Skip to main content

An Introduction to Amplification–Production–Detection Techniques

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology

Abstract

This decade has seen the use of molecular detection techniques grow in popularity within the field of diagnostic microbiology. The importance of molecular methods in the detection of infectious disease agents has been recognized because of their abilities to detect targets that may be present in very low concentrations. Even though culture methods are still considered the gold standard for most laboratories, some fastidious bacteria, fungi, and viruses simply do not grow in culture media [1]. Improved speed, sensitivity, specificity, and ease of use compared to traditional culture methods for the detection of clinical pathogens have made molecular techniques an indispensable tool in the modern microbiology laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Persing D, Tenover F, Tang Y-W, Nolte F, Hayden R, van Belkum A (eds) (2011) Molecular microbiology: diagnostic principles and practice, 2nd edn. ASM, Washington, DC

    Google Scholar 

  2. Tang YW, Duplex PCR (2009) assay simultaneously detecting and differentiating Bartonella quintana, B. henselae, and Coxiella burnetii in surgical heart valve specimens. J Clin Microbiol 47:2647–2650

    Article  PubMed  CAS  Google Scholar 

  3. Myoung Y, Shin JH, Lee JS et al (2011) Multilocus sequence typing for Candida albicans isolates from candidemic patients: comparison with Southern blot hybridization and pulsed-field gel electrophoresis analysis. Korean J Lab Med 31:107–114

    Article  PubMed  Google Scholar 

  4. Buckingham LaF M (ed) (2007) Molecular diagnostics: fundamentals, methods, and clinical applications, 1st edn. F.A. Davis, Philadelphia

    Google Scholar 

  5. Sambrook J, MacCullum P (eds) (2005) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  6. Ohga S, Ishimura M, Yoshimoto G et al (2011) Clonal origin of Epstein–Barr virus (EBV)-infected T/NK-cell subpopulations in EBV-positive T/NK-cell lymphoproliferative disorders of childhood. J Clin Virol 51:31–37

    Article  PubMed  CAS  Google Scholar 

  7. Mallet F, Hebrard C, Brand D et al (1993) Enzyme-linked oligosorbent assay for detection of polymerase chain reaction-amplified human immunodeficiency virus type 1. J Clin Microbiol 31:1444–1449

    PubMed  CAS  Google Scholar 

  8. Tang YW, Rys PN, Rutledge BJ, Mitchell PS, Smith TF, Persing DH (1998) Comparative evaluation of colorimetric microtiter plate systems for detection of herpes simplex virus in cerebrospinal fluid. J Clin Microbiol 36:2714–2717

    PubMed  CAS  Google Scholar 

  9. Poljak M, Seme K (1996) Rapid detection and typing of human papillomaviruses by consensus polymerase chain reaction and enzyme-linked immunosorbent assay. J Virol Methods 56:231–238

    Article  PubMed  CAS  Google Scholar 

  10. Li H, Dummer JS, Estes WR, Meng S, Wright PF, Tang YW (2003) Measurement of human cytomegalovirus loads by quantitative real-time PCR for monitoring clinical intervention in transplant recipients. J Clin Microbiol 41:187–191

    Article  PubMed  CAS  Google Scholar 

  11. Mylonakis E, Paliou M, Rich JD (2001) Plasma viral load testing in the management of HIV infection. Am Fam Physician 63(483–90):95–96

    Google Scholar 

  12. Yamamoto N, Okamoto T (1995) A rapid detection of PCR amplification product using a new fluorescent intercalator; the pyrylium dye, P2. Nucleic Acids Res 23:1445–1446

    Article  PubMed  CAS  Google Scholar 

  13. Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160

    Article  PubMed  CAS  Google Scholar 

  14. Cardullo RA, Agrawal S, Flores C, Zamecnik PC, Wolf DE (1988) Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 85:8790–8794

    Article  PubMed  CAS  Google Scholar 

  15. Reynisson E, Josefsen MH, Krause M, Hoorfar J (2006) Evaluation of probe chemistries and platforms to improve the detection limit of real-time PCR. J Microbiol Methods 66:206–216

    Article  PubMed  CAS  Google Scholar 

  16. Josefsen MH, Lofstrom C, Sommer HM, Diagnostic HJ (2009) Diagnostic PCR: comparative sensitivity of four probe chemistries. Mol Cell Probes 23:201–203

    Article  PubMed  CAS  Google Scholar 

  17. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  PubMed  CAS  Google Scholar 

  18. Lewin SR, Vesanen M, Kostrikis L et al (1999) Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. J Virol 73:6099–6103

    PubMed  CAS  Google Scholar 

  19. Vet JA, Majithia AR, Marras SA et al (1999) Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc Natl Acad Sci U S A 96:6394–6399

    Article  PubMed  CAS  Google Scholar 

  20. Stevens MP, Garland SM, Tabrizi SN (2008) Development and validation of a real-time PCR assay specifically detecting human papillomavirus 52 using the Roche LightCycler 480 system. J Virol Methods 147:290–296

    Article  PubMed  CAS  Google Scholar 

  21. Selvaraju SB, Wurst M, Horvat RT, Selvarangan R (2009) Evaluation of three analyte-specific reagents for detection and typing of herpes simplex virus in cerebrospinal fluid. Diagn Microbiol Infect Dis 63:286–291

    Article  PubMed  CAS  Google Scholar 

  22. Kazennova EV, Vasil’ev AV, Korovina GI et al (2009) [Comparative analysis of ViroSeq and Trugene HIV-1 genotyping systems in the application to the virus variants in Russia]. Klin Lab Diagn (12)46–51

    Google Scholar 

  23. Zhong S, Zheng HY, Suzuki M et al (2007) Age-related urinary excretion of BK polyomavirus by nonimmunocompromised individuals. J Clin Microbiol 45:193–198

    Article  PubMed  CAS  Google Scholar 

  24. Elahi E, Pourmand N, Chaung R et al (2003) Determination of hepatitis C virus genotype by pyrosequencing. J Virol Methods 109:171–176

    Article  PubMed  CAS  Google Scholar 

  25. Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22:611–633

    Article  PubMed  CAS  Google Scholar 

  26. Tang YW, Ellis NM, Hopkins MK, Smith DH, Dodge DE, Persing DH (1998) Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J Clin Microbiol 36:3674–3679

    PubMed  CAS  Google Scholar 

  27. Deng J, Zheng Y, Zhao R, Wright PF, Stratton CW, Tang YW (2009) Culture versus polymerase chain reaction for the etiologic diagnosis of community-acquired pneumonia in antibiotic-pretreated pediatric patients. Pediatr Infect Dis J 28:53–55

    Article  PubMed  Google Scholar 

  28. Li H, McCormac MA, Estes RW et al (2007) Simultaneous detection and high-throughput identification of a panel of RNA viruses causing respiratory tract infections. J Clin Microbiol 45:2105–2109

    Article  PubMed  CAS  Google Scholar 

  29. Brunstein J, Thomas E (2006) Direct screening of clinical specimens for multiple respiratory pathogens using the Genaco Respiratory Panels 1 and 2. Diagn Mol Pathol 15:169–173

    Article  PubMed  Google Scholar 

  30. Krunic N, Yager TD, Himsworth D, Merante F, Yaghoubian S, Janeczko R (2007) xTAG RVP assay: analytical and clinical performance. J Clin Virol 40(Suppl 1):S39–S46

    Article  PubMed  CAS  Google Scholar 

  31. Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363:71–82

    Article  PubMed  CAS  Google Scholar 

  32. Ecker DJ, Sampath R, Li H et al (2010) New technology for rapid molecular diagnosis of bloodstream infections. Expert Rev Mol Diagn 10:399–415

    Article  PubMed  CAS  Google Scholar 

  33. Eshoo MW, Crowder CD, Li H et al (2010) Detection and identification of Ehrlichia species in blood by use of PCR and electrospray ionization mass spectrometry. J Clin Microbiol 48:472–478

    Article  PubMed  CAS  Google Scholar 

  34. Massire C, Ivy CA, Lovari R et al (2011) Simultaneous identification of mycobacterial isolates to the species level and determination of tuberculosis drug resistance by PCR followed by electrospray ionization mass spectrometry. J Clin Microbiol 49:908–917

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Criziel Quinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Quinn, C., Stratton, C.W., Tang, YW. (2013). An Introduction to Amplification–Production–Detection Techniques. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3970-7_20

Download citation

Publish with us

Policies and ethics