Skip to main content

Cytometry-Based Antimicrobial Resistance Techniques

  • Chapter
  • First Online:
Book cover Advanced Techniques in Diagnostic Microbiology
  • 4532 Accesses

Abstract

Flow cytometry (FC) has been regarded as one of the most promising technologies for the clinical microbiology laboratories for nearly three decades. The accuracy, versatility, and quantitative nature of the FC measurements are both complementary and superior to many microscopic and other techniques used in the clinical microbiology laboratories. Since early 1990s, numerous proof-of-concept studies have appeared in the literature for the FC identification of pathogenic bacteria, fungi, parasites, and viruses, and for the rapid testing of susceptibility of these pathogens to antimicrobials and other compounds. The reader is referred to a number of comprehensive review articles that describe the principles of FC, reagents, protocols, and a variety of applications for specific pathogens [1–6]. There are also excellent studies describing the use of FC and bead arrays, using antigen, antibody, or nucleic acid probes, for the identification and genotyping of microbes [7–9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boye E, Steen HB, Skarstad K (1983) Flow cytometry of bacteria: a promising tool in experimental and clinical microbiology. J Gen Microbiol 129:973–980

    PubMed  CAS  Google Scholar 

  2. Alvarez-Barrientos A, Arroyo J, Canton R, Nombela C, Sanchez-Perez M (2000) Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev 13:167–195

    Article  PubMed  CAS  Google Scholar 

  3. McSharry JJ (2000) Analysis of virus-infected cells by flow cytometry. Methods 21:249–257

    Article  PubMed  CAS  Google Scholar 

  4. Shapiro HM (2001) Multiparameter flow cytometry of bacteria: implications for diagnostics and therapeutics. Cytometry 43:223–226

    Article  PubMed  CAS  Google Scholar 

  5. Chaturvedi V (2008) Role of flow cytometry in medical mycology for antifungal testing, identification, and characterization. Curr Fungal Infect Rep 2:143–148

    Article  Google Scholar 

  6. Müller S, Nebe-von-Caron G (2010) Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34:554–587

    PubMed  Google Scholar 

  7. Ernst D, Bolton G, Recktenwald D et al (2006) Bead-based flow cytometric assays: a multiplex assay platform with applications in diagnostic microbiology. In: Tang Y-W, Stratton CW (eds) Advanced techniques in diagnostic microbiology. Springer US, New York, NY, pp 427–443

    Chapter  Google Scholar 

  8. Lin Y-C, Sheng W-H, Chang S-C et al (2008) Application of a microsphere-based array for rapid identification of Acinetobacter spp. with distinct antimicrobial susceptibilities. J Clin Microbiol 46:612–617

    Article  PubMed  CAS  Google Scholar 

  9. Corrie SR, Feng Q, Blair T, Hawes SE, Kiviat NB, Trau M (2011) Multiplatform comparison of multiplexed bead arrays using HPV genotyping as a test case. Cytometry A 79A:713–719

    CAS  Google Scholar 

  10. Sewell WA, Smith SABC (2011) Polychromatic flow cytometry in the clinical laboratory. Pathology 43:580–591

    PubMed  CAS  Google Scholar 

  11. Chau F, Lefort A, Benadda S, Dubee V & Fantin B (2011). Flow cytometry as a tool to determine the effects of cell wall-active antibiotics on vancomycin-susceptible and resistant Enteroroccus faecalis. Antimicrob Agents Chemother 55, A395–398

    Article  PubMed  Google Scholar 

  12. Jarzembowski T, Jaawik A, Wianiewska K, Witkowski J (2010) Flow cytometry approach study of Enterococcus faecalis; vancomycin resistance by detection of vancomycin@FL binding to the bacterial cells. Curr Microbiol 61:407–410

    Article  PubMed  CAS  Google Scholar 

  13. Karl S, Wong R, St Pierre T, Davis T (2009) A comparative study of a flow-cytometry-based assessment of in vitro Plasmodium falciparum drug sensitivity. Malaria J 8:294

    Article  Google Scholar 

  14. Vale-Silva L, Pinto P, Lopes V, Ramos H & Pinto E (2012). Comparison of the Etest and a rapid flow cytometry-based method with the reference CLSI broth microdilution protocol M27-A3 for the echinocandin susceptibility testing of Candida spp. European Journal of Clinical Microbiology & Infectious Diseases 31, 941–946

    Google Scholar 

  15. Piuri M, Jacobs WR Jr, Hatfull GF (2009) Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PLoS One 4:e4870

    Article  PubMed  Google Scholar 

  16. Robotham JM, Nelson HB, Tang H (2009) Selection and characterization of drug-resistant HCV replicons in vitro with a flow cytometry-based assay. Methods Mol Biol 510:227–242

    Article  PubMed  CAS  Google Scholar 

  17. Shrestha NK, Scalera NM, Wilson DA, Brehm-Stecher B, Procop GW (2011) Rapid identification of Staphylococcus aureus and methicillin resistance by flow cytometry using a peptide nucleic acid probe. J Clin Microbiol 49:3383–3385

    Article  PubMed  Google Scholar 

  18. Jarzembowski T, Wianiewska K, Jazwik A, Bryl E, Witkowski J (2008) Flow cytometry as a rapid test for detection of penicillin resistance directly in bacterial cells in Enterococcus faecalis and Staphylococcus aureus. Curr Microbiol 57:167–169

    Article  PubMed  CAS  Google Scholar 

  19. Jarzembowski T, Wianiewska K, Jaawik A, Witkowski J (2009) Heterogeneity of methicillin-resistant Staphylococcus aureus strains (MRSA) characterized by flow cytometry. Curr Microbiol 59:78–80

    Article  PubMed  CAS  Google Scholar 

  20. Boehme CC, Nabeta P, Hillemann D et al (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363:1005–1015

    Article  PubMed  CAS  Google Scholar 

  21. Chin CD, Laksanasopin T, Cheung YK & other authors (2011). Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17, 1015–1019

    Article  PubMed  CAS  Google Scholar 

  22. Mittag A, Tárnok A (2009) Basics of standardization and calibration in cytometry – a review. J Biophotonics 2:470–481

    Article  PubMed  CAS  Google Scholar 

  23. Shapiro HM (2011) The cytometric future: it ain’t necessarily flow! Methods Mol Biol (Clifton, NJ) 699:471

    Article  Google Scholar 

  24. Jani IV, Janossy G, Brown DW, Mandy F (2002) Multiplexed immunoassays by flow cytometry for diagnosis and surveillance of infectious diseases in resource-poor settings. Lancet Infect Dis 2:243–250

    Article  PubMed  CAS  Google Scholar 

  25. Ateya D, Erickson J, Howell P, Hilliard L, Golden J, Ligler F (2008) The good, the bad, and the tiny: a review of microflow cytometry. Anal Bioanal Chem 391:1485–1498

    Article  PubMed  CAS  Google Scholar 

  26. Cheung KC, Di Berardino M, Schade-Kampmann G et al (2010) Microfluidic impedance-based flow cytometry. Cytometry A 77A:648–666

    Article  CAS  Google Scholar 

  27. Lunde CS, Hartouni SR, Janc JW, Mammen M, Humphrey PP, Benton BM (2009) Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor Lipid II. Antimicrob Agents Chemother 53:3375–3383

    Article  PubMed  CAS  Google Scholar 

  28. Pina-Vaz C, Costa-de-Oliveira S, Rodrigues AG (2005) Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with the fluorescent nucleic acid stain SYTO 16. J Med Microbiol 54:77–81

    Article  PubMed  CAS  Google Scholar 

  29. Govender S, du Plessis SJ, van de Venter M, Hayes C (2010) Antibiotic susceptibility of multi-drug resistant Mycobacterium tuberculosis using flow cytometry. Medical Technology, SA

    Google Scholar 

  30. Fredricks BA, DeCoster DJ, Kim Y, Sparks N, Callister SM & Schell RF (2006). Rapid pyrazinamide susceptibility testing of Mycobacterium tuberculosis by flow cytometry. J Microbiol Methods 67, 266–272

    Article  PubMed  CAS  Google Scholar 

  31. Blanco J, Clotet-Codina I, Bosch B, Armand-Ugon M, Clotet B, Este JA (2005) Multiparametric assay to screen and dissect the mode of action of anti-human immunodeficiency virus envelope drugs. Antimicrob Agents Chemother 49:3926–3929

    Article  PubMed  CAS  Google Scholar 

  32. Covens K, Dekeersmaeker N, Schrooten Y et al (2009) Novel recombinant virus assay for measuring susceptibility of Human Immunodeficiency Virus Type 1 Group M subtypes to clinically approved drugs. J Clin Microbiol 47:2232–2242

    Article  PubMed  CAS  Google Scholar 

  33. Lee G-C, Lee D-G, Choi S-M et al (2005) Use of time-saving flow cytometry for rapid determination of resistance of Human Cytomegalovirus to ganciclovir. J Clin Microbiol 43:5003–5008

    Article  PubMed  CAS  Google Scholar 

  34. Sarkar A, Mandal G, Singh N, Sundar S, Chatterjee M (2009) Flow cytometric determination of intracellular non-protein thiols in Leishmania promastigotes using 5-chloromethyl fluorescein diacetate. Exp Parasitol 122:299–305

    Article  PubMed  CAS  Google Scholar 

  35. Peatey CL, Skinner-Adams TS, Dixon MWA, McCarthy JS, Gardiner DL, Trenholme KR (2009) Effect of antimalarial drugs on Plasmodium falciparum gametocytes. J Infect Dis 200:1518–1521

    Article  PubMed  Google Scholar 

  36. Buchholz K, Burke TA, Williamson KC, Wiegand RC, Wirth DF, Marti M (2011) A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. J Infect Dis 203:1445–1453

    Article  PubMed  Google Scholar 

  37. Witkowski B, Lelievre J, Lopez Barragan MJ et al (2010) Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54:1872–1877

    Article  PubMed  CAS  Google Scholar 

  38. Grimberg BT, Jaworska MM, Hough LB, Zimmerman PA, Phillips JG (2009) Addressing the malaria drug resistance challenge using flow cytometry to discover new antimalarials. Bioorg Med Chem Lett 19:5452–5457

    Article  PubMed  CAS  Google Scholar 

  39. Vandeputte P, Larcher G, Berges T, Renier G, Chabasse D, Bouchara J-P (2005) Mechanisms of azole resistance in a clinical isolate of Candida tropicalis. Antimicrob Agents Chemother 49:4608–4615

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Chaturvedi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaturvedi, V. (2013). Cytometry-Based Antimicrobial Resistance Techniques. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3970-7_5

Download citation

Publish with us

Policies and ethics