Skip to main content

Waves in Magnetized Plasmas

  • Chapter
  • First Online:
Quantum Plasmadynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 854))

Abstract

The linear response tensor contains all information on the linear response of a medium. In particular, it determines the properties of the natural wave modes of the medium. Magnetized plasmas can support a large variety of different wave modes. There is no systematic classification of wave modes, leading to a confusing variety of names. Some modes are given historical names (e.g., Alfvén, Bernstein and Langmuir waves), some are given names associated with the theory used to derive them (e.g., cold-plasma, magnetoionic and MHD waves), and many are given names descriptive of the wave itself (e.g., longitudinal, lower-hybrid and electron-cyclotron waves). Moreover, there is arbitrariness in the definition of a wave mode: a single dispersion curve can be interpreted as one mode in one limit and as another mode in another limit. Even the concept of a wave mode is ill-defined in the presence of damping (or growth); for example, there are many natural peaks in the spectrum of fluctuations in a thermal plasma and when a particular peak is to be interpreted as a natural wave mode is ill-defined. Let the properties of an arbitrary wave mode, labeled as mode M, be regarded as a function of the independent variable

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962)

    MATH  Google Scholar 

  2. D.B. Melrose, R.C. McPhedran, Electromagnetic Processes in Dispersive Media (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  3. A.L. Verdon, I.H. Cairns, D.B. Melrose, P.A. Robinson, Phys. Plasma 16, 052105 (2009)

    Article  ADS  Google Scholar 

  4. A. Hasegawa, J. Geophys. Res. 81, 5083 (1976)

    Article  ADS  Google Scholar 

  5. G.A. Stewart, E.W. Liang, J. Plasma Phys. 47, 295 (1992)

    Article  ADS  Google Scholar 

  6. G.P. Zank, R.G. Greaves, Phys. Rev. E 51, 6079 (1995)

    Article  ADS  Google Scholar 

  7. D.B. Melrose, Plasma Phys. Cont. Fusion 39, A93 (1997)

    Article  ADS  Google Scholar 

  8. E.P. Gross, Phys. Rev. 82, 232 (1951)

    Article  ADS  MATH  Google Scholar 

  9. B. Bernstein, Phys. Rev. 109, 10 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. V.N. Dnestrovskii, D.P. Kostomorov, Sov. Phys. JETP 13, 98 (1961)

    Google Scholar 

  11. V.N. Dnestrovskii, D.P. Kostomorov, Sov. Phys. JETP 14, 1089 (1962)

    Google Scholar 

  12. S. Puri, F. Leuterer, M. Tutter, J. Plasma Phys. 9, 89 (1973)

    Article  ADS  Google Scholar 

  13. S. Puri, F. Leuterer, M. Tutter, J. Plasma Phys. 14, 169 (1975)

    Article  ADS  Google Scholar 

  14. P.A. Robinson, J. Math. Phys. 28, 1203 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. P.A. Robinson, J. Plasma Phys. 37, 435 (1987)

    Article  ADS  Google Scholar 

  16. P.A. Robinson, J. Plasma Phys. 37, 449 (1987)

    Article  ADS  Google Scholar 

  17. P.A. Robinson, Phys. Fluid 31, 107 (1988)

    Article  ADS  Google Scholar 

  18. J.J. Barnard, J. Arons, Astrophys. J. 302, 138 (1986)

    Article  ADS  Google Scholar 

  19. C. Wang, D. Lai, J. Han, Mon. Not. Roy. Astron. Soc. 403, 569 (2010)

    Article  ADS  Google Scholar 

  20. D.B. Melrose, M.E. Gedalin, Astrophys. J. 521, 351 (1999)

    Article  ADS  Google Scholar 

  21. M.W. Verdon, D.B. Melrose, Phys. Rev. E 77, 046403 (2008)

    Article  ADS  Google Scholar 

  22. D.B. Melrose, A.C. Judge, Phys. Rev. E 70, 056408 (2004)

    Article  ADS  Google Scholar 

  23. D.B. Melrose, Q. Luo, Mon. Not. Roy. Astron. Soc. 352, 519 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melrose, D. (2013). Waves in Magnetized Plasmas. In: Quantum Plasmadynamics. Lecture Notes in Physics, vol 854. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4045-1_3

Download citation

Publish with us

Policies and ethics