Skip to main content

Slithering Locomotion

  • Conference paper
  • First Online:

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 155))

Abstract

Limbless terrestrial animals propel themselves by sliding their bellies along the ground. Although the study of dry solid-solid friction is a classical subject, the mechanisms underlying friction-based limbless propulsion have received little attention. We review and expand upon our previous work on the locomotion of snakes, who are expert sliders. We show that snakes use two principal mechanisms to slither on flat surfaces. First, their bellies are covered with scales that catch upon ground asperities, providing frictional anisotropy. Second, they are able to lift parts of their body slightly off the ground when moving. This reduces undesired frictional drag and applies greater pressure to the parts of the belly that are pushing the snake forwards. We review a theoretical framework that may be adapted by future investigators to understand other kinds of limbless locomotion.

AMS(MOS) subject classifications. Primary 76Zxx

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \({I}_{0}[f](s,t) ={ \int \limits _{0}^{s}}f(s\prime,t)ds\prime - \frac{1} {L}{\int \limits _{0}^{L}}ds{\int \limits _{0}^{s}}ds\prime f(s,t)\).

References

  1. Alexander RM (2003) Principles of animal locomotion. Princeton University Press, Princeton.

    Google Scholar 

  2. Avallone EA, Baumeister T III (eds) (1996) Marks’ standard handbook for mechanical engineers. McGraw-Hill, New York, pp 3–23

    Google Scholar 

  3. Bellairs A (1970) Life of reptiles, vol 2. Universe books, New York, pp 283–331.

    Google Scholar 

  4. Buffa P (1905) Ricerche sulla muscolatura cutanea dei serpenti e considerazioni sulla locomozione di questi animali. Atti Acad Ven Trent 1:145–237

    Google Scholar 

  5. Burdick JW, Radford J, Chirikjian GS (1993) A ‘sidewinding’ locomotion gait for hyper-redundant robots. In IEEE international conference on robotics and automation, Los Alamitos, CA, pp 101–106

    Google Scholar 

  6. Bush JWM, Hu DL (2006) Walking on water: biolocomotion at the interface. Ann Rev Fluid Mech 38:339–369

    Article  MathSciNet  Google Scholar 

  7. Chan B, Balmforth N, Hosoi A (2005) Building a better snail: lubrication and adhesive locomotion. Phys Fluids 17:113101

    Article  MathSciNet  Google Scholar 

  8. Chernousko FL (2003) Snake-like locomotions of multilink mechanisms. J Vib Cont 9:235–256

    MathSciNet  MATH  Google Scholar 

  9. Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  10. Choset HM (2005) Principles of robot motion: theory, algorithms and implementation. MIT Press, Cambridge

    MATH  Google Scholar 

  11. Cundall D (1987) Functional morphology. In: Siegel RA, Collins JT, Novak SS (eds) Snakes: ecology and evolutionary biology. Blackburn press, Caldwell NJ, pp 106–140

    Google Scholar 

  12. Dorgan KM, Jumars PA, Johnson B, Boudreau BP, Landis E (2003) Burrow elongation by crack propagation. Nature 433:475

    Google Scholar 

  13. Ernst CHZ, Zug GR (1996) Snakes in question. Smithsonian, Washington, DC

    Google Scholar 

  14. Full R, Yamauchi A, Jindrich D (1995) Maximum single leg force production: Cockroaches righting on photoelastic gelatin. J Exp Biol 198:2441–2452

    Google Scholar 

  15. Gans C (1962) Terrestrial locomotion without limbs. Amer Zool 2:167–182

    Google Scholar 

  16. Gasc JP, Gans C (1990) Tests on locomotion of the elongate and limbless lizard anguis fragilis (Squamata: Anguidae), Copeia, pp 1055–1067

    Google Scholar 

  17. Gray J (1946) The mechanism of locomotion in snakes. J Exp Biol 23:101–120

    Google Scholar 

  18. Gray J, Lissman HW (1950) The kinetics of locomotion of the grass-snake. J Exp Biol 26:354–367

    Google Scholar 

  19. Guo ZV, Mahadevan L (2008) Limbless undulatory locomotion on land. Proc Natl Acad Sci U S A 105:3179–3184

    Article  Google Scholar 

  20. Hazel J, Stone M, Grace MS, Tsukruk VV (1999) Nanoscale design of snake skin for reptation locomotions via friction anisotropy. J Biomech 32:477–84

    Article  Google Scholar 

  21. Heckrote C (1967) Relations of body temperature, size and crawling speed of the common garter snake, Thamnophis s. sirtalis. Copeia 4:759–763

    Article  Google Scholar 

  22. Hirose S (1993) Biologically inspired robots: snake-like locomotors and manipulators. Oxford University Press, Oxford.

    Google Scholar 

  23. Hu DL, Nirody J, Scott T, Shelley MJ (2009) The mechanics of slithering locomotion. Proceedings of the national academy of sciences, USA, 106:10081–10085

    Article  Google Scholar 

  24. Jayne BC (1986) Kinematics of terrestrial snake locomotion. Copeia 22:915–927.

    Article  Google Scholar 

  25. Juarez G, Lu K, Sznitman J, Arratia P (2010) Motility of small nematodes in wet granular media. Europhys Lett 92:44002

    Article  Google Scholar 

  26. Jung S (2010) Caenorhabditis elegans swimming in a saturated particulate system. Phys Fluids, 22:031903

    Article  Google Scholar 

  27. Lissman HW (1950) Rectilinear locomotion in a snake (Boa occidentalis). J Exp Biol 26:368–379

    Google Scholar 

  28. Mahadevan L, Daniel S, Chaudhury MK (2004) Biomimetic ratcheting motion of a soft, slender, sessile gel. Proc Natl Acad Sci U S A 101:23–26

    Article  Google Scholar 

  29. Maladen R, Ding Y, Li C, Goldman D (2009) Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Science 325:314

    Article  Google Scholar 

  30. Marvi H, Hu D (2012) Friction Enhancement in Concertina Locomotion of Snakes. Journal of the Royal Society Interface (In Press)

    Google Scholar 

  31. Miller G (2002) Snake robots for search and rescue. In: Ayers JDJ, Rudolph A (eds) Neurotechnology for biomimetic robots. Bradford/MIT Press, Cambridge, pp 269–284

    Google Scholar 

  32. Moon BR, Gans C (1998) Kinematics, muscular activity and propulsion in gopher snakes. J Exp Biol 201:2669–2684

    Google Scholar 

  33. Mosauer W (1932) On the locomotion of snakes. Science 76:583–585

    Article  Google Scholar 

  34. Mosauer W (1935) How fast can snakes travel? Copeia 1935:6–9

    Article  Google Scholar 

  35. Netting MG (1940) Size and weight of a boa constrictor. Copeia 4:266

    Google Scholar 

  36. Ostrowksi J, Burdick J (1996) Gait kinematics for a serpentine robot. In: IEEE international conference on robotics and automation, Minneapolis, minnesota, pp 1294–1299

    Google Scholar 

  37. Rachevsky N (1938) Mathematical biophysics: physico-mathematical foundations of biology, vol 2. Dover, New York, pp 256–261

    Google Scholar 

  38. Renous S, Hofling E, Gasc JP (1995) Analysis of the locomotion pattern of two microteiid lizards with reduced limbs, Calyptommatus leiolepis and Nothobachia ablephara (Gymnophthalmidae). Zoology 99:21–38

    Google Scholar 

  39. Secor SM, Jayne BC, Bennett AC (1992) Locomotor performance and energetic cost of sidewinding by the snake crotalus cerastes. J Exp Biol 163:1–14

    Article  Google Scholar 

  40. Summers AP, O’Reilly JC (1997) A comparative study of locomotion in the caecilians Dermophis mexicanus and Typhlonectes natans (Amphibia: Gymnophiona). Zool J Linn Soc 121:65–76

    Article  Google Scholar 

  41. Teran J, Fauci L, Shelley M (2010) Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys Rev Lett 104:038101

    Article  Google Scholar 

  42. Tong J, Ma Y-H, Ren L-Q, Li J-Q (2000) Tribological characteristics of pangolin scales in dry sliding. J Mater Sci Lett 19:569–572

    Article  Google Scholar 

  43. Trueman ER (1975) The locomotion of soft-bodied animals. Edward Arnold, London

    Google Scholar 

  44. Walton M, Jayne BC, Bennett AF (1990) The energetic cost of limbless locomotion. Science 249:524–527

    Article  Google Scholar 

  45. Zmitrowicz A (2006) Models of kinematics dependent anisotropic and heterogenous friction. Int J Solids Struct 43:4407–4451

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Hu, D.L., Shelley, M. (2012). Slithering Locomotion. In: Childress, S., Hosoi, A., Schultz, W., Wang, J. (eds) Natural Locomotion in Fluids and on Surfaces. The IMA Volumes in Mathematics and its Applications, vol 155. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3997-4_8

Download citation

Publish with us

Policies and ethics