Skip to main content

Material Shaping by Ion and Electron Nanobeams

  • Chapter
  • First Online:
  • 2501 Accesses

Abstract

Beams of electrons and ions of energies ranging from a few keV to over 100keV and diameters in the single nanometers have become standard nanofabrication tools. Electron beams are routinely used to expose resist down to dimensions of 10nm. In principle, ion beams can be and have been used similarly to expose resist. However, what motivates this chapter is that both ion beams and electron beams can be used to directly produce structures without the usual multistep lithography process. Ion beams can simply locally sputter a surface, i.e., carve predesigned structures. In addition both electron beams and ion beams can be used to deposit material if a suitable precursor gas is adsorbed on the surface. The beam causes the adsorbed molecules to dissociate leaving some constituent behind. Similarly, if the adsorbate is a reactive gas, such as Cl2 or XeF2, a chemical reaction is induced where the beam is incident, and the material is locally etched. These material shaping techniques have found many applications and there are many types of structures have been built. However, the beam solid-interaction is complicated and factors other than the diameter of the beam limit the size of the structure that can be fabricated. In addition, these point-by-point fabrication techniques are slow. Typically to add or remove 1cm3 may require several tens of seconds. The finer the resolution needed the longer the fabrication time. Nevertheless these electron and ion nanobeam tools are widely used in research and in industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thompson LF, Willson CG, Bowden MJ (1994) Introduction to microlithography, 2nd edn. ACS, Washington, DC

    Google Scholar 

  2. Orloff J, Utlaut M, Swanson L (2003) High resolution focused ion beams: FIB and its applications. Springer, New York

    Book  Google Scholar 

  3. Utke I, Hoffmann P, Melngailis J (2008) J Vac Sci Technol B 26(4):1197

    Article  Google Scholar 

  4. http://portal.tugraz.at/portal/page/portal/felmi/research/FIB/Principles%20of%20FIB

  5. Xu X, DellaRatta AD, Sosonkina J, Melngailis J (1992) J Vac Sci Technol B 10(6):2675

    Article  Google Scholar 

  6. By Carl Zeiss: http://www.zeiss.de/c1256c1500431210/Contents-Frame/6531cac4d5c10402c1256df7003f3cbchttp://www.ticgroup.com.tw/menu/products/sem/mask/MeRit_MG_45/MeRiT_MG45.asp

  7. TRIM (or SRIM) simulation of sputtering: http://www.srim.org/

  8. Muller KP, Petzold HC (1990) Proc SPIE 1263:12

    Article  Google Scholar 

  9. Santamore D, Edinger K, Orloff J, Melngailis J (1997) J Vac Sci Technol B 15(6):2346

    Article  Google Scholar 

  10. Lugstein A, Steiger-Thirsfeld A, Basnar B, Hyun YJ, Pongratz P, Bertagnolli E (2009) J Appl Phys 105(4):044912

    Article  Google Scholar 

  11. Melngailis J (1987) J Vac Sci Technol B 5(2):469

    Article  Google Scholar 

  12. Yamaguchi H (1987) J Phys Colloques 48(C6):165

    Article  Google Scholar 

  13. Muller KP, Petzold HC (1990) Proc SPIE 1263(12) (repeat with [8])

    Google Scholar 

  14. Anderson HH, Bay HL (1981) Topics in applied physics: sputtering by particle bombardment. In: Behrisch R (ed) Physical sputtering of single element solids, vol 47. Springer, New York, p 145

    Google Scholar 

  15. Young RJ, Cleaver JRA, Ahmed H (1993) J Vac Sci Technol B 11(6):234

    Article  Google Scholar 

  16. Adams DP, Vasile MJ, Mayer TM, Hodges VC (2003) J Vac Sci Technol B 21(6):2334

    Article  Google Scholar 

  17. Stanishevsky A (2001) Thin Solid Films 398:560

    Article  Google Scholar 

  18. Steckl AJ, Chyr I (1999) J Vac Sci Technol B 17(2):362

    Article  Google Scholar 

  19. Blauner PG, Ro JS, Butt Y, Melngailis J (1989) J Vac Sci Technol B 7(4):609

    Article  Google Scholar 

  20. Ostadi H, Jiang K, Prewett PD (2009) Microelectron Eng 86(4):1021

    Article  Google Scholar 

  21. Mulders JJL, de Winter DAM, Duinkerken WJHCP (2007) Microelectron Eng 84(5):1540

    Article  Google Scholar 

  22. Vasile MJ, Xie J, Nasser R (1999) J Vac Sci Technol B 17(6):3085

    Article  Google Scholar 

  23. Vick D, Sauer V, Fraser AE, Freeman MR, Hiebert WK (2010) J Micromech Microeng 20(10):105005

    Article  Google Scholar 

  24. Ochiai Y, Gamo K, Namba S, Shihoyama K, Masuyama A, Shiokawa T, Toyoda K (1987) J Vac Sci Technol B 5(1):423

    Article  Google Scholar 

  25. Stark TJ, Shedd GM, Vitarelli J, Griffis DP, Russell PE (1995) J Vac Sci Technol B 13(6):2565

    Article  Google Scholar 

  26. Young RJ, Cleaver JRA, Ahmed H (1993) J Vac Sci Technol B 11(2):234 (repeat with [17])

    Google Scholar 

  27. Harriott LR (1993) J Vac Sci Technol B 11(6):2012

    Article  Google Scholar 

  28. Kola RR, Celler GK, Harriott LR (1993) Mater Res Soc Symp Proc 279:593

    Article  Google Scholar 

  29. Edinger K (1999) J Vac Sci Technol B 17(6):3058

    Article  Google Scholar 

  30. Santschi C, Jenke M, Hoffmann P, Brugger J (2006) Nanotechnology 17(11):2722

    Article  Google Scholar 

  31. DellaRatta AD, Melngailis J, Thompson CV (1993) J Vac Sci Technol B 11(6):2195

    Article  Google Scholar 

  32. Blauner PG, Butt Y, Ro JS, Thompson CV, Melngailis J (1989) J Vac Sci Technol B 7(4):1816

    Article  Google Scholar 

  33. Funatsu J, Thompson CV, Melngailis J, Walpole JN (1996) J Vac Sci Technol B 14(1):179

    Article  Google Scholar 

  34. Stewart DK, Stern LA, Morgan JC (1989) Proc SPIE 1089:18

    Article  Google Scholar 

  35. Luxmoore IJ, Ross IM, Cullis AG, Fry PW, Orr J, Buckle PD, Jefferson JH (2007) Thin Solid Films 515(17):6791

    Article  Google Scholar 

  36. Tao T, Ro JS, Melngailis J, Xue Z, Kaesz HD (1990) J Vac Sci Technol B 8(6):1826

    Article  Google Scholar 

  37. Puretz J, Swanson LW (1992) J Vac Sci Technol B 10(6):2695

    Article  Google Scholar 

  38. Gannon TJ, Gu G, Casey JD, Huynh C, Bassom N, Antoniou N (2004) J Vac Sci Technol B 22(6):3000

    Article  Google Scholar 

  39. Edinger K, Melngailis J, Orloff J (1998) J Vac Sci Technol B 16(6):3311

    Article  Google Scholar 

  40. Igaki J, Nakamatsu K, Kometani R, Kanda K, Haruyama Y, Kaito T, Matsui S (2006) J Vac Sci Technol B 24(6):2911

    Article  Google Scholar 

  41. Namatsu K, Nagase M, Igaki J, Namatsu H, Matsui S (2005) J Vac Sci Technol B 23(6):2801

    Article  Google Scholar 

  42. Alkemade PFA, Chen P, Veldhoven EV, Maas D (2010) J Vac Sci Technol B 28(6):C6F22

    Article  Google Scholar 

  43. Hoyle PC, Cleaver JRA, Ahmed H (1996) J Vac Sci Technol B 14(2):662

    Article  Google Scholar 

  44. Koops HWP, Weiel R, Kern DP, Baum TH (1988) J Vac Sci Technol B 6(1):477

    Article  Google Scholar 

  45. Utke I, Dwir B, Leifer K, Cicoira F, Doppelt P, Hoffmann P, Kapon E (2000) Microelectron Eng 53(1):261

    Article  Google Scholar 

  46. Yavas O, Ochiai C, Takai M, Park YK, Lehrer C, Lipp S, Frey L, Ryssel H, Hosono A, Okuda S (2000) J Vac Sci Technol B 18(2):976

    Article  Google Scholar 

  47. Barry JD, Ervin M, Molstad J, Wickenden A, Brintlinger T, Hoffman P, Meingailis J (2006) J Vac Sci Technol B 24(6):3165

    Article  Google Scholar 

  48. Utke I, Hoffmann P, Dwir B, Leifer K, Kapon E, Doppelt P (2000) J Vac Sci Technol B 18(6):3168

    Article  Google Scholar 

  49. Edinger K, Gotsalk T, Rangelow I (2001) J Vac Sci Technol B 19(6):2856

    Article  Google Scholar 

  50. Edinger K, Becht H, Bihr J, Boegli V, Budach M, Hofmann T, Koops HWP, Kuschnerus P, Oster J, Spies P, Weyrauch B (2004) J Vac Sci Technol B 22(6):2902

    Article  Google Scholar 

  51. Bret T, Afra B, Becker R, Hofmann T, Edinger K, Liang T, Hoffmann P (2009) J Vac Sci Technol B 27(6):2727

    Article  Google Scholar 

  52. Behrisch R (ed) (1981, 1983) Topics in applied physics “Sputtering by particle bombardment,” vol 52, 47; Behrisch R, Wittmaak K (eds) (1991) Topics in applied physics “Sputtering by particle bombardment,” vol 64. Springer Verlag, Berlin; also Behrisch R, Eckstein W (eds) ((2007)) Topics in applied physics, Sputtering by particle bombardment: experiments and computer calculations, vol 110. Springer, Berlin

    Google Scholar 

  53. Carter G, Colligon JS (1969) Ion bombardment of solids. Heinemann, London

    Google Scholar 

  54. Ziegler JF, Biersack JP, Littmark U (1984) The stopping and range of ions in solids, vol. 1 of series stopping and ranges of ions in matter. Pergamon Press, New York, see also http://www.srim.org/

  55. Biersack JP, Eckstein W (1984) Appl Phys A 34(2):73

    Article  Google Scholar 

  56. Dubner AJ, Wagner A (1989) J Appl Phys 66(2):870

    Article  Google Scholar 

  57. Harashi S, Komoro M (1993) Jpn J Appl Phys 32:6168

    Article  Google Scholar 

  58. Dubner AJ, Wagner A, Melngailis J, Thompson CV (1991) J Appl Phys 70(2):665

    Article  Google Scholar 

  59. Ro JS, Thompson CV, Melngailis J (1994) J Vac Sci Technol B 12(1):73

    Article  Google Scholar 

  60. van Dorp WF, Lazić I, Beyer A, Gölzhäuser A, Wagner JB, Hansen TW, Hagen CW (2011) Nanotechnology 22(11):115303

    Article  Google Scholar 

  61. Ward BW, Notte JA, Economou NP (2006) J Vac Sci Technol B 24(6):2871

    Article  Google Scholar 

  62. Livengood R, Tan S, Greenzweig Y, Notte J, McVey S (2009) J Vac Sci Technol B 27(6):3244

    Article  Google Scholar 

  63. Tesch P, Smith N, Martin N, Kinion D (2008) Proceedings of the 34th ISTFA conference, vol 7

    Google Scholar 

  64. Knufman B, Steele AV, Orloff J, McClelland JJ (2011) New J Phys 13(10):103035

    Article  Google Scholar 

  65. Platzgummer E, Loeschner H (2009) J Vac Sci Technol B 27(6):2707

    Article  Google Scholar 

  66. Koeck A, Bruck R, Wellenzohn M, Hainberger R, Platzgummer E, Loeschner H, Joech P, Eder-Kapl S, Ebm C, Czepl P et al (2010) J Vac Sci Technol B 28(6):C6B2

    Article  Google Scholar 

  67. De Vittorio M, Todaro MT, Stomeo T, Cingolani R, Cojoc D, Di Fabrizio E (2004) Microelectron Eng 73:388

    Article  Google Scholar 

  68. Watt F, Breese MBH, Bettiol AA, van Kan JA (2007) Mater Today 10(6):20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Melngailis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melngailis, J. (2013). Material Shaping by Ion and Electron Nanobeams. In: Hocheng, H., Tsai, HY. (eds) Advanced Analysis of Nontraditional Machining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4054-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4054-3_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4053-6

  • Online ISBN: 978-1-4614-4054-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics