Skip to main content

Epigenetic Control of Germline Development

  • Chapter
  • First Online:
Germ Cell Development in C. elegans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 757))

Abstract

Dynamic regulation of histone modifications and small noncoding RNAs is observed throughout the development of the C. elegans germ line. Histone modifications are differentially regulated in the mitotic vs meiotic germ line, on X chromosomes vs autosomes and on paired chromosomes vs unpaired chromosomes. Small RNAs function in transposon silencing and developmental gene regulation. Histone modifications and small RNAs produced in the germ line can be inherited and impact embryonic development. Disruption of histone-modifying enzymes or small RNA machinery in the germ line can result in sterility due to degeneration of the germ line and/or an inability to produce functional gametes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Hodgkin J (2000) MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature 403:159–164

    PubMed  CAS  Google Scholar 

  • Alcazar RM, Lin R, Fire AZ (2008) Transmission dynamics of heritable silencing induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180:1275–1288

    PubMed  CAS  Google Scholar 

  • Andersen E, Horvitz H (2007) Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development 134:2991–2999

    PubMed  CAS  Google Scholar 

  • Andersson R, Enroth S, Rada-Iglesias A, Wadelius C et al (2009) Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 19:1732–1741

    PubMed  CAS  Google Scholar 

  • Arico JK, Katz DJ, van der Vlag J, Kelly WG (2011) Epigenetic patterns maintained in early Caenorhabditis elegans embryos can be established by gene activity in the parental germ cells. PLoS Genet 7(6):e1001391

    PubMed  CAS  Google Scholar 

  • Arthold S, Kurowski A, Wutz A (2011) Mechanistic insights into chromosome-wide silencing in X inactivation. Hum Genet 130:295–305

    PubMed  Google Scholar 

  • Awe S, Renkawitz-Pohl R (2010) Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster. Syst Biol Reprod Med 56:44–61

    PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh T-Y et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    PubMed  CAS  Google Scholar 

  • Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N et al (2008) PRG-1 and 21U-RNAs interact for form the piRNA complex required for fertility in C. elegans. Mol Cell 31:67–78

    PubMed  CAS  Google Scholar 

  • Bean CJ, Schaner CE, Kelly WG (2004) Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nat Genet 36:100–105

    PubMed  CAS  Google Scholar 

  • Bender LB, Cao R, Zhang Y, Strome S (2004) The MES-2/MES-3/MES-6 complex and regulation of histone H3 methylation in C. elegans. Curr Biol 14:1639–1643

    PubMed  CAS  Google Scholar 

  • Bender LB, Suh J, Carroll CR, Fong Y et al (2006) MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 133:3907–3917

    PubMed  CAS  Google Scholar 

  • Bessler JB, Andersen EC, Villeneuve AM (2010) Differential localization and independent acquisition of the H3K9me2 and H3K9me3 chromatin modifications in the Caenorhabditis elegans adult germ line. PLoS Genet 6:1–16

    Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    PubMed  CAS  Google Scholar 

  • Burkhart KB, Guang S, Buckley BA, Wong L et al (2011) A pre-mRNA-associating factor links endogenous siRNAs to chromatin regulation. PLoS Genet 7:e1002249

    PubMed  CAS  Google Scholar 

  • Burton NO, Burkhart KB, Kennedy S (2011) Nuclear RNAi maintains heritable gene silencing in Caenorhabditis elegans. Proc Natl Acad Sci USA 108:19683–19688

    PubMed  CAS  Google Scholar 

  • Buszczak M, Paterno S, Spradling AC (2009) Drosophila stem cells share a common requirement for the histone HB ubiquitin protease scrawny. Science 323:248–251

    PubMed  CAS  Google Scholar 

  • Capowski EE, Martin P, Garvin C, Strome S (1991) Identification of grandchildless loci whose products are required for normal germ-line development in the nematode Caenorhabditis elegans. Genetics 129:1061–1072

    PubMed  CAS  Google Scholar 

  • Casper AL, Baxter K, Van Doren M (2011) No child left behind encodes a novel chromatin factor required for germline stem cell maintenance in males but not females. Development 138:3357–3366

    PubMed  CAS  Google Scholar 

  • Casteneda J, Genzor P, Bortvin A (2011) piRNAs, transposon silencing, and germline genome integrity. Mutation Res 714:95–104

    PubMed  CAS  Google Scholar 

  • Checchi P, Engebrecht J (2011) Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation. PLoS 9:e1002267

    Google Scholar 

  • Chen Y, Pane A, Schupbach T (2007) Cutoff and aubergine mutations result in retrotransposon upregulation and checkpoint activation in Drosophila. Curr Biol 17:637–642

    PubMed  CAS  Google Scholar 

  • Christensen J, Agger K, Cloos PA, Pasini D et al (2007) RBP2 belongs to a family of demethylases, specific for tri- and dimethylated lysine 4 on histone 3. Cell 128:1063–1076

    PubMed  CAS  Google Scholar 

  • Claycomb JM, Batista PJ, Pang KM, Gu W et al (2009) The Argonaute CSR-1 and its 22 G-RNA cofactors are required for holocentric chromosome segregation. Cell 139:123–134

    PubMed  CAS  Google Scholar 

  • Clough E, Moon W, Wang S, Smith K, Hazelrigg T (2007) Histone methylation is required for oogenesis in Drosophila. Development 134:157–165

    PubMed  CAS  Google Scholar 

  • Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA et al (2010) Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26 G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci USA 107:3588–3593

    PubMed  CAS  Google Scholar 

  • Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ et al (2008) Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell 31:79–90

    PubMed  CAS  Google Scholar 

  • Daxinger L, Whitelaw E (2010) Transgenerational epigenetic inheritance: more questions than answers. Genome Res 20:1623–1628

    PubMed  CAS  Google Scholar 

  • Eissenberg JC, Reuter G (2009) Cellular mechanism for targeting heterochromatin formation in Drosophila. Int Rev Cell Mol Biol 273:1–47

    PubMed  CAS  Google Scholar 

  • Erhard KF, Hollick JB (2011) Paramutation: a process for acquiring trans-generational regulatory states. Curr Opin Plant Biol 14:210–216

    PubMed  CAS  Google Scholar 

  • Farthing CR, Ficz G, Ng RK, Chan CF et al (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4:e1000116

    PubMed  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen PY et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107:8689–8694

    PubMed  CAS  Google Scholar 

  • Fong Y, Bender L, Wang W, Strome S (2002) Regulation of the different chromatin states of ­autosomes and X chromosomes in the germ line of C. elegans. Science 296:2235–2238

    PubMed  CAS  Google Scholar 

  • Furuhashi H, Takasaki T, Rechtsteiner A, Le T, Kimura H, Checchi PM, Strome S, Kelly WG (2010) Transgenerational epigenetic regulation of C. elegans primordial germ cells. Epigenetics Chromatin 3:15

    PubMed  Google Scholar 

  • Gan Q, Schones DE, Ho Eun S, Wei G, Cui K, Zhao K, Chen X (2010a) Monovalent and unpoised status of most genes in undifferentiated cell-enriched Drosophila testis. Genome Biol 11:R42

    PubMed  Google Scholar 

  • Gan Q, Chepelev I, Wei G, Tarayrah L, Cui K, Zhao K, Chen X (2010b) Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res 20:763–783

    PubMed  CAS  Google Scholar 

  • Garvin C, Holdeman R, Strome S (1998) The phenotype of mes-2, mes-3, mes-4, and mes-6, maternal-effect genes required for survival of the germline in Caenorhabditis elegans, is sensitive to chromosome dosage. Genetics 148:167–185

    PubMed  CAS  Google Scholar 

  • Gent JI, Schvarzstein M, Villeneuve AM, Gu SG, Jantsch V, Fire AZ, Baudrimont A (2009) A Caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics 183:1297–1314

    PubMed  CAS  Google Scholar 

  • Gent JI, Lamm AT, Pavelec DM, Maniar JM, Parameswaran P, Tao L, Kennedy S, Fire AZ (2010) Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Mol Cell 37:679–689

    PubMed  CAS  Google Scholar 

  • Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–1787

    PubMed  CAS  Google Scholar 

  • Godman M, Lambrot R, Kimmins S (2009) The dynamic epigenetic program in male germ cells: its role in spermatogenesis, testis cancer, and its response to the environment. Microsc Res Tech 72:603–619

    Google Scholar 

  • Greer EL, Maures TJ, Ucar D, Hauswirth AG et al (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365–371

    PubMed  CAS  Google Scholar 

  • Grishok A, Tabara H, Mello CC (2000) Genetic requirements for inheritance of RNAi in C. elegans. Science 287:2494–2497

    PubMed  CAS  Google Scholar 

  • Gu S, Fire A (2010) Partitioning the C. elegans genome by nucleosome modification, occupancy, and positioning. Chromosoma 119:73–87

    PubMed  CAS  Google Scholar 

  • Gu W, Shirayama M, Conte D Jr, Vasale J et al (2009) Distinct argonaute-mediated 22 G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 36:231–244

    PubMed  CAS  Google Scholar 

  • Gu L, Want Q, Sun QY (2010) Histone modifications during mammalian oocyte maturation. Dynamics, regulation and functions. Cell Cycle 9:194201950

    Google Scholar 

  • Guang S, Bochner AF, Pavelec DM, Burkhart KB et al (2008) An Argonaute transports siRNAs from the cytoplasm to the nucleus. Sicence 321:537–541

    CAS  Google Scholar 

  • Guang S, Bochner AF, Burkhart KB, Burton N et al (2010) Small regulator RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465:1097–1837

    PubMed  CAS  Google Scholar 

  • Hajkova P, Ancelin K, Waldmann T et al (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–881

    PubMed  CAS  Google Scholar 

  • Han T, Manoharan AP, Harkins TT, Bouffard P et al (2009) 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 106:18674–18679

    PubMed  CAS  Google Scholar 

  • Hense W, Baines JF, Parsch J (2007) X chromosome inactivation during Drosophila spermatogenesis. PLoS Biol 5:e273

    PubMed  Google Scholar 

  • Hudson QJ, Kulinski TM, Huetter SP, Barlow DP (2010) Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues. Heredity 105:45–56

    PubMed  CAS  Google Scholar 

  • Ilik I, Akhtar A (2009) roX RNAs: non-coding regulators of the male X chromosome in flies. RNA Biol 6:113–121

    PubMed  CAS  Google Scholar 

  • Jaramillo-Lambert A, Engebrecht J (2010) A single unpaired and transcriptionally silenced X chromosome locally precludes checkpoint signaling in the Caenorhabditis elegans germ line. Genetics 184:613–628

    PubMed  CAS  Google Scholar 

  • Johnson CL, Spence AM (2011) Epigenetic licensing of germline gene expression by maternal RNA in C. elegans. Science 333:1311–1314

    PubMed  CAS  Google Scholar 

  • Justin N, De Marco V, Aasland R, Gamblin SJ (2010) Reading, writing, and editing methylated lysines on histone tails: new insights from recent structural studies. Curr Opin Struct Biol 20:730–738

    PubMed  CAS  Google Scholar 

  • Kageyama S, Liu H, Kaneko N, Ooga M, Nagata M, Aoki F (2007) Alternations in epigenetic modification during oocyte growth in mice. Reproduction 133:85–94

    PubMed  CAS  Google Scholar 

  • Kato M, de Lencastre A, Pincus Z, Slack FJ (2009) Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 10:R54. doi:10.1.1186/gb-2009-10-5-r54

    PubMed  Google Scholar 

  • Katz DJ, Edwards TM, Reinke V, Kelly WG (2009) A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137:308–320

    PubMed  CAS  Google Scholar 

  • Kelly WG, Schaner CE, Dernburg AF, Lee MH et al (2002) X-chromosome silencing in the germline of C. elegans. Development 129:479–492

    PubMed  CAS  Google Scholar 

  • Kennedy S, Wang D, Ruvkun G (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427:645–649

    PubMed  CAS  Google Scholar 

  • Ketting RF (2011) The many faces of RNAi. Dev Cell 20:148–161

    PubMed  CAS  Google Scholar 

  • Khurana JS, Theurkauf W (2010) piRNAs, transposon silencing, and Drosophila germline development. J Cell Biol 191:905–913

    PubMed  Google Scholar 

  • Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41:376–381

    PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    PubMed  CAS  Google Scholar 

  • Lee KS, Yoon J, Park JS, Kang YK (2010) Drosophila G9a is implicated in germ cell development. Insect Mol Biol 19:131–139

    PubMed  CAS  Google Scholar 

  • Li T, Kelly WG (2011) A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. PLoS Genet 7:1–20

    Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    PubMed  CAS  Google Scholar 

  • Lienert F, Mohn F, Tiwari VK, Baubec T, Roloff TC et al (2011) Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet 7:e1002090

    PubMed  CAS  Google Scholar 

  • Liu T, Rechtsteiner A, Egelhofer TA, Vielle A et al (2011) Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res 21:227–236

    PubMed  CAS  Google Scholar 

  • Maine EM (2010) Meiotic silencing in Caenorhabditis elegans. Intl Rev Cell Mol Biol 282:91–134

    CAS  Google Scholar 

  • Maine EM, Hauth J, Radcliff T, Vought VE, She X, Kelly WG (2005) EGO-1, a putative RNA-dependent RNA polymerase, is required for heterochromatin assembly on unpaired DNA during C. elegans meiosis. Curr Biol 15:1972–1978

    PubMed  CAS  Google Scholar 

  • Maines JZ, Park JK, Williams M, McKearin DM (2007) Stonewalling Drosophila stem cell ­differentiation by epigenetic controls. Development 134:1471–1479

    PubMed  CAS  Google Scholar 

  • Maniar JM, Fire AZ (2011) EGO-1, a C. elegans RdRP, modulates gene expression via production of mRNA-templated short antisense RNAs. Curr Biol 21:449–459

    PubMed  CAS  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    PubMed  CAS  Google Scholar 

  • Meier B, Barber LJ, Shtessel L, Boulton SJ et al (2009) The MRT-1 nuclease is required for DNA crosslink repair and telomerase activity in vivo in Caenorhabditis elegans. EMBO J 28:3549–3563

    PubMed  CAS  Google Scholar 

  • Meiklejohn CD, Landeen EL, Cook JM, Kingan SB, Presgraves DC (2011) Sex chromosome-specific regulation in the Drosophila male germ line but little evidence for chromosomal dosage compensation of meiotic inactivation. PLoS Biol 9:e1001126

    PubMed  CAS  Google Scholar 

  • Meyer BJ (2010) X-chromosome dosage compensation. Curr Opin Genet Dev 20:179–189

    PubMed  CAS  Google Scholar 

  • Mikhaylova LM, Nurminsky DI (2011) Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome. BMC Biol 9:29

    PubMed  Google Scholar 

  • Nakamura A, Seydoux G (2008) Less is more: specification of the germline by transcriptional repression. Development 135:3817–3827

    PubMed  CAS  Google Scholar 

  • Nakamura M, Ando R, Nakazawa T, Yudazono T, Tsutsumi N, Hatanaka N, Ohgake T, Hanaoka F, Eki T (2007) Dicer-related drh-3 gene functions in germ-line development by maintenance of chromosomal integrity in Caenorhabditis elegans. Genes Cells 12:997–1010

    PubMed  CAS  Google Scholar 

  • Oliver SS, Denu JM (2011) Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a “histone language”. Chembiochem 12:299–307

    PubMed  CAS  Google Scholar 

  • Ooi SL, Priess JR, Henikoff S (2006) Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans. PLoS Genet 2:e97

    PubMed  Google Scholar 

  • Pane A, Wehr K, Schupbach T (2007) Zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev Cell 12:851–862

    PubMed  CAS  Google Scholar 

  • Parisi M, Nuttall R, Naiman D, Bouffard G, Malley J et al (2003) Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299:697–700

    PubMed  CAS  Google Scholar 

  • Payer B, Lee JT, Namekawa SH (2011) X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and plurpotent stem cells. Hum Genet 130:265–280

    PubMed  Google Scholar 

  • Rangan P, Malone CD, Navarro C, Newbold SP, Hayes PS, Sachidanandam R, Hannon GJ, Lehmann R (2011) piRNA productions requires heterochromatin formation in Drosophila. Curr Biol 21:1373–1379

    PubMed  CAS  Google Scholar 

  • Rechavi O, Minevich G, Hobert O (2011) Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147:1248–1256

    PubMed  CAS  Google Scholar 

  • Rechtsteiner A, Ercan S, Takasaki T, Phippen TM et al (2010) The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet 6:1–15

    Google Scholar 

  • Reinke V, Smith HE, Nance J, Wang J, Van Doren C et al (2000) A global profile of germline gene expression in C. elegans. Mol Cell 6:605–616

    PubMed  CAS  Google Scholar 

  • Reinke V, Gil IS, Ward S, Kazmer K (2004) Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131:311–323

    PubMed  CAS  Google Scholar 

  • Reuben M, Lin R (2002) Germline X chromosomes exhibit contrasting patterns of histone H3 methylation in Caenorhabditis elegans. Dev Biol 245:71–82

    PubMed  CAS  Google Scholar 

  • Rocheleau CE, Cullison K, Huang K, Bernstein Y, Spilker AC, Sundaram MV (2008) The Caenorhabditis elegansi ekl (enhance of ksr-1 lethality) genes include putative components of a germline small RNA pathway. Genetics 178:1431–1443

    PubMed  CAS  Google Scholar 

  • Royo H, Polikiewicz G, Mahadevaiah SK et al (2010) Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 20:2117–2123

    PubMed  CAS  Google Scholar 

  • Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207

    PubMed  CAS  Google Scholar 

  • Rudolph T, Yonezawa M, Lein S et al (2007) Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog of SU(VAR)3-3. Mol Cell 26:103–115

    PubMed  CAS  Google Scholar 

  • Sakai A, Schwartz BE, Goldstein S, Ahmad K (2009) Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol 19:1816–1820

    PubMed  CAS  Google Scholar 

  • Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140

    PubMed  CAS  Google Scholar 

  • Schaner CE, Deshpande G, Schedl PD, Kelly WG (2003) A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev Cell 5:747–757

    PubMed  CAS  Google Scholar 

  • Schaner CE, Kelly WG (2006) Germline chromatin (January 24, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.73.1, http://www.wormbook.org

    PubMed  CAS  Google Scholar 

  • Schimenti J (2005) Synapsis or silence. Nat Genet 37:11–13

    PubMed  CAS  Google Scholar 

  • Schmitges FW, Prusty AB, Faty M et al (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42:330–341

    PubMed  CAS  Google Scholar 

  • Schultz DC, Ayyanathan K, Negorev D, Maul GG et al (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methylatransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16:919–932

    PubMed  CAS  Google Scholar 

  • She X, Xu W, Fedotov A, Kelly WG, Maine EM (2009) Regulation of heterochromatin assembly on unpaired chromosomes during Caenorhabditis elegans meiosis by components of a small RNA-mediated pathway. PLoS Genet 5:1–15

    Google Scholar 

  • Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Op Cell Biol 20:341–348

    PubMed  CAS  Google Scholar 

  • Simmer F, Tijsterman M, Parrish S, Koushika SP, Nonet ML, Fire A, Ahringer J, Plasterk RH (2002) Loss of the putative RNA-directed RNa polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12:1317–1319

    PubMed  CAS  Google Scholar 

  • Sturgill D, Zhang Y, Parisi M, Oliver B (2007) Demasculinization of X chromosomes in the Drosophila genus. Nature 450:238–241

    PubMed  CAS  Google Scholar 

  • Surani MA, Reik W, Norris ML, Barton SC (1986) Influence of germline modifications of homologous chromosomes on mouse development. J Embyol Exp Morphol 90:267–285

    Google Scholar 

  • Turner JMA (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831

    PubMed  CAS  Google Scholar 

  • Updike DL, Strome S (2009) A genomewide RNAi screen for genes that affect the stability, distribution, and function of P granules in Caenorhabditis elegans. Genetics 183:1397–1419

    PubMed  CAS  Google Scholar 

  • Updike DL, Strome S (2010) P granule assembly and function in Caenorhabditis elegans germ cells. J Androl 31:53–60

    PubMed  CAS  Google Scholar 

  • Van der Heijden GW, Derijck AA, Posfai E, Giele M et al (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39:251–258

    PubMed  Google Scholar 

  • Van Wolfswinkel JC, Claycomb JM, Batista PJ, Mello CC, Berezikov E, Ketting RF (2009) CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell 139:135–148

    PubMed  Google Scholar 

  • Vasale JJ, Gu W, Thivierge C, Batista PJ, Claycomb JM, Youngman EM, Duchaine TF et al (2010) Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. Proc Natl Acad Sci USA 107:3582–3587

    PubMed  CAS  Google Scholar 

  • Vastenhouw NL, Brunschwig K, Okihara KL, Muller F et al (2006) Gene expression: long-term gene silencing by RNAi. Nature 442:882

    PubMed  CAS  Google Scholar 

  • Vibranovski MD, Lopes HF, Karr TL, Long M (2009) Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes. PLoS Genet 5:e1000731

    PubMed  Google Scholar 

  • Vought VE, Ohmachi M, Lee MH, Maine EM (2005) EGO-1, a putative RNA-directed RNA polymerase, promotes germline proliferation in parallel with GLP-1/Notch signaling and regulates the spatial organization of nuclear pore complexes and germline P granules in C. elegans. Genetics 170:1121–1132

    PubMed  CAS  Google Scholar 

  • Wang G, Reinke V (2008) A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol 18:861–867

    PubMed  CAS  Google Scholar 

  • Wang JT, Seydoux S (2012) Germ cell specification. Adv Exp Med Biol 757:17–39. (Chap. 2, this volume) Springer, New York

    Google Scholar 

  • Wang PJ, Page DC, McCarrey JR (2005) Differential expression of sex-linked and autosomal germ-cell-specific genes during spermatogenesis in the mouse. Hum Mol Genet 14:2911–2918

    PubMed  CAS  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A, Kaneda M et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    PubMed  CAS  Google Scholar 

  • Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP (2009) Large histone H3 lysine 9 demethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nature Genet 41:246–250

    PubMed  CAS  Google Scholar 

  • Xiao Y, Bedet C, Robert VJP, Simonet T, Dunkelbarger S et al (2011) SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. Proc Natl Acad Sci USA 108:8305–8310

    PubMed  CAS  Google Scholar 

  • Yi X, de Vries HI, Siudeja K, Rana A et al (2009) Stwl modifies chromatin compaction and is required to maintain DNA integrity in the presence of perturbed DNA replication. Mol Biol Cell 20:983–994

    PubMed  CAS  Google Scholar 

  • Yoon J, Lee KS, Park JS, Yu K, Paik SG, Kang YK (2008) dSETDB1 and SU(VAR)3-9 sequentially function during germline-stem cell differentiation in Drosophila melanogaster. PLoS One 3:e2234

    PubMed  Google Scholar 

  • Zamudio NM, Chong S, O’Bryan MK (2008) Epigenetic regulation in male germ cells. Reproduction 136:131–146

    PubMed  CAS  Google Scholar 

  • Zamudio NM, Scott HS, Wolski K, Lo CY et al (2011) DNMT3L is a regulator of X chromosome compaction and post-meiotic gene transcription. PLoS One 6:e18276

    PubMed  CAS  Google Scholar 

  • Zhang C, Montgomery TA, Gabel HW, Fischer SE et al (2011) mut-16 and other mutator class genes modulate 22G and 26G siRNA pathways in Caenorhabditis elegans. Proc Natl Acad Sci USA 108:1201–1208

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Xingyu She for the images included in Fig. 13.3, and Bill Kelly, Michael Cosgrove, Yiqing Guo, and Tim Schedl for comments on the manuscript. This work was supported by NIH funding (1R01GM089818) to EMM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor M. Maine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Wynsberghe, P.M., Maine, E.M. (2013). Epigenetic Control of Germline Development. In: Schedl, T. (eds) Germ Cell Development in C. elegans. Advances in Experimental Medicine and Biology, vol 757. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4015-4_13

Download citation

Publish with us

Policies and ethics