Skip to main content

Strigolactones: A Cry for Help Results in Fatal Attraction. Is Escape Possible?

  • Chapter
  • First Online:
  • 2633 Accesses

Abstract

During evolution, plants have adapted an ecological balance with their associates, competitors, predators, and pests. Keeping this balance intact is an active process during which the plant needs to respond to many different stimuli in order to survive.

For example, plants have developed an array of physiological and biochemical responses to phosphate deprivation. One of these responses is the production of isoprenoid-derived molecules called strigolactones. Strigolactones are used to stimulate the formation of symbiotic associations of plant roots with arbuscular mycorrhizal (AM) fungi. AM fungi colonize the root cortex to obtain carbon from their host while assisting the plant in phosphate acquisition. However, strigolactones also stimulate the germination of root parasitic plant seeds. Only upon perception of the presence of a host through its strigolactone production, seeds of the parasites germinate and attach to the roots of many plant species. In contrast to a mutual symbiotic relationship, where both partners benefit from the affiliation through an exchange of resources, the host is heavily exploited by a parasitic plant and suffers strongly from the interaction because it is robbed from its assimilates, water, and nutrients.

In this chapter, we focus on the knowledge about the biosynthetic origin of the strigolactones, their ecological significance, and physiological and biochemical regulation. We finally point at recent scientific developments which may explain why a nonmycorrhized plant like Arabidopsis is still producing strigolactones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931

    Article  PubMed  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):750–751

    Article  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M et al (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Bagayoko M, George E, Römheld V, Buerkert A (2000) Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. J Agric Sci 135:399–407

    Article  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P et al (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:1239–1247

    Article  CAS  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238

    Article  PubMed  CAS  Google Scholar 

  • Booker J, Sieberer T, Wright W et al (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    Article  PubMed  CAS  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester HJ, Roux C, López-Ráez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  PubMed  CAS  Google Scholar 

  • Butler LG (1995) Chemical communication between the parasitic weed Striga and its crop host a new dimension of allelochemistry. In: Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications, vol 582, ACS Symposium Series. American Chemical Society, Washington, DC, pp 158–168

    Chapter  Google Scholar 

  • Dalla Vecchia F, Barbato R, La Rocca N, Moro I, Rascio N (2001) Responses to bleaching herbicides by leaf chloroplasts of maize plants grown at different temperatures. J Exp Bot 52:811–820

    Article  PubMed  CAS  Google Scholar 

  • Dor E, Yoneyama K, Wininger S, Kapulnik Y et al (2011) Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology 101:213–222

    Article  PubMed  CAS  Google Scholar 

  • Dörr I (1996) New results on interspecific bridges between parasites and their hosts. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman JL, Parker CR (eds) Advances in parasitic plant research. Junta de Andalucia, Spain, pp 196–201

    Google Scholar 

  • Foo E, Turnbull CG, Beveridge C (2001) Long-distance signalling and the control of branching in the rms1 mutant of pea. Plant Physiol 126:203–209

    Article  PubMed  CAS  Google Scholar 

  • Goldwasser Y, Yoneyama K, Xie X, Yoneyama K (2008) Production of strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regul 55:21–28

    Article  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer P et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  PubMed  CAS  Google Scholar 

  • Gworgwor NA, Weber HC (2003) Arbuscular mycorrhizal fungi-parasite-host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum [Sorghum bicolor (L.) Moench]. Mycorrhiza 13:277–281

    Article  PubMed  Google Scholar 

  • Hable WE, Oishi KK, Schumaker KS (1998) Viviparous-5 encodes phytoene desaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize. Mol Gen Genet 257:167–176

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O et al (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    Article  PubMed  CAS  Google Scholar 

  • Hibberd JM, Jeschke WD (2001) Solute transfer into parasitic plants. J Exp Bot 52:2043–2049

    Article  PubMed  CAS  Google Scholar 

  • Hibberd JM, Quick WP, Press MC, Scholes JD, Jeschke WD (1999) Solute fluxes from tobacco to the parasitic angiosperm Orobanche cernua and the influence of infection on host carbon and nitrogen relations. Plant Cell Environ 22:937–947

    Article  CAS  Google Scholar 

  • Jeschke WD, Räth N, Bäumel P, Czygan FC, Proksch P (1994) Modelling of the flows and partitioning of carbon and nitrogen in the holoparasite Cuscuta reflexa Roxb. and its host Lupinus albus L. II. Flows between host and parasite within the parasitized host. J Exp Bot 45:801–812

    Article  CAS  Google Scholar 

  • Joel DM (2000) The long-term approach to parasitic weeds control: 1 manipulation of specific developmental mechanisms of the parasite. Crop Prot 19:753–758

    Article  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J-P, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  PubMed  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  PubMed  CAS  Google Scholar 

  • Kohlen W, Charnikova T, Liu Q et al (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  PubMed  CAS  Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel D, Weininger S, Lekalla S, Shealtiel H, Bahattacharya C, Eliahu E, Resnick N, Barg R, Kapulnik Y (2010) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136

    Article  CAS  Google Scholar 

  • Kuster H, Hohnjec N, Krajinski F et al (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol 108:95–113

    Article  PubMed  CAS  Google Scholar 

  • Lendzemo VW, Kuyper TW, Matusova R et al (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal Behav 2:58–62

    Article  PubMed  Google Scholar 

  • Li ZH, Matthews PD, Burr B, Wurtzel ET (1996) Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway. Plant Mol Biol 30:269–279

    Article  PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Gómez-Roldán V et al (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    Article  PubMed  Google Scholar 

  • López-Ráez JA, Matusova R, Cardoso C et al (2009) Strigolactones: ecological significance and use a target for parasitic plant control. Pest Manag Sci 65:963–965

    Article  Google Scholar 

  • López-Ráez JA, Kohlen W, Charnikhova T et al (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354

    Article  PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297

    Article  PubMed  Google Scholar 

  • Magnus EM, Zwanenburg B (1992) Tentative molecular mechanisms for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogues. J Agric Food Chem 40:1066–1070

    Article  Google Scholar 

  • Mashiguchi K, Sasaki E, Shimada Y et al (2009) Feedback regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci Biotechnol Biochem 73:2460–2465

    Article  PubMed  CAS  Google Scholar 

  • Matusova R, Bouwmeester HJ (2006) The effect of host-root-derived chemical signals on the germination of parasitic plants. In: Dicke M, Takken W (eds) Chemical ecology: from gene to ecosystem. Springer, Netherlands, pp 39–54

    Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  PubMed  CAS  Google Scholar 

  • Morris SE, Turnbull CG, Murfet IC, Beveridge CA (2001) Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol 126:1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Mouchel CF, Leyser O (2007) Novel phytohormones involved in long-range signaling. Curr Opin Plant Biol 10:473–476

    Article  PubMed  CAS  Google Scholar 

  • Nagahashi G, Douds DD (2004) Isolated root caps, border cells, and mucilage from host roots stimulate hyphal branching of the arbuscular mycorrhizal fungus, Gigaspora gigantea. Mycol Res 108:1079–1088

    Article  PubMed  Google Scholar 

  • Nickrent DL, Duff RJ, Colwell AE et al (1998) Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants, II. Kluwer, Boston, pp 211–241

    Chapter  Google Scholar 

  • Parker C, Riches CR (1993) Parasitic plants of the world. CAB International, UK

    Google Scholar 

  • Parry AD, Horgan R (1992) Abscisic-acid biosynthesis in roots. 1. The identification of potential abscisic-acid precursors, and other carotenoids. Planta 187:185–191

    Article  CAS  Google Scholar 

  • Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370

    Article  PubMed  Google Scholar 

  • Pichersky D, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  PubMed  CAS  Google Scholar 

  • Press MC, Graves JD (1995) Parasitic plants. Chapman and Hall, London, pp 103–124

    Google Scholar 

  • Press MC, Scholes JD, Riches CR (2001) Current status and future prospects for management of parasitic weeds (Striga and Orobanche). In: Riches CR (ed) The world’s worst weeds. British Crop Protection Council, Brighton/Farnham, pp 71–90

    Google Scholar 

  • Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626

    Article  PubMed  CAS  Google Scholar 

  • Revill MJW, Stanley S, Hibberd JM (2005) Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J Exp Bot 56:2477–2486

    Article  PubMed  CAS  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikova T et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    Article  PubMed  CAS  Google Scholar 

  • Scholes JD, Press MC (2008) Striga infestation of cereal crops - an unsolved problem in resource limited agriculture. Curr Opin Plant Biol 11:180–186

    Article  PubMed  Google Scholar 

  • Seel WE, Jeschke WD (1999) Simultaneous collection of xylem sap from Rhinanthus minor and the hosts Hordeum and Trifolium: hydraulic properties, xylem sap composition and effect of attachment. New Phytol 143:281–298

    Article  CAS  Google Scholar 

  • Shen H, Ye W, Hong L, Huang H, Wang Z, Deng X, Yang Q, Xu Z (2006) Progress in parasitic plant biology: host selection and nutrient transfer. Plant Biol 8:175–185

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Luong P, Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483

    Article  PubMed  CAS  Google Scholar 

  • Sorefan K, Booker J, Haurogné K et al (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Stewart GR, Press MC (1990) The physiology and biochemistry of parasitic angiosperms. Ann Rev Plant Physiol Plant Mol Biol 41:127–151

    Article  CAS  Google Scholar 

  • Stirnberg P, van De Sande K, Leyser O (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    PubMed  CAS  Google Scholar 

  • Sun Z, Has J, Walter MH, Matusova R, Beekwilder J, Verstappen FWA, Ming Z, van Echtelt E, Strack D, Bisseling T, Bouwmeester HJ (2008) Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta 228:789–801

    Article  PubMed  CAS  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94:12235–12240

    Article  PubMed  CAS  Google Scholar 

  • Taylor IB, Sonneveld T, Bugg TDH, Thompson AJ (2005) Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. J Plant Growth Regul 24:253–273

    CAS  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749

    Article  PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–1973

    Article  CAS  Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D et al (2007a) Nitrogen deficiency as well as phosphorous deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007b) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Sekimoto H et al (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y (2010) Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol 51:1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Zhang S, Zhang W et al (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–698

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolien Ruyter-Spira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruyter-Spira, C. et al. (2012). Strigolactones: A Cry for Help Results in Fatal Attraction. Is Escape Possible?. In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_14

Download citation

Publish with us

Policies and ethics