Skip to main content

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

As summarized in the previous chapter, many instruments have been developed to measure tremor using a variety of technologies. These instruments include accelerometers, gyroscopes, magnetometers, audio, video, tablets, lasers, motion capture systems, electromyograms, electromagnetic systems, microelectrode recordings, local field potentials, and many others. Each of these instruments produces one or more continuous signals that are obtained from one or more points in or on the body. No instrument has become accepted as a gold standard for quantifying tremor. All instruments have some disadvantages, and new instruments are continuing to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amjad AM, Halliday DM, Rosenberg JR, Conway BA. An extended difference of coherence test for comparing and combining several independent coherence estimates: Theory and application to the study of motor units and physiological tremor. J Neurosci Methods. 1997;73(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  • Bartolić A, Šantić M, Ribarič S. Automated tremor amplitude and frequency determination from power spectra. Comput Methods Program Biomed. 2009;94(1):77–87.

    Article  Google Scholar 

  • Carter GC. Coherence and time delay estimation. Proc IEEE. 1987;75(2):236–55.

    Article  Google Scholar 

  • Das S, Trutoiu L, Murai A, Alcindor D, Oh M, De la Torre F, Hodgins J. Quantitative measurement of motor symptoms in Parkinson’s disease: A study with full-body motion capture data. Proceedings of the 33rd Annual International Conference of the IEEE EMBS; 2011; Boston, MA, USA. p. 6789–6792.

    Google Scholar 

  • Deuschl G, Raethjen J, Lindemann M, Krack P. The pathophysiology of tremor. Muscle Nerve. 2001;24(6):716–35.

    Article  PubMed  CAS  Google Scholar 

  • Elble RJ. Gravitational artifact in accelerometric measurements of tremor. Clin Neurophysiol. 2005;116(7):1638–43. doi:10.1016/j.clinph.2005.03.014.

    Article  PubMed  Google Scholar 

  • Grimaldi G, Manto M. Neurological tremor: Sensors, signal processing and emerging applications. Sensors. 2010;10:1399–422.

    Article  PubMed  Google Scholar 

  • Heldman DA, Jankovic J, Vaillancourt DE, Prodoehl J, Elble RJ, Giuffrida JP. Essential tremor quantification during activities of daily living. Parkinsonism Relat Disord. 2011;17(7):537–42. doi:10.1016/j.parkreldis.2011.

    Article  PubMed  Google Scholar 

  • Journée HL, van Manen J, van der Meer JJ. Demodulation of EMGS of pathological tremors. Development and testing of a demodulator for clinical use. Med Biol Eng Comput. 1983;21(2):172–5.

    Article  PubMed  Google Scholar 

  • Kim S, McNames J. Automatic spike detection based on adaptive template matching for extracellular neural recordings. J Neurosci Methods. 2007;165(2):165–74.

    Article  PubMed  Google Scholar 

  • Mamorita N, Iizuka T, Takeuchi A, Shirataka M, Ikeda N. Development of a system for measurement and analysis of tremor using a three-axis accelerometer. Methods Inf Med. 2009;48(6):589–94. doi:10.3414/ME9243.

    Article  PubMed  CAS  Google Scholar 

  • Manolakis DG, Ingle VK, Ingle V, Kogon SM. Statistical and adaptive signal processing: Spectral estimation, signal modeling, adaptive filtering and array processing. London: Artech House; 2005.

    Google Scholar 

  • Oppenheim AV, Schafer RW. Discrete-time signal processing. 2nd ed. Upper Saddle River, NJ: Prentice Hall; 1999.

    Google Scholar 

  • Priestley MB. Spectral analysis and time series. London: Academic; 1981.

    Google Scholar 

  • Synnott J, Chen L, Nugent CD, Moore G. WiiPD – an approach for the objective home assessment of Parkinson’s disease. Proceedings of the 33rd Annual International Conference of the IEEE EMBS; 2011; Boston, MA, USA. p. 2388–2399.

    Google Scholar 

  • Veltink PH, Engberink EGO, Van Hilten BJ, Dunnewold R, Jacobi C. Towards a new method for kinematic quantification of bradykinesia in patients with Parkinson’s disease using triaxial accelerometry. Proceedings of IEEE 17th Annual Conference Engineering in Medicine and Biology Society, vol. 2, pp. 1303–1304 (1995). 10.1109/IEMBS.1995.579693.

  • Wang S, Tang M. Exact confidence interval for magnitude-squared coherence estimates. IEEE Signal Process Lett. 2004;11(3):326–9. doi:10.1109/LSP.2003.822897.

    Article  Google Scholar 

  • Wilson S, Emerson R. Spike detection: A review and comparison of algorithms. Clin Neurophysiol. 2002;113:1873–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James McNames .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McNames, J. (2013). Signal Processing. In: Grimaldi, G., Manto, M. (eds) Mechanisms and Emerging Therapies in Tremor Disorders. Contemporary Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4027-7_20

Download citation

Publish with us

Policies and ethics