Skip to main content

Do Bigger Brains Mean Better Milk?

  • Chapter
  • First Online:
Building Babies

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR,volume 37))

Abstract

Life history theory proposes that individuals have a finite amount of energy that can be spent on either growth or reproduction, leading to a trade-off between fecundity and survival to maturity (Charnov 1993; Purvis et al. 2003; Stearns 1992). The subsequent pace of a species’ life history reflects the trade-off between the potential gains for continuing to grow larger and the risk of dying before reproducing (Charnov 1993). The variation in the pace of life history strategies across mammals reflects the myriad ways in which energy can be partitioned to maximize fitness over the lifetime. On one end of the continuum of life history variation are primates who have been described as living “life in the slow lane” (Charnov and Berrigan 1993). As a result of their protracted life history strategy, primate mothers invest more heavily in each offspring during gestation and lactation compared to non-primate mammals (Dufour and Sauther 2002; Martin and MacLarnon 1990). However, because this investment is paid out over a longer period of time, the daily energetic burden of primate reproduction on the mother is relatively low (Dufour and Sauther 2002; Martin and MacLarnon 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    n-6 or n-3 refers to the location of the first double-bonded carbon from the omega end of the fatty acid molecule.

  2. 2.

    As indicated in Fig. 10.1, EPA (eicosapentaenoic acid: 20:5n-3) is also an n-3 LCPUFA metabolite of ALA. EPA is not highlighted in this chapter (nor in most research/discussions of human brain function) as its concentration in the brain is significantly less than that of AA or DHA.

  3. 3.

    With the following changes: S. sciureus values used for S. boliviensis and G. gorilla values for G. beringei.

References

  • Agostoni C (2005) LC-PUFA content in human milk: is it always optimal? Acta Paediatr 94:1532–1537

    Article  PubMed  Google Scholar 

  • Agostoni C, Marangoni F, Lammardo AM, Galli C, Giovannini M, Riva E (2001) Long-chain polyunsaturated fatty acid concentrations in human hindmilk are constant throughout twelve months of lactation. In: Newburg DS (ed) Bioactive components of human milk. Kluwer Academic/Plenum, New York, pp 157–161

    Chapter  Google Scholar 

  • Anderson JW, Johnstone BM, Remley DT (1999) Breastfeeding and cognitive development: a meta-analysis. Am J Clin Nutr 70:525–535

    Google Scholar 

  • Blumenschine RJ (1995) Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at Flk Zinjanthropus, Olduvai Gorge, Tanzania. J Hum Evol 29:21–51

    Article  Google Scholar 

  • Blumenschine RJ, Madrigal TC (1993) Variability in long bone marrow yields of East African ungulates and its zooarchaeological implications. J Archaeol Sci 20:555–587

    Article  Google Scholar 

  • Bogin B, Smith BH (1996) Evolution of the human life cycle. Am J Hum Biol 8:703–716

    Article  Google Scholar 

  • Brantingham PJ (1998) Hominid–carnivore coevolution and the invasion of the predatory guild. J Anthropol Archaeol 17:327–353

    Article  Google Scholar 

  • Braun DR, Harris JWK, Levin NE, McCoy JT, Harries AIR, Bamford MK, Bishop LC, Richmond BG, Kibunjiai M (2010) Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana. Proc Natl Acad Sci 107:10002–10007

    Article  PubMed  CAS  Google Scholar 

  • Brenna JT (2002) Efficiency of conversion of α-linolenic acid to long chain n-3 fatty acids in man. Curr Opin Clin Nutr Metab Care 5:127–132

    Article  PubMed  CAS  Google Scholar 

  • Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM (2007) Docosahexaenoic acid and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr 85:1457–1464

    PubMed  CAS  Google Scholar 

  • Brenna JT, Salem N, Sinclair AJ, Cunnane SC (2009) Linolenic acid supplemented and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostglandins Leukot Essent Fatty Acids 80:85–91

    Article  CAS  Google Scholar 

  • Broadhurst CL, Cunnane SC, Crawford MA (1998) Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. Br J Nutr 79:3–21

    Article  PubMed  CAS  Google Scholar 

  • Broadhurst CL, Wang YQ, Crawford MA, Cunnane SC, Parkington JE, Schmidt WF (2002) Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B Biochem Mol Biol 131:653–673

    Article  PubMed  Google Scholar 

  • Burdge GC (2004) Alpha-linolenic acid metabolism in men and women: nutritional and biological implications. Curr Opin Clin Nutr Metab Care 7:137–144

    Article  PubMed  CAS  Google Scholar 

  • Capellini I, Vendetti C, Barton RA (2011) Placentation and maternal investment in mammals. Am Nat 177:86–98

    Article  PubMed  Google Scholar 

  • Carlson SE (1999) Long-chain polyunsaturated fatty acids and development of human infants. Acta Paediatr 88:72–77

    Article  CAS  Google Scholar 

  • Carlson SE (2001) Docosahexaenoic acid and arachidonic acid in infant development. Semin Neonatol 6:437–449

    Article  PubMed  CAS  Google Scholar 

  • Carlson BA, Kingston JD (2006) Docosahexaenoic acid, the aquatic diet, and hominin encephalization: difficulties in establishing evolutionary links. Am J Hum Biol 19:132–141

    Article  Google Scholar 

  • Carlson SE, Neuringer M (1999) Polyunsaturated fatty acid status and neurodevelopment: a summary and critical analysis of the literature. Lipids 34:171–178

    Article  PubMed  CAS  Google Scholar 

  • Carnielli VP, Sauer PJJ (1996) Essential fatty acid metabolism in neonates. In: Bindels JG, Goedhart AC, Visser HKA (eds) Recent developments in infant nutrition. Kluwer Academic, London, pp 173–181

    Chapter  Google Scholar 

  • Caspi A, Williams B, Kim-Cohen J, Craig IW, Milne BL, Poulton R, Schalkwyk LC, Taylor A, Werts H, Moffitt TE (2007) Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci U S A 104:18860–18865

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain JG (1996) The possible role of long-chain, omega-3 fatty acids in human brain phylogeny. Perspect Biol Med 39:436–445

    PubMed  CAS  Google Scholar 

  • Charnov EL (1993) Life history invariants. Oxford University Press, Oxford

    Google Scholar 

  • Charnov EL, Berrigan D (1993) Why do female primates have such long lifespans and so few babies? “Or” life in the slow lane. Evol Anthropol 1:191–194

    Article  Google Scholar 

  • Cordain L, Watkins BA, Mann NJ (2001) Fatty acid composition and energy density of foods available to African hominids: evolutionary implications for human brain development. In: Simopoulos AP (ed) Nutrition and fitness: metabolic studies in health and disease. Karger, Basel, pp 144–161

    Chapter  Google Scholar 

  • Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J (2005) Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81:341–354

    PubMed  CAS  Google Scholar 

  • Crawford MA (1992) The role of dietary fatty acids in biology: their place in the evolution of the human brain. Nutr Rev 50:3–11

    Article  PubMed  CAS  Google Scholar 

  • Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, Galli C, Gehbremeskel K, Linseisen F, Lloyd-Smith J, Parkington J (1999) Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 34:S39–S47

    Article  PubMed  CAS  Google Scholar 

  • Cunnane SC (2005) Survival of the fattest: the key to human brain evolution. World Scientific, Hackensack

    Book  Google Scholar 

  • Cunnane SC, Francescutti V, Brenna JT, Crawford MA (2000) Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids 35:101–111

    Article  Google Scholar 

  • Del Prado M, Villalpando S, Elizondo A, Rodriguez M, Demmelmair H, Koletzko B (2001) Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am J Clin Nutr 74:242–247

    PubMed  Google Scholar 

  • DeSilva J, Lesnik J (2006) Chimpanzee neonatal brain size: implications for brain growth in Homo erectus. J Hum Evol 51:207–212

    Article  PubMed  Google Scholar 

  • Dufour DL, Sauther ML (2002) Comparative and evolutionary dimensions of the energetics of human pregnancy and lactation. Am J Hum Biol 14:584–602

    Article  PubMed  CAS  Google Scholar 

  • Ellison PT (2001) On fertile ground. Harvard University Press, Cambridge

    Google Scholar 

  • Farquharson J, Cockburn F, Patrick WJA, Jamieson EC, Logan RW (1992) Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet 340:810–813

    Article  PubMed  CAS  Google Scholar 

  • Gibson RA (1997) Long-chain polyunsaturated fatty acids and infant development. Lancet 354:1919–1920

    Article  Google Scholar 

  • Gibson RA, Kneebone GM (1981) Fatty acid composition of human colostrum and mature breast milk. Am J Clin Nutr 34:252–257

    PubMed  CAS  Google Scholar 

  • Gibson RA, Makrides M (1999) Long-chain polyunsaturated fatty acids in breast milk: are they essential? In: Academic N-K (ed) Bioactive components of human milk. Plenum, New York, pp 375–383

    Google Scholar 

  • Gibson RA, Makrides M (2000) n-3 polyunsaturated fatty acid requirements of term infants. Am J Clin Nutr 71:251S–255S

    PubMed  CAS  Google Scholar 

  • Giltay EJ, Gooren LJ, Toorians AW, Katan MB, Zock PL (2004) Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am J Clin Nutr 80:1167–1174

    PubMed  CAS  Google Scholar 

  • Hinde K (2012) Lactational programming of infant behavioral phenotype. In: Clancy KBH, Hinde K, Rutherford JN (eds) Building babies: primate development in proximate and ultimate perspectives. Springer, New York

    Google Scholar 

  • Hinde K, Milligan LA (2011) Primate milk: proximate mechanisms and ultimate perspectives. Evol Anthropol 20:9–23

    Article  PubMed  Google Scholar 

  • Hoffman DR, Boettner JA, Diersen-Schade DA (2009) Toward optimizing vision and cognition in term infants by dietary docosahexaenoic acid and arachidonic acid supplementation: a review of randomized controlled trials. Prostaglandins Leukot Essen Fatty Acids 81:151–158

    Article  CAS  Google Scholar 

  • Holdcroft A, Oatridge A, Hajnal JV, Bydder GM (1997) Changes in brain size in normal human pregnancy (abstract). J Physiol 498P:80P–81P

    Google Scholar 

  • Huang MC, Brenna JT (2001) On the relative efficacy of α-linolenic acid and preformed docosahexaenoic acid as substrates for tissue docosahexaenoate during perinatal development. In: Mostofsky D, Yehuda S, Salem N (eds) Fatty acids: physiological and behavioral functions. Humana Press Inc, Totowa, pp 99–113

    Google Scholar 

  • Innis SM (2000) The role of dietary n-6 and n-3 fatty acids in the developing brain. Dev Neurosci 22:476–480

    Article  Google Scholar 

  • Innis SM (2003) Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J Pediatr 143:1–8

    Google Scholar 

  • Iverson SJ, Oftedal OT (1995) Phylogenetic and ecological variation in the fatty acid composition of milks. In: Jensen RG (ed) Handbook of milk composition. Academic, San Diego, pp 790–827

    Google Scholar 

  • Jensen RG, Bitman J, Carlson SE, Couch SC, Hamosh M, Newburg DS (1995) Human milk lipids. In: Jensen RG (ed) Handbook of milk composition. Academic, San Diego, pp 495–542

    Chapter  Google Scholar 

  • Koletzko B, Mrotzek M, Bremer HJ (1991) Fatty acid composition of mature human milk. Zeitschrift für ernahrungswiss—Evr J Nutr 30:289–297

    Article  CAS  Google Scholar 

  • Koletzko B, Agostoni C, Carlson SE, Clandinin T, Hornstra G, Neuringer M, Uauy R, Yamashiro Y, Willatts P (2001) Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development. Acta Paediatr 90:460–464

    Article  PubMed  CAS  Google Scholar 

  • Koletzko B, Lien E, Agostoni C, Bohles H, Campoy C, Cetin I, Decai T, Dudenhausen JW, Dupont C, Forsyth S, Hoesli I, Holzgreve W, Lapilonne A, Putet G, Secher NJ, Symonds M, Szajewska H, Willetts UR (2008) The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: review of current knowledge and consensus recommendations. J Perinat Med 36:5–14

    PubMed  CAS  Google Scholar 

  • Kothapalli KSD, Pan BS, Hsieh AT, Anthony JC, Nathanielsz PW, Brenna JT (2006) Comprehensive differential transcriptome analysis of cerebral cortex of baboon neonates consuming arachidonic acid and moderate and high docosahexaenoic acid formulas. FASEB J 20:A1347

    Google Scholar 

  • Kothapalli KSD, Anthony JC, Pan BS, Hsieh AT, Nathanielsz PW, Brenna JT (2007) Differential cerebral cortex transcriptomes of baboon neonates consuming moderate and high docosahexaenoic acid formulas. PLoS One 2:e370

    Article  PubMed  Google Scholar 

  • Kuzawa CW (1998) Adipose tissue in human infancy and childhood: an evolutionary perspective. Yearb Phys Anthropol 41:177–209

    Article  Google Scholar 

  • Lauritzen L, Hansen HS, Jorgensen MH, Michealsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40:1–94

    Article  PubMed  CAS  Google Scholar 

  • Leigh SR (2004) Brain growth, life history, and cognition in primate and human evolution. Am J Primatol 62:139–164

    Article  PubMed  CAS  Google Scholar 

  • Madrigal TC, Blumenschine RJ (2000) Preferential processing of high return rate marrow bones by Oldowan hominids: a comment on Lupo. J Archaeol Sci 27:739–741

    Article  Google Scholar 

  • Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA (1994) Fatty acid composition of brain, retina, and erythrocytes in breast-fed and formula-fed Infants. Am J Clin Nutr 60:189–194

    PubMed  CAS  Google Scholar 

  • Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60

    Article  PubMed  CAS  Google Scholar 

  • Martin RD (1983) Human brain evolution in an ecological context. American Museum of Natural History, New York

    Google Scholar 

  • Martin RD (1995) Phylogenetic aspects of primate reproduction: the context of advanced maternal care. In: Pryce CR, Martin RD, Skuse D (eds) Motherhood in human and nonhuman primates. 3rd Schultz-Biegert Symposium, Kartause Ittingen, 1994. Karger, Basel, pp 16–26

    Google Scholar 

  • Martin RD, MacLarnon AM (1990) Reproductive patterns in primates and other mammals: the dichotomy between altricial and precocial offspring. In: DeRousseau CJ (ed) Primate life history and evolution. Wiley-Liss, New York, pp 47–79

    Google Scholar 

  • Milligan LA (2007) Nonhuman primate milk composition: relationship to phylogeny, ontogeny, and ecology. Dissertation. University of Arizona

    Google Scholar 

  • Milligan LA (2010) Milk composition of captive tufted capuchins (Cebus apella). Am J Primatol 72:81–86

    Article  PubMed  CAS  Google Scholar 

  • Milligan LA, Bazinet RP (2008) Evolutionary modifications of human milk composition: evidence from long-chain polyunsaturated fatty acid composition of anthropoid milks. J Hum Evol 55:1086–1095

    Article  PubMed  Google Scholar 

  • Milligan LA, Rapoport SI, Cranfield MR, Dittus W, Glander KE, Oftedal OT, Power ML, Whittier CA, Bazinet RP (2008) Fatty acid composition of wild anthropoid primate milks. Comp Biochem Physiol B 149:74–82

    Article  PubMed  Google Scholar 

  • Purvis A, Webster AJ, Agapow P-M, Jones KE, Isaac NJB (2003) Primate life histories and phylogeny. In: Kappeler PM, Pereira ME (eds) Primate life histories and socioecology. University of Chicago Press, Chicago, pp 25–40

    Google Scholar 

  • Robson SL, Wood B (2008) Hominid life history: reconstruction and evolution. J Anat 212:394–425

    Article  PubMed  Google Scholar 

  • Rutherford JN (2012) The primate placenta as an agent of developmental and health trajectories across the lifecourse. In: Clancy KBH, Hinde K, Rutherford JN (eds) Building babies: primate development in proximate and ultimate perspectives. Springer, New York

    Google Scholar 

  • Rutherford J, Abrams ET (in press) Is postpartum hemorrhage a legacy of our evolutionary past? In: Keith L, Jones C (eds) A textbook of postpartum hemorrhage, 2nd edn

    Google Scholar 

  • Salem N Jr, Wegher B, Mena P, Uauy R (1996) Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci 93:49–54

    Article  PubMed  CAS  Google Scholar 

  • Sanders TA, Reddy S (1992) The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. J Pediatr 120:S71–S77

    Article  PubMed  CAS  Google Scholar 

  • Sarkadi-Nagy E, Wijendran V, Diau GY, Chao AC, Hsieh AT, Turpeinen A, Nathanielsz PW, Brenna JT (2003) The influence of prematurity and long chain polyunsaturate supplementation in 4-week adjusted age baboon neonate brain and related tissues. Pediatr Res 54:244–252

    Article  PubMed  CAS  Google Scholar 

  • Sarkadi-Nagy E, Wijendran V, Diau GY, Chao AC, Hsieh AT, Turpeinen A, Lawrence P, Nathanielsz PW, Brenna JT (2004) Formula feeding potentiates docosahexaenoic and arachidonic acid biosynthesis in term and preterm baboon neonates. J Lipid Res 45:71–80

    Article  PubMed  CAS  Google Scholar 

  • Sheaff-Greiner RC, Winter J, Nathanielsz PW, Brenna JT (1997) Brain docosahexaenoate accretion in fetal baboons: bioequivalence of dietary α-linolenic and docosahexaenoic acids. Pediatr Res 42:826–834

    Article  Google Scholar 

  • Smith BH, Tompkins RL (1995) Toward a life history of the Hominidae. Ann Rev Anthropol 24:257–279

    Article  Google Scholar 

  • Specker BL, Wey HE, Miller D (1987) Differences in fatty acid composition of human milk in vegetarian and nonvegetarian women: long-term effect of diet. J Pediatr Gastroenterol Nutr 6:764–768

    Article  PubMed  CAS  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Su HM, Corso TN, Nathanielsz PW, Brenna JT (1999) Linoleic acid kinetics and conversion to arachidonic acid in the pregnant and fetal baboon. J Lipid Res 40:1304–1312

    PubMed  CAS  Google Scholar 

  • Su HM, Huang M-C, Saad NMR, Nathanielsz PW, Brenna JT (2005) Fetal baboons convert 18:3n-3 to 22:6n-3 in vivo: a stable isotope tracer study. J Lipid Res 42:581–586

    Google Scholar 

  • Uauy R, Hoffman DR, Mena P, Llanos A, Birch EE (2003) Term infant studies of DHA and ARA supplementation on neurodevelopment: results of randomized controlled trials. J Pediatr 143:S17–S25

    PubMed  CAS  Google Scholar 

  • Wainwright PE (2002) Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc Nutr Soc 61:61–69

    Article  PubMed  CAS  Google Scholar 

  • Yuhas R, Pramuk K, Lien EL (2006) Milk fatty acid composition from nine countries varies most in DHA. Lipids 41:851–858

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Katie Hinde, Kate Clancy, and two anonymous reviewers for thoughtful comments on earlier versions of this chapter and Richard Bazinet for his continued assistance in understanding the world of nutritional biochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren A. Milligan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milligan, L.A. (2013). Do Bigger Brains Mean Better Milk?. In: Clancy, K., Hinde, K., Rutherford, J. (eds) Building Babies. Developments in Primatology: Progress and Prospects, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4060-4_10

Download citation

Publish with us

Policies and ethics