Skip to main content

Prenylated Proteins Are Required for Methyl-Jasmonate-Induced Monoterpenoid Indole Alkaloids Biosynthesis in Catharanthus roseus

  • Chapter
  • First Online:
Isoprenoid Synthesis in Plants and Microorganisms

Abstract

In Catharanthus roseus, monoterpenoid indole alkaloids (MIA) result from the condensation of the indole precursor tryptamine with the terpenoid precursor secologanin, which is derived from the plastidial methyl-d-erythritol 4-phosphate (MEP) pathway. Nevertheless, inhibition of the classical so-called mevalonate pathway leads to inhibition of MIA biosynthesis, suggesting that there is some cross regulation between these two pathways. The purpose of this chapter is to outline a new function for protein prenylation. Our results suggest that prenylated proteins, apparently mevalonate pathway end products, act as part of the regulatory mechanism coordinating the exchange of metabolites between compartmentalized metabolic pathways and that this process is governed by methyl jasmonate. Methyl jasmonate is a major inducer of alkaloid biosynthesis through enhancing MEP pathway gene expression. In C. roseus cells, inhibition of protein prenylation leads to the down-regulation of methyl-jasmonate-induced expression of MEP pathway genes and thus abolishes MIA biosynthesis. Jointly, failure of protein prenylation also inhibits the methyl-jasmonate-induced expression of the transcription factor ORCA3 which acts as a central regulator of MIA biosynthesis. Furthermore, the specific silencing of protein prenyltransferases in C. roseus cells mediated by RNA interference shows that inhibition of type I protein geranylgeranyltransferase down-regulates the expression of ORCA3. These data point to a specific role of protein geranylgeranylation in jasmonate signalling leading to MIA formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aapro MS, Harper P, Johnson SA, Vermorken JB (2001) Developments in cytotoxic chemotherapy: advances in treatment utilising vinorelbine. Crit Rev Oncol Hematol 40:250–263

    Article  Google Scholar 

  • Adjobo-Hermans MJ, Goedhart J, Gadella TWJ Jr (2006) Plant G protein heterotrimers require dual lipidation motifs of Gα and Gγ and do not dissociate upon activation. J Cell Sci 119:5087–5097

    Article  PubMed  CAS  Google Scholar 

  • Aerts R, Gisi D, De Carolis E, De Luca V, Baumann TW (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643

    Article  CAS  Google Scholar 

  • Allen GJ, Murata Y, Chu SP, Nafisi M, Schoeder JI (2002) Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell 14:1649–1662

    Article  PubMed  CAS  Google Scholar 

  • Arvy M-P, Imbault N, Naudascher F, Thiersault DP (1994) 2,4-D and alkaloid accumulation in periwinkle cell suspensions. Biochimie 76:410–416

    Article  PubMed  CAS  Google Scholar 

  • Barth O, Zschiesche W, Siersleben S, Humbeck K (2004) Isolation of a novel cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiol Plant 121:282–293

    Article  PubMed  CAS  Google Scholar 

  • Bloch K (1965) The biological synthesis of cholesterol. Science 150:19–28

    Article  PubMed  CAS  Google Scholar 

  • Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75

    Article  PubMed  CAS  Google Scholar 

  • Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38: 131–141

    Article  PubMed  CAS  Google Scholar 

  • Caldelari D, Sternberg H, Rodríguez-Concepción M, Gruissem W, Yalovsky S (2001) Efficient prenylation by a plant geranylgeranyltransferase-I requires a functional CaaL box motif and a proximal polybasic domain. Plant Physiol 126:1416–1429

    Article  PubMed  CAS  Google Scholar 

  • Chahed K, Oudin A, Guivarc’h N, Hamdi S, Chénieux JC, Rideau M, Clastre M (2000) 1-Deoxy-d-xylulose 5-phosphate synthase from periwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol Biochem 38:559–566

    Article  CAS  Google Scholar 

  • Chakravorty D, Botella JR (2007) Over-expression of a truncated Arabidopsis thaliana heterotrimeric G protein γ subunit results in a phenotype similar to α and β subunit knockouts. Gene 393:163–170

    Article  PubMed  CAS  Google Scholar 

  • Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    PubMed  CAS  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoort R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220

    Article  PubMed  CAS  Google Scholar 

  • Contin A, van der Heijden R, Lefebre AW, Verpoorte R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 4: 413–416

    Article  Google Scholar 

  • Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc’h N (2005a) Characterisation of CaaX-prenyltransferases in Catharanthus roseus: relationships with the expression of genes involved in the early stages of monoterpenoid biosynthetic pathway. Plant Sci 168: 1097–1107

    Article  CAS  Google Scholar 

  • Courdavault V, Thiersault M, Courtois M, Gantet P, Oudin A, Doireau P, St-Pierre B, Giglioli-Guivarc’h N (2005b) CaaX-prenyltransferases are essential for expression of genes involved in the early stages of monoterpenoid biosynthetic pathway in Catharanthus roseus cells. Plant Mol Biol 57:855–870

    Article  PubMed  CAS  Google Scholar 

  • Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc’h N (2009) Proteins prenylated by type I protein geranylgeranyltransferase act positively on the jasmonate signalling pathway triggering the biosynthesis of monoterpene indole alkaloids in Catharanthus roseus. Plant Cell Rep 28:83–93

    Article  PubMed  CAS  Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyltransferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Proc Natl Acad Sci USA 86: 2582–2586

    Article  PubMed  Google Scholar 

  • de Waal A, Meijer AH, Verpoorte R (1995) Strictosidine synthase from Catharanthus roseus: purification and characterization of multiple forms. Biochem J 306:571–580

    PubMed  Google Scholar 

  • Décendit A, Liu D, Ouelhazi L, Doireau P, Mérillon JM, Rideau M (1992) Cytokinin-enhanced accumulation of indole alkaloids in Catharanthus roseus cell cultures. The factors affecting the cytokinin response. Plant Cell Rep 11:400–403

    Article  Google Scholar 

  • El-Sayed M, Verpoorte R (2005) Methyljasmonate accelerates catabolism of monoterpenoid indole alkaloids in Catharanthus roseus during leaf processing. Fitoterapia 76:83–90

    Article  PubMed  CAS  Google Scholar 

  • Flesch G, Rohmer M (1988) Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem 175:405–411

    Article  PubMed  CAS  Google Scholar 

  • Galichet A, Gruissem W (2006) Developmentally controlled farnesylation modulates AtNAP1;1 function in cell proliferation and cell expansion during Arabidopsis leaf development. Plant Physiol 142:1412–1426

    Article  PubMed  CAS  Google Scholar 

  • Galichet A, Hoyerová K, Kamínek M, Gruissem W (2008) Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis. Plant Physiol 146:1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Gantet P, Imbault N, Thiersault M, Doireau P (1998) Necessity of a functional octadecanoic pathway for indole alkaloid synthesis by Catharanthus roseus cell suspensions cultured in an auxin-starved medium. Plant Cell Physiol 39:220–225

    Article  CAS  Google Scholar 

  • Gelb MH, Tamanoi F, Yokoyama K, Ghomashchi F, Esson K, Gould MN (1995) The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol. Cancer Lett 91:169–175

    Article  PubMed  CAS  Google Scholar 

  • Gelb MH, Brunsveld L, Hrycyna CA et al (2006) Therapeutic intervention based on protein prenylation and associated modifications. Nat Chem Biol 2:518–528

    Article  PubMed  CAS  Google Scholar 

  • Gerber E, Hemmerlin A, Hartmann M et al (2009) The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells. Plant Cell 21:285–300

    Article  PubMed  CAS  Google Scholar 

  • Giglioli-Guivarc’h N, Courdavault V, Oudin A, Crèche J, St-Pierre B (2006) Madagascar periwinkle, an attractive model for studying the control of the biosynthesis of terpenoid derivative compounds. In: Texeira da Silva JA (ed) Floriculture, ornamental and plant biotech­nology: advances and topical issues, vol 2, 1st edn. Global Science BooksÔ, Isleworth, Middlesex, UK

    Google Scholar 

  • Hedhili S, Courdavault V, Giglioli-Guivarc’h N, Gantet P (2007) Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochem Rev 6:341–351

    Article  CAS  Google Scholar 

  • Imbault N, Thiersault M, Dupéron P, Benabdelmouna A, Doireau P (1996) Pravastatin: a tool for investigating the availability of mevalonate metabolites for primary and secondary metabolism in Catharanthus roseus cell suspension. Physiol Plant 98:803–809

    Article  CAS  Google Scholar 

  • Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schröder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804

    Article  PubMed  CAS  Google Scholar 

  • Johnson CD, Chary SN, Chernoff EA, Zeng Q, Running MP, Crowell DN (2005) Protein geranylgeranyltransferase is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. Plant Physiol 139:722–723

    Article  PubMed  CAS  Google Scholar 

  • Levêque D, Jehl F (2007) Molecular pharmacokinetics of Catharanthus (vinca) alkaloids. J Clin Pharmacol 47:579–588

    Article  PubMed  Google Scholar 

  • Levêque D, Wihlm J, Jehl F (1996) Pharmacology of Catharanthus alkaloids. Bull Cancer 83:176–186

    PubMed  Google Scholar 

  • Mahroug S, Burlat V, St-Pierre B (2007) Cellular and sub-cellular organisation of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Phytochem Rev 6:363–381

    Article  CAS  Google Scholar 

  • Mason MG, Botella JR (2000) Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA. Proc Natl Acad Sci USA 97:14784–14788

    Article  PubMed  CAS  Google Scholar 

  • Mason MG, Botella JR (2001) Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with G β. Biochim Biophys Acta 1520:147–153

    Article  PubMed  CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    PubMed  CAS  Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  PubMed  CAS  Google Scholar 

  • Menke FL, Champion A, Kjine JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor ORCA2. EMBO J 18:4455–4463

    Article  PubMed  CAS  Google Scholar 

  • Mérillon JM, Doireau P, Guillot A, Chénieux JC, Rideau M (1986) Indole alkaloid accumulation and tryptophan decarboxylase activity in Catharanthus roseus cells cultured in three media. Plant Cell Rep 5:23–26

    Article  Google Scholar 

  • Moores SL, Schaber MD, Mosser SD et al (1991) Sequence dependence of protein isoprenylation. J Biol Chem 266:14603–14610

    PubMed  CAS  Google Scholar 

  • Morehead TA, Biermann BJ, Crowell DN, Randall SK (1995) Changes in protein isoprenylation during the growth of suspension-cultured tobacco cells. Plant Physiol 109:277–284

    PubMed  CAS  Google Scholar 

  • Okouneva T, Hill BT, Wilson L, Jordan MA (2003) The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Mol Cancer Ther 2:427–436

    PubMed  CAS  Google Scholar 

  • Oudin A, Courtois M, Rideau M, Clastre M (2007a) The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem Rev 6:259–276

    Article  CAS  Google Scholar 

  • Oudin A, Mahroug S, Courdavault V et al (2007b) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 65:13–30

    Article  PubMed  CAS  Google Scholar 

  • Papon N, Oudin A, Vansiri A, Rideau M, Chénieux JC, Crèche J (2003) Differential expression of two type-A response regulators in plants and cell cultures of Catharanthus roseus (L.) G. Don. J Exp Bot 54:1793–1795

    Article  PubMed  CAS  Google Scholar 

  • Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Crèche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71:572–574

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Ghassemian M, Kwak CM, McCourt P, Schroeder JI (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282:287–290

    Article  PubMed  CAS  Google Scholar 

  • Qian D, Zhou D, Ju R, Cramer CL, Yang Z (1996) Protein farnesyltransferase in plants: molecular characterization and involvement in cell cycle control. Plant Cell 8:2381–2394

    PubMed  CAS  Google Scholar 

  • Ren Z, Elson CE, Gould MN (1997) Inhibition of type I and type II geranylgeranyl-protein transferases by the monoterpene perillyl alcohol in NIH3T3 cells. Biochem Pharmacol 54:113–120

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Concepción M, Yalovsky S, Gruissem W (1999) Protein prenylation in plants: old friends and new targets. Plant Mol Biol 39:865–870

    Article  PubMed  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Running MP, Lavy M, Sternberg H et al (2004) Enlarged meristems and delayed growth in plp mutants results from lack of CaaX-prenyltransferase. Proc Natl Acad Sci USA 101:7815–7820

    Article  PubMed  CAS  Google Scholar 

  • Schafer WR, Rine J (1992) Protein prenylation: genes, enzymes, targets and functions. Annu Rev Genet 26:209–237

    Article  PubMed  CAS  Google Scholar 

  • Simkin AJ, Labouré AM, Kuntz M, Sandmann G (2003) Comparison of carotenoid content, gene expression and enzyme levels in tomato (Lycopersicon esculentum) leaves. Z Naturforsch C 58c:371–380

    Google Scholar 

  • Simkin AJ, Guirimand G, Papon N et al (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234:903–914

    Google Scholar 

  • St-Pierre B, Vázquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    PubMed  CAS  Google Scholar 

  • Tamanoi F (1993) Inhibitors of Ras farnesyltransferases. Trends Biochem Sci 18:349–353

    Article  PubMed  CAS  Google Scholar 

  • Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR (2006) Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 140:210–220

    Article  PubMed  CAS  Google Scholar 

  • Trusov Y, Rookes JE, Tilbrook K et al (2007) Heterotrimeric G protein γ subunits provide functional selectivity in Gβγ dimer signaling in Arabidopsis. Plant Cell 19:1235–1250

    Article  PubMed  CAS  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcrition factor ORCA3 activates gene expression via interaction with a ­jasmonate-responsive promoter element. Plant J 25:43–53

    Article  PubMed  Google Scholar 

  • Veau B, Courtois M, Oudin A, Chenieux JC, Rideau M, Clastre M (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim Biophys Acta 1517:159–163

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ying J, Kuzma M et al (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  PubMed  CAS  Google Scholar 

  • Yalovsky S, Kulukian A, Rodríguez-Concepción M, Young CA, Gruissem W (2000a) Functional requirement of plant farnesyltransferase during development in Arabidospsis. Plant Cell 12:1267–1278

    PubMed  CAS  Google Scholar 

  • Yalovsky S, Rodríguez-Concepción M, Bracha K, Toledo-Ortiz G, Gruissem W (2000b) Prenylation of the floral transcription factor APETALA1 modulates its function. Plant Cell 12:1257–1266

    PubMed  CAS  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pré M, Gantet P, Memelink J (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67:61–71

    Google Scholar 

  • Ziegelhoffer EC, Medrano LJ, Meyerowitz EM (2000) Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proc Natl Acad Sci USA 97:7633–7638

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the ‘Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche’ (France) and the ‘Ligue Nationale contre le Cancer’. We thank the ‘Le STUDIUM’ (Agency for Research and Hosting Foreign Associated Researchers in the Centre Region (France)) for the financial support of A. J. Simkin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Giglioli-Guivarc’h .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Courdavault, V., Clastre, M., Simkin, A.J., Giglioli-Guivarc’h, N. (2012). Prenylated Proteins Are Required for Methyl-Jasmonate-Induced Monoterpenoid Indole Alkaloids Biosynthesis in Catharanthus roseus . In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_19

Download citation

Publish with us

Policies and ethics