosynthetic capability of epichloe endophytes as predicted by ltm gene analysis. Appl Environ Microbiol 75:2200–2211

    Article  CAS  PubMed  Google Scholar 

  4. Hopkins AA, Alison MW (2006) Stand persistence and animal performance for tall fescue endophyte combinations in the south central USA. Agron J 98:1221–1226

    Article  Google Scholar 

  5. Roberts CA et al (2009) Management to optimize grazing performance in the Northern Hemisphere. In: Fribourg H et al (eds) Tall fescue for the twenty-first century. Oregon State University, OR

    Google Scholar 

  6. Comis D (2000) The grass farmers love to hate. Agric Res 48:4–7

    Google Scholar 

  7. Thompson F, Stuedemann J (1993) Pathophysiology of fescue toxicosis. Agric Ecosyst Environ 44:263–281

    Article  Google Scholar 

  8. Klotz JL et al (2008) Effects of selected combinations of tall fescue alkaloids on the vasoconstrictive capacity of fescue-naive bovine lateral saphenous veins. J Anim Sci 86:1021–1028

    Article  CAS  PubMed  Google Scholar 

  9. Hoveland CS et al (1983) Steer performance and association of Acremonium coenophialum fungal endophyte on tall fescue pasture. Agron J 75:821–824

    Article  Google Scholar 

  10. Fisher M et al (2004) Evaluation of perennial ryegrass straw as a forage source for ruminants. J Anim Sci 82:2175–2184

    CAS  PubMed  Google Scholar 

  11. Gallagher RT et al (1984) Tremorgenic neurotoxins from perennial ryegrass causing ryegrass staggers disorder of livestock: structure elucidation of lolitrem B. J Chem Soc Chem Commun 9:614–616

    Article  Google Scholar 

  12. Yates SG et al (1985) Detection of ergopeptine alkaloids in endophyte infected toxic KY-31 tall fescue by mass spectrometry. J Agric Food Chem 33:719–722

    Article  CAS  Google Scholar 

  13. Lyons PC et al (1986) Occurrence of peptide and clavine ergot alkaloids in tall fescue grass. Science 232:487–489

    Article  CAS  PubMed  Google Scholar 

  14. Klotz JL et al (2007) Ergovaline-induced vasoconstriction in an isolated bovine lateral saphenous vein bioassay. J Anim Sci 85:2330–2336

    Article  CAS  PubMed  Google Scholar 

  15. Klotz JL et al (2006) Assessment of vasoconstrictive potential of D-lysergic acid using an isolated bovine lateral saphenous vein bioassay. J Anim Sci 84:3167–3175

    Article  CAS  PubMed  Google Scholar 

  16. Gallagher RT et al (1981) Ryegrass staggers: isolation of potent neurotoxins lolitrem A and B from staggers-producing pastures. N Z Vet J 29:189–190

    Article  CAS  PubMed  Google Scholar 

  17. Dalziel JE et al (2005) The fungal neurotoxin lolitrem B inhibits the function of human large conductance calcium-activated potassium channels. Toxicol Lett 155:421–426

    Article  CAS  PubMed  Google Scholar 

  18. Tor-Agbidye J et al (2001) Correlation of endophyte toxins (ergovaline and lolitrem B) with clinical disease: fescue foot and perennial ryegrass staggers. Vet Hum Toxicol 43:140–146

    CAS  PubMed  Google Scholar 

  19. Aldrich-Markham S, et al. (2007) Endophyte toxins in grass seed fields and straw. Oregon State University Extension Service EM 8598-E, pp 4

    Google Scholar 

  20. Craig AM, et al. (2007) Comparison of ergovaline determinations between the laboratories in the United States and Japan. In: Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses. New Zealand Grassland Association, 283–288

    Google Scholar 

  21. Lehner AF et al (2005) Electrospray[+] tandem quadrupole mass spectrometry in the elucidation of ergot alkaloids chromatographed by HPLC: screening of grass or forage samples for novel toxic compounds. J Mass Spectrom 40:1484–1502

    Article  CAS  PubMed  Google Scholar 

  22. Ayers A et al (2009) Ruminal metabolism and transport of tall fescue ergot alkaloids. Crop Sci 49:2309–2316

    Article  CAS  Google Scholar 

  23. Schnitzius JM et al (2001) Semiquantitative determination of ergot alkaloids in seed, straw and digesta samples using a competitive enzyme-linked immunosorbent assay. J Vet Diagn Invest 13:230–237

    Article  CAS  PubMed  Google Scholar 

  24. Craig AM et al (1994) Improved extraction and HPLC methods for ergovaline from plant material and rumen fluid. J Vet Diagn Invest 6:348–352

    Article  CAS  PubMed  Google Scholar 

  25. Rottinghaus GE et al (1991) HPLC method for quantitating ergovaline in endophyte-infested tall fescue: seasonal variation of ergovaline levels in stems with leaf sheaths, leaf blades, and seed heads. J Agric Food Chem 39:112–115

    Article  CAS  Google Scholar 

  26. Hill NS et al (1993) Simplified sample preparation for HPLC analysis of ergovaline in tall fescue. Crop Sci 33:331–333

    Article  CAS  Google Scholar 

  27. Hovermale JT, Craig AM (2001) Correlation of ergovaline and lolitrem B levels in endophyte-infected perennial ryegrass (Lolium perenne). J Vet Diagn Invest 13:323–327

    Article  CAS  PubMed  Google Scholar 

  28. DeLorme M et al (2007) Physiological and digestive effects of Neotyphodium coenophialum-infected tall fescue fed to lambs. J Anim Sci 85:1199–1206

    Article  CAS  Google Scholar 

  29. Lodge-Ivey S et al (2006) Detection of lysergic acid in ruminal fluid, urine, and in endophyte-infected tall fescue using high-performance liquid chromatography. J Vet Diagn Invest 18:369–374

    Article  CAS  PubMed  Google Scholar 

  30. Schultz CL et al (2006) Effects of initial and extended exposure to an endophyte-infected tall fescue seed diet on faecal and urinary excretion of ergovaline and lysergic acid in mature geldings. N Z Vet J 54:178–184

    Article  CAS  PubMed  Google Scholar 

  31. Miles CO et al (1994) Large-scale isolation of lolitrem B and structure determination of lolitrem E. J Agric Food Chem 42:1488–1492

    Article  CAS  Google Scholar 

  32. Bony S et al (2001) Toxicokinetics of ergovaline in the horse after an intravenous administration. Vet Res 32:509–513

    Article  CAS  PubMed  Google Scholar 

  33. Jaussaud P et al (1998) Rapid analysis of ergovaline in ovine plasma using high-performance liquid chromatography with fluorimetric detection. J Chromatogr A 815:147–153

    Article  CAS  PubMed  Google Scholar 

  34. Lehner AF et al (2008) Serum concentrations of ergovaline/ergot alkaloids in late-term pregnant mares grazing endophyte-infected tall fescue pastures: a preliminary report. Theriogenology 70:576–591

    Article  Google Scholar 

  35. Duringer JM et al (2005) Growth and hepatic in vitro metabolism of ergotamine in mice divergently selected for response to endophyte toxicity. Xenobiotica 35:531–548

    Article  CAS  PubMed  Google Scholar 

  36. Hill N, Agee C (1994) Detection of ergoline alkaloids in endophyte-infected tall fescue by immunoassay. Crop Sci 34:530–534

    Article  CAS  Google Scholar 

  37. Miyazaki S et al (2004) Lolitrem B residue in fat tissues of cattle consuming endophyte-infected perennial ryegrass straw. J Vet Diagn Invest 16:340–342

    Article  PubMed  Google Scholar 

  38. Gallagher RT et al (1985) Rapid determination of the neurotoxin lolitrem B in perennial ryegrass by high-performance liquid chromatography with fluorescence detection. J Chromatogr 321:217–226

    Article  CAS  PubMed  Google Scholar 

  39. Lehner AF et al (2004) Fragmentation patterns of selected ergot alkaloids by electrospray tandem quadrupole mass spectrometry. J Mass Spectrom 39:1275–1286

    Article  CAS  PubMed  Google Scholar 

  40. Krska R et al (2008) Simultaneous determination of six major ergot alkaloids and their epimers in cereals and foodstuffs by LC–MS–MS. Anal Bioanal Chem 391:563–576

    Article  CAS  PubMed  Google Scholar 

  41. Sulyok M et al (2007) A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal Bioanal Chem 389:1505–1523

    Article  CAS  PubMed  Google Scholar 

  42. Smith D, Shappell N (2002) Technical note: epimerization of ergopeptine alkaloids in organic and aqueous solvents. J Anim Sci 80:1616–1622

    CAS  PubMed  Google Scholar 

  43. Moubarak AS, Rosenkrans CFJ (2000) Hepatic metabolism of ergot alkaloids in beef cattle by cytochrome P450. Biochem Biophys Res Commun 274:746–749

    Article  CAS  PubMed  Google Scholar 

  44. Grancher D et al (2004) Countercurrent chromatographic isolation of lolitrem B from endophyte-infected ryegrass (Lolium perenne L.) seed. J Chromatogr A 1059:73–81

    Article  CAS  PubMed  Google Scholar 

  45. Dyer D (1993) Evidence that ergovaline acts on serotonin receptors. Life Sci 53:223–228

    Article  Google Scholar 

  46. Schmidt S et al (1983) Cow-calf performance as affected by fungus infestation of Kentucky-31 tall fescue pastures. J Anim Sci 57:295

    Google Scholar 

  47. Schmidt SP et al (1986) Fescue fungus suppresses growth and reproduction in replacement beef heifers. Highlights Agric Res 33:150–151

    Google Scholar 

  48. Cross D et al (1995) Equine fescue toxicosis: signs and solutions. J Anim Sci 73:899–908

    CAS  PubMed  Google Scholar 

  49. Nimmerfall F, Rosenthaler J (1976) Ergot alkaloids: hepatic distribution and estimation of absorption by measurement of total radioactivity in bile and urine. J Pharmacokinet Biopharm 4:57–66

    CAS  PubMed  Google Scholar 

  50. Maurer G et al (1983) Fate and disposition of bromocryptine in animals and man. II. Absorption, elimination and metabolism. Eur J Drug Metab Pharmacokinet 8:51–62

    Article  CAS  PubMed  Google Scholar 

  51. Ball SE et al (1992) Characterization of the cytochrome P-450 gene family responsible for the N-dealkylation of the ergot alkaloid CQA 206-291 in humans. Drug Metab Dispos 20:56–63

    CAS  PubMed  Google Scholar 

  52. Peyronneau M-A et al (1994) High affinity of ergopeptides for cytochromes P450 3A: Importance of their peptide moiety for P450 recognition and hydroxylation of bromocryptine. Eur J Biochem 223:947–956

    Article  CAS  PubMed  Google Scholar 

  53. Althaus M et al (2000) In vitro identification of the cytochrome P450 isoform responsible for the metabolism of α-dihydroergocryptine. Xenobiotica 30:1033–1045

    Article  CAS  PubMed  Google Scholar 

  54. Imlach WL et al (2008) The molecular mechanism of “ryegrass staggers,” a neurological disorder of K+ channels. J Pharmacol Exp Ther 327:657–664

    Article  CAS  PubMed  Google Scholar 

  55. Imlach WL et al (2009) Structural determinants of lolitrems for inhibition of BK large conductance Ca2+-activated K+ channels. Eur J Pharmacol 605:36–45

    Article  CAS  PubMed  Google Scholar 

  56. Blythe LL, et al. (2007) Clinical manifestations of tall fescue (Festuca arundinacea) and perennial ryegrass (Lolium perenne) toxicosis in Oregon and Japan. In: Popay A, Thom E, (eds) 6th International Symposium on Fungal Endophytes of Grasses. New Zealand Grassland Association, pp 369–372

    Google Scholar 

  57. Blythe LL, et al. (2007) Determination of the toxic threshold of lolitrem B in cattle eating endophyte-infected perennial ryegrass. In: Popay AJ, Thom E (eds) Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses. New Zealand Grassland Association, pp 399–402

    Google Scholar 

Download references

Acknowledgments

Funding for studies conducted in the authors’ laboratories was provided by the U.S. Department of Agriculture (58-6227-8-044) and the Oregon Agricultural Experiment Station (project ORE00871). Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Duringer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duringer, J.M., Murty, L., Craig, A.M. (2013). Endophyte Mycotoxins in Animal Health. In: Gang, D. (eds) Phytochemicals, Plant Growth, and the Environment. Recent Advances in Phytochemistry, vol 42. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4066-6_3

Download citation

Publish with us

Policies and ethics