Skip to main content

Riboproteomic Approaches to Understanding IRES Elements

  • Chapter
  • First Online:
Book cover Biophysical approaches to translational control of gene expression

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 1))

  • 1309 Accesses

Abstract

Initiation of translation is a key step of protein synthesis. Two basic mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism that operates in the vast majority of mRNAs and the internal ribosome entry site (IRES)-dependent mechanism. IRES elements, first discovered in picornaviruses, are cis-acting RNA sequences that form secondary and tertiary structures and recruit the translation machinery using a 5′ end-independent mechanism, usually assisted by a subset of translation initiation factors and various RNA-binding proteins termed IRES transacting factors (ITAFs). RNA-binding proteins are pivotal regulators of gene expression, including internal initiation of translation, in response to numerous stresses. This chapter discusses recent advances on riboproteomic approaches aimed to identify ITAFs and the relationship between RNA–protein interaction and IRES activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CBV3:

Coxsackie B3 virus

DHX9:

DEAH-box polypeptide 9

DRBP76:

Double-stranded RNA-binding protein 76

Ebp1:

erbB-3-binding protein 1

eIFs:

Translation initiation factors

EMCV:

Encephalomyocarditis virus

FBP2:

Binding protein 2

FMDV:

Foot-and-mouth disease virus

FUSE:

Far upstream element

G3BP:

Ras-GTPase-activating protein

HCV:

Hepatitis C virus

HIV-1:

Human immunodeficiency virus

hnRNPs:

Heterogeneous ribonucleoproteins

HRV:

Human rhinovirus

IGF2BP1:

Insulin-like growth factor II mRNA-binding protein 1

IRES:

Internal ribosome entry site

ITAFs:

IRES transacting factors

LEF-1:

Lymphoid enhancer factor

NF45:

Nuclear factor of activated T cells

PABP1:

Poly(A) binding protein

PCBP1-2:

Poly(rC) binding protein

PTB:

Polypyrimidine tract-binding protein

PV:

Poliovirus

RRM:

RNA recognition motif

SILAC:

Stable isotopic labeling with amino acid in cell culture

Unr:

Upstream of N-ras

References

  • Andreev DE, Fernandez-Miragall O, Ramajo J, Dmitriev SE, Terenin IM, Martinez-Salas E, Shatsky IN (2007) Differential factor requirement to assemble translation initiation complexes at the alternative start codons of foot-and-mouth disease virus RNA. RNA 13:1366–1374

    PubMed  CAS  Google Scholar 

  • Balvay L, Soto Rifo R, Ricci EP, Decimo D, Ohlmann T (2009) Structural and functional diversity of viral IRESes. Biochim Biophys Acta 1789:542–557

    PubMed  CAS  Google Scholar 

  • Battle DJ, Lau CK, Wan L, Deng H, Lotti F, Dreyfuss G (2006) The Gemin5 protein of the SMN complex identifies snRNAs. Mol Cell 23:273–279

    PubMed  CAS  Google Scholar 

  • Bechara EG, Didiot MC, Melko M, Davidovic L, Bensaid M, Martin P, Castets M, Pognonec P, Khandjian EW, Moine H, Bardoni B (2009) A novel function for fragile X mental retardation protein in translational activation. PLoS Biol 7:e16

    PubMed  Google Scholar 

  • Bedard KM, Daijogo S, Semler BL (2007) A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J 26:459–467

    PubMed  CAS  Google Scholar 

  • Belsham GJ (2009) Divergent picornavirus IRES elements. Virus Res 139:183–192

    PubMed  CAS  Google Scholar 

  • Blume SW, Jackson NL, Frost AR, Grizzle WE, Shcherbakov OD, Choi H, Meng Z (2010) Northwestern profiling of potential translation-regulatory proteins in human breast epithelial cells and malignant breast tissues: evidence for pathological activation of the IGF1R IRES. Exp Mol Pathol 88:341–352

    PubMed  CAS  Google Scholar 

  • Bonnal S, Pileur F, Orsini C, Parker F, Pujol F, Prats AC, Vagner S (2005) Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 280:4144–4153

    PubMed  CAS  Google Scholar 

  • Boussadia O, Niepmann M, Creancier L, Prats AC, Dautry F, Jacquemin-Sablon H (2003) Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus. J Virol 77:3353–3359

    PubMed  CAS  Google Scholar 

  • Bradrick SS, Gromeier M (2009) Identification of gemin5 as a novel 7-methylguanosine cap-binding protein. PLoS One 4:e7030

    PubMed  Google Scholar 

  • Buratti E, Tisminetzky S, Zotti M, Baralle FE (1998) Functional analysis of the interaction between HCV 5′UTR and putative subunits of eukaryotic translation initiation factor eIF3. Nucleic Acids Res 26:3179–3187

    PubMed  CAS  Google Scholar 

  • Bushell M, Stoneley M, Kong YW, Hamilton TL, Spriggs KA, Dobbyn HC, Qin X, Sarnow P, Willis AE (2006) Polypyrimidine tract binding protein regulates IRES-mediated gene expression during apoptosis. Mol Cell 23:401–412

    PubMed  CAS  Google Scholar 

  • Cammas A, Pileur F, Bonnal S, Lewis SM, Leveque N, Holcik M, Vagner S (2007) Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs. Mol Biol Cell 18:5048–5059

    PubMed  CAS  Google Scholar 

  • Chen HC, Lin WC, Tsay YG, Lee SC, Chang CJ (2002) An RNA helicase, DDX1, interacting with poly(A) RNA and heterogeneous nuclear ribonucleoprotein K. J Biol Chem 277:40403–40409

    PubMed  CAS  Google Scholar 

  • Choi K, Kim JH, Li X, Paek KY, Ha SH, Ryu SH, Wimmer E, Jang SK (2004) Identification of cellular proteins enhancing activities of internal ribosomal entry sites by competition with oligodeoxynucleotides. Nucleic Acids Res 32:1308–1317

    PubMed  CAS  Google Scholar 

  • Cobbol LC, Wilson LA, Sawicka K, King HA, Kondrashov AV, Spriggs KA, Bushell M, Willis AE (2010) Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from increased interactions with and expression of PTB-1 and YB-1. Oncogene 29:2884–2891

    Google Scholar 

  • Cobbold LC, Spriggs KA, Haines SJ, Dobbyn HC, Hayes C, de Moor CH, Lilley KS, Bushell M, Willis AE (2008) Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc family of IRESs. Mol Cell Biol 28:40–49

    PubMed  CAS  Google Scholar 

  • Conte MR, Grune T, Ghuman J, Kelly G, Ladas A, Matthews S, Curry S (2000) Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO J 19:3132–3141

    PubMed  CAS  Google Scholar 

  • Conte C, Riant E, Toutain C, Pujol F, Arnal JF, Lenfant F, Prats AC (2008) FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1alpha. PLoS One 3:e3078

    PubMed  Google Scholar 

  • de Breyne S, Yu Y, Unbehaun A, Pestova TV, Hellen CU (2009) Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proc Natl Acad Sci U S A 106:9197–9202

    PubMed  Google Scholar 

  • Dobbyn HC, Hill K, Hamilton TL, Spriggs KA, Pickering BM, Coldwell MJ, de Moor CH, Bushell M, Willis AE (2008) Regulation of BAG-1 IRES-mediated translation following chemotoxic stress. Oncogene 27:1167–1174

    PubMed  CAS  Google Scholar 

  • Durie D, Lewis SM, Liwak U, Kisilewicz M, Gorospe M, Holcik M (2011) RNA-binding protein HuR mediates cytoprotection through stimulation of XIAP translation. Oncogene 30:1460–1469

    PubMed  CAS  Google Scholar 

  • Evans JR, Mitchell SA, Spriggs KA, Ostrowski J, Bomsztyk K, Ostarek D, Willis AE (2003) Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 22:8012–8020

    PubMed  Google Scholar 

  • Fernandez-Miragall O, Lopez de Quinto S, Martinez-Salas E (2009) Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Res 139:172–182

    PubMed  CAS  Google Scholar 

  • Filbin ME, Kieft JS (2009) Toward a structural understanding of IRES RNA function. Curr Opin Struct Biol 1:267–276

    Google Scholar 

  • Fitzgerald KD, Semler BL (2009) Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim Biophys Acta 1789:518–528

    PubMed  CAS  Google Scholar 

  • Florez PM, Sessions OM, Wagner EJ, Gromeier M, Garcia-Blanco MA (2005) The polypyrimidine tract binding protein is required for efficient picornavirus gene expression and propagation. J Virol 79:6172–6179

    PubMed  CAS  Google Scholar 

  • Fox JT, Stover PJ (2009) Mechanism of the internal ribosome entry site-mediated translation of serine hydroxymethyltransferase 1. J Biol Chem 284:31085–31096

    PubMed  CAS  Google Scholar 

  • Fukushi S, Okada M, Stahl J, Kageyama T, Hoshino FB, Katayama K (2001) Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J Biol Chem 276:20824–20826

    PubMed  CAS  Google Scholar 

  • Gamarnik AV, Boddeker N, Andino R (2000) Translation and replication of human rhinovirus type 14 and mengovirus in Xenopus oocytes. J Virol 74:11983–11987

    PubMed  CAS  Google Scholar 

  • Gerbasi VR, Link AJ (2007) The myotonic dystrophy type 2 protein ZNF9 is part of an ITAF complex that promotes cap-independent translation. Mol Cell Proteomics 6:1049–1058

    PubMed  CAS  Google Scholar 

  • Gosert R, Chang KH, Rijnbrand R, Yi M, Sangar DV, Lemon SM (2000) Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites in vivo. Mol Cell Biol 20:1583–1595

    PubMed  CAS  Google Scholar 

  • Graber TE, Baird SD, Kao PN, Mathews MB, Holcik M (2010) NF45 functions as an IRES trans-acting factor that is required for translation of cIAP1 during the unfolded protein response. Cell Death Differ 17:719–729

    PubMed  CAS  Google Scholar 

  • Grover R, Ray PS, Das S (2008) Polypyrimidine tract binding protein regulates IRES-mediated translation of p53 isoforms. Cell Cycle 7:2189–2198

    PubMed  CAS  Google Scholar 

  • Hahm B, Kim YK, Kim JH, Kim TY, Jang SK (1998) Heterogeneous nuclear ribonucleoprotein L interacts with the 3′ border of the internal ribosomal entry site of hepatitis C virus. J Virol 72:8782–8788

    PubMed  CAS  Google Scholar 

  • Hao le T, Fuller HR, le Lam T, Le TT, Burghes AH, Morris GE (2007) Absence of gemin5 from SMN complexes in nuclear Cajal bodies. BMC Cell Biol 8:28

    PubMed  Google Scholar 

  • Hartman TR, Qian S, Bolinger C, Fernandez S, Schoenberg DR, Boris-Lawrie K (2006) RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol 13:509–516

    PubMed  CAS  Google Scholar 

  • Henis-Korenblit S, Shani G, Sines T, Marash L, Shohat G, Kimchi A (2002) The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc Natl Acad Sci U S A 99:5400–5405

    PubMed  CAS  Google Scholar 

  • Holcik M, Korneluk RG (2000) Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol Cell Biol 20:4648–4657

    PubMed  CAS  Google Scholar 

  • Hunt SL, Hsuan JJ, Totty N, Jackson RJ (1999) unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev 13:437–448

    PubMed  CAS  Google Scholar 

  • Jang SK, Wimmer E (1990) Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev 4:1560–1572

    PubMed  CAS  Google Scholar 

  • Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643

    PubMed  CAS  Google Scholar 

  • Ji H, Fraser CS, Yu Y, Leary J, Doudna JA (2004) Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc Natl Acad Sci U S A 101:16990–16995

    PubMed  CAS  Google Scholar 

  • Jo OD, Martin J, Bernath A, Masri J, Lichtenstein A, Gera J (2008) Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. J Biol Chem 283:23274–23287

    PubMed  CAS  Google Scholar 

  • Kafasla P, Morgner N, Poyry TA, Curry S, Robinson CV, Jackson RJ (2009) Polypyrimidine tract binding protein stabilizes the encephalomyocarditis virus IRES structure via binding multiple sites in a unique orientation. Mol Cell 34:556–568

    PubMed  CAS  Google Scholar 

  • Kieft JS, Zhou K, Jubin R, Doudna JA (2001) Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7:194–206

    PubMed  CAS  Google Scholar 

  • Kim JH, Hahm B, Kim YK, Choi M, Jang SK (2000a) Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J Mol Biol 298:395–405

    PubMed  CAS  Google Scholar 

  • Kim YK, Hahm B, Jang SK (2000b) Polypyrimidine tract-binding protein inhibits translation of bip mRNA. J Mol Biol 304:119–133

    PubMed  CAS  Google Scholar 

  • Kolupaeva VG, Pestova TV, Hellen CU, Shatsky IN (1998) Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J Biol Chem 273:18599–18604

    PubMed  CAS  Google Scholar 

  • Komar AA, Hatzoglou M (2011) Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 10:229–240

    PubMed  CAS  Google Scholar 

  • Kukalev A, Nord Y, Palmberg C, Bergman T, Percipalle P (2005) Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat Struct Mol Biol 12:238–244

    PubMed  CAS  Google Scholar 

  • Lee PT, Liao PC, Chang WC, Tseng JT (2007) Epidermal growth factor increases the interaction between nucleolin and heterogeneous nuclear ribonucleoprotein K/poly(C) binding protein 1 complex to regulate the gastrin mRNA turnover. Mol Biol Cell 18:5004–5013

    PubMed  CAS  Google Scholar 

  • Lewis SM, Holcik M (2008) For IRES trans-acting factors, it is all about location. Oncogene 27:1033–1035

    PubMed  CAS  Google Scholar 

  • Lewis SM, Veyrier A, Hosszu Ungureanu N, Bonnal S, Vagner S, Holcik M (2007) Subcellular relocalization of a trans-acting factor regulates XIAP IRES-dependent translation. Mol Biol Cell 18:1302–1311

    PubMed  CAS  Google Scholar 

  • Lewis SM, Cerquozzi S, Graber TE, Ungureanu NH, Andrews M, Holcik M (2008) The eIF4G homolog DAP5/p97 supports the translation of select mRNAs during endoplasmic reticulum stress. Nucleic Acids Res 36:168–178

    PubMed  CAS  Google Scholar 

  • Lin JY, Li ML, Shih SR (2009a) Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic Acids Res 37:47–59

    PubMed  CAS  Google Scholar 

  • Lin JY, Shih SR, Pan M, Li C, Lue CF, Stollar V, Li ML (2009b) hnRNP A1 interacts with the 5′ untranslated regions of enterovirus 71 and Sindbis virus RNA and is required for viral replication. J Virol 83:6106–6114

    PubMed  CAS  Google Scholar 

  • Liu HM, Aizaki H, Choi KS, Machida K, Ou JJ, Lai MM (2009) SYNCRIP (synaptotagmin-binding, cytoplasmic RNA-interacting protein) is a host factor involved in hepatitis C virus RNA replication. Virology 386:249–256

    PubMed  CAS  Google Scholar 

  • Liu J, Henao-Mejia J, Liu H, Zhao Y, He JJ (2011) Translational regulation of HIV-1 replication by HIV-1 Rev cellular cofactors Sam68, eIF5A, hRIP, and DDX3. J Neuroimmune Pharmacol 6:308–321

    PubMed  Google Scholar 

  • Lopez de Quinto S, Martinez-Salas E (2000) Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6:1380–1392

    PubMed  CAS  Google Scholar 

  • Lopez de Quinto S, Lafuente E, Martinez-Salas E (2001) IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7:1213–1226

    PubMed  CAS  Google Scholar 

  • Lu H, Li W, Noble WS, Payan D, Anderson DC (2004) Riboproteomics of the hepatitis C virus internal ribosomal entry site. J Proteome Res 3:949–957

    PubMed  CAS  Google Scholar 

  • Lukavsky PJ (2009) Structure and function of HCV IRES domains. Virus Res 139:166–171

    PubMed  CAS  Google Scholar 

  • Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490

    PubMed  CAS  Google Scholar 

  • Majumder M, Yaman I, Gaccioli F, Zeenko VV, Wang C, Caprara MG, Venema RC, Komar AA, Snider MD, Hatzoglou M (2009) The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. Mol Cell Biol 29:2899–2912

    PubMed  CAS  Google Scholar 

  • Makeyev AV, Liebhaber SA (2002) The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 8:265–278

    PubMed  CAS  Google Scholar 

  • Martinez-Salas E (2008) The impact of RNA structure on picornavirus IRES activity. Trends Microbiol 16:230–237

    PubMed  CAS  Google Scholar 

  • Martinez-Salas E, Pacheco A, Serrano P, Fernandez N (2008) New insights into internal ribosome entry site elements relevant for viral gene expression. J Gen Virol 89:611–626

    PubMed  CAS  Google Scholar 

  • Meerovitch K, Svitkin YV, Lee HS, Lejbkowicz F, Kenan DJ, Chan EK, Agol VI, Keene JD, Sonenberg N (1993) La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67:3798–3807

    PubMed  CAS  Google Scholar 

  • Merrill MK, Dobrikova EY, Gromeier M (2006) Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J Virol 80:3147–3156

    PubMed  CAS  Google Scholar 

  • Mitchell SA, Brown EC, Coldwell MJ, Jackson RJ, Willis AE (2001) Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol Cell Biol 21:3364–3374

    PubMed  CAS  Google Scholar 

  • Mitchell SA, Spriggs KA, Coldwell MJ, Jackson RJ, Willis AE (2003) The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell 11:757–771

    PubMed  CAS  Google Scholar 

  • Mondal T, Ray U, Manna AK, Gupta R, Roy S, Das S (2008) Structural determinant of human La protein critical for internal initiation of translation of hepatitis C virus RNA. J Virol 82:11927–11938

    PubMed  CAS  Google Scholar 

  • Monie TP, Perrin AJ, Birtley JR, Sweeney TR, Karakasiliotis I, Chaudhry Y, Roberts LO, Matthews S, Goodfellow IG, Curry S (2007) Structural insights into the transcriptional and translational roles of Ebp1. EMBO J 26:3936–3944

    PubMed  CAS  Google Scholar 

  • Omnus DJ, Mehrtens S, Ritter B, Resch K, Yamada M, Frank R, Nourbakhsh M, Reboll MR (2011) JKTBP1 is involved in stabilization and IRES-dependent translation of NRF mRNAs by binding to 5′ and 3′ untranslated regions. J Mol Biol 407:492–504

    PubMed  CAS  Google Scholar 

  • Pacheco A, Martinez-Salas E (2010) Insights into the biology of IRES elements through riboproteomic approaches. J Biomed Biotechnol 2010:458927

    PubMed  Google Scholar 

  • Pacheco A, Reigadas S, Martinez-Salas E (2008) Riboproteomic analysis of polypeptides interacting with the internal ribosome-entry site element of foot-and-mouth disease viral RNA. Proteomics 8:4782–4790

    PubMed  CAS  Google Scholar 

  • Pacheco A, Lopez de Quinto S, Ramajo J, Fernandez N, Martinez-Salas E (2009) A novel role for Gemin5 in mRNA translation. Nucleic Acids Res 37:582–590

    PubMed  CAS  Google Scholar 

  • Park SM, Paek KY, Hong KY, Jang CJ, Cho S, Park JH, Kim JH, Jan E, Jang SK (2011) Translation-competent 48S complex formation on HCV IRES requires the RNA-binding protein NSAP1. Nucleic Acids Res 39(17):7791–7802

    PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325

    PubMed  CAS  Google Scholar 

  • Percipalle P, Jonsson A, Nashchekin D, Karlsson C, Bergman T, Guialis A, Daneholt B (2002) Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res 30:1725–1734

    PubMed  CAS  Google Scholar 

  • Pestova TV, Shatsky IN, Fletcher SP, Jackson RJ, Hellen CU (1998) A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12:67–83

    PubMed  CAS  Google Scholar 

  • Pestova TV, Kolupaeva VG, Lomakin IB, Pilipenko EV, Shatsky IN, Agol VI, Hellen CU (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci U S A 98:7029–7036

    PubMed  CAS  Google Scholar 

  • Pilipenko EV, Pestova TV, Kolupaeva VG, Khitrina EV, Poperechnaya AN, Agol VI, Hellen CU (2000) A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev 14:2028–2045

    PubMed  CAS  Google Scholar 

  • Pilipenko EV, Viktorova EG, Guest ST, Agol VI, Roos RP (2001) Cell-specific proteins regulate viral RNA translation and virus-induced disease. EMBO J 20:6899–6908

    PubMed  CAS  Google Scholar 

  • Rivas-Aravena A, Ramdohr P, Vallejos M, Valiente-Echeverria F, Dormoy-Raclet V, Rodriguez F, Pino K, Holzmann C, Huidobro-Toro JP, Gallouzi IE, Lopez-Lastra M (2009) The Elav-like protein HuR exerts translational control of viral internal ribosome entry sites. Virology 392:178–185

    PubMed  CAS  Google Scholar 

  • Sammons MA, Antons AK, Bendjennat M, Udd B, Krahe R, Link AJ (2010) ZNF9 activation of IRES-mediated translation of the human ODC mRNA is decreased in myotonic dystrophy type 2. PLoS One 5:e9301

    PubMed  Google Scholar 

  • Sawicka K, Bushell M, Spriggs KA, Willis AE (2008) Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 36:641–647

    PubMed  CAS  Google Scholar 

  • Schepens B, Tinton SA, Bruynooghe Y, Beyaert R, Cornelis S (2005) The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res 33:6884–6894

    PubMed  CAS  Google Scholar 

  • Schepens B, Tinton SA, Bruynooghe Y, Parthoens E, Haegman M, Beyaert R, Cornelis S (2007) A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. EMBO J 26:158–169

    PubMed  CAS  Google Scholar 

  • Schultz DE, Hardin CC, Lemon SM (1996) Specific interaction of glyceraldehyde 3-phosphate dehydrogenase with the 5′-nontranslated RNA of hepatitis A virus. J Biol Chem 271:14134–14142

    PubMed  CAS  Google Scholar 

  • Sean P, Nguyen JH, Semler BL (2009) Altered interactions between stem-loop IV within the 5′ noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: effects on IRES-mediated translation and viral infectivity. Virology 389:45–58

    PubMed  CAS  Google Scholar 

  • Sengupta J, Nilsson J, Gursky R, Spahn CM, Nissen P, Frank J (2004) Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat Struct Mol Biol 11:957–962

    PubMed  CAS  Google Scholar 

  • Shi Y, Frost P, Hoang B, Benavides A, Gera J, Lichtenstein A (2011) IL-6-induced enhancement of c-Myc translation in multiple myeloma cells: critical role of cytoplasmic localization of the RNA-binding protein hnRNP A1. J Biol Chem 286:67–78

    PubMed  CAS  Google Scholar 

  • Shih SR, Stollar V, Li ML (2011) Host factors in EV71 replication. J Virol 85:9658–9666 June 29 (ahead of print)

    Google Scholar 

  • Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E (2005) Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310:1513–1515

    PubMed  CAS  Google Scholar 

  • Song Y, Friebe P, Tzima E, Junemann C, Bartenschlager R, Niepmann M (2006) The hepatitis C virus RNA 3′-untranslated region strongly enhances translation directed by the internal ribosome entry site. J Virol 80:11579–11588

    PubMed  CAS  Google Scholar 

  • Spriggs KA, Bushell M, Mitchell SA, Willis AE (2005) Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ 12:585–591

    PubMed  CAS  Google Scholar 

  • Spriggs KA, Cobbold LC, Jopling CL, Cooper RE, Wilson LA, Stoneley M, Coldwell M, Poncet D, Shen YC, Morley SJ, Bushell M, Willis AE (2009) Canonical initiation factor requirements of the Myc family of internal ribosome entry site segments. Mol Cell Biol 29:1565–1574

    PubMed  CAS  Google Scholar 

  • Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40:228–237

    PubMed  CAS  Google Scholar 

  • Terenin IM, Dmitriev SE, Andreev DE, Shatsky IN (2008) Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat Struct Mol Biol 15:836–841

    PubMed  CAS  Google Scholar 

  • Tinton SA, Schepens B, Bruynooghe Y, Beyaert R, Cornelis S (2005) Regulation of the cell-­cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2alpha. Biochem J 385:155–163

    PubMed  CAS  Google Scholar 

  • Tsai BP, Wang X, Huang L, Waterman ML (2011) Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol Cell Proteomics 10(M110):007385

    PubMed  Google Scholar 

  • Ungureanu NH, Cloutier M, Lewis SM, de Silva N, Blais JD, Bell JC, Holcik M (2006) Internal ribosome entry site-mediated translation of Apaf-1, but not XIAP, is regulated during UV-induced cell death. J Biol Chem 281:15155–15163

    PubMed  CAS  Google Scholar 

  • Vallejos M, Deforges J, Plank TD, Letelier A, Ramdohr P, Abraham CG, Valiente-Echeverria F, Kieft JS, Sargueil B, Lopez-Lastra M (2011) Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES trans-acting factors. Nucleic Acids Res 108(5):1839–1844

    Google Scholar 

  • Waggoner S, Sarnow P (1998) Viral ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus-infected cells. J Virol 72:6699–6709

    PubMed  CAS  Google Scholar 

  • Weinlich S, Huttelmaier S, Schierhorn A, Behrens SE, Ostareck-Lederer A, Ostareck DH (2009) IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3′UTR. RNA 15: 1528–1542

    PubMed  CAS  Google Scholar 

  • Yeh CH, Hung LY, Hsu C, Le SY, Lee PT, Liao WL, Lin YT, Chang WC, Tseng JT (2008) RNA-binding protein HuR interacts with thrombomodulin 5′ untranslated region and represses internal ribosome entry site-mediated translation under IL-1 beta treatment. Mol Biol Cell 19:3812–3822

    PubMed  CAS  Google Scholar 

  • Yu Y, Ji H, Doudna JA, Leary JA (2005) Mass spectrometric analysis of the human 40S ribosomal subunit: native and HCV IRES-bound complexes. Protein Sci 14:1438–1446

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant BFU2011-25437, CSD2009-00080, and by an Institutional grant from Fundación Ramón Areces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Encarnacion Martinez-Salas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martinez-Salas, E., Piñeiro, D., Fernandez, N. (2012). Riboproteomic Approaches to Understanding IRES Elements. In: Dinman, J. (eds) Biophysical approaches to translational control of gene expression. Biophysics for the Life Sciences, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3991-2_6

Download citation

Publish with us

Policies and ethics