Skip to main content

Non-PCR Target Amplification Techniques

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology

Abstract

In 1983 while driving up a mountain road, Dr Kary Mullis envisioned the concept of the polymerase chain reaction (PCR). These scientific “driving” thoughts completely revolutionized biology and bolstered an entire biotechnology industry, resulting in the creation of new biotechnology companies and jobs. As with any good idea, PCR was quickly patented by Cetus and then sold to Hoffman La Roche for $300 million [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullis K (2000) Dancing naked in the mind field, 1st edn. Vintage, New York

    Google Scholar 

  2. Pendrak ML, Yan SS (2006) Non-polymerase chain reaction mediated target amplification techniques. In: Tang Y, Sutton C (eds) Advanced techniques in diagnostic microbiology, 1st edn. Springer, New York, pp 505–523

    Google Scholar 

  3. Hill CS (2001) Molecular diagnostic testing for infectious diseases using TMA technology. Expert Rev Mol Diagn 1(4):445–455

    Article  PubMed  CAS  Google Scholar 

  4. McAuley JD, Caglioti S, Williams RC et al (2004) Clinical significance of nondiscriminated reactive results with the Chiron Procleix HIV-1 and HCV assay. Transfusion 44(1):91–96

    Article  PubMed  Google Scholar 

  5. Linnen JM, Deras ML, Cline J et al (2007) Performance evaluation of the PROCLEIX West Nile virus assay on semi-automated and automated systems. J Med Virol 79(9):1422–1430

    Article  PubMed  Google Scholar 

  6. Ziermann R, Sanchez-Guerrero SA (2008) PROCLEIX West Nile virus assay based on transcription-mediated amplification. Expert Rev Mol Diagn 8(3):239–245

    Article  PubMed  CAS  Google Scholar 

  7. Sgourou A, Karakantza M, Theodori E et al (2008) Procleix Ultrio transcription-mediated amplification vs. serological blood screening in south-western Greece. Transfus Med 18(2):104–111

    Article  PubMed  CAS  Google Scholar 

  8. Schneider P, Wolters L, Schoone G et al (2005) Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J Clin Microbiol 43(1):402–405

    Article  PubMed  CAS  Google Scholar 

  9. Kievits T, van Gemen B, van Strijp D et al (1991) NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods 35(3):273–286

    Article  PubMed  CAS  Google Scholar 

  10. Capaul SE, Gorgievski-Hrisoho M (2005) Detection of enterovirus RNA in cerebrospinal fluid (CSF) using NucliSens EasyQ Enterovirus assay. J Clin Virol 32(3):236–240

    Article  PubMed  CAS  Google Scholar 

  11. Compton J (1991) Nucleic acid sequence-based amplification. Nature 350(6313):91–92

    Article  PubMed  CAS  Google Scholar 

  12. Walker GT, Little MC, Nadeau JG, Shank DD (1992) Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci U S A 89(1):392–396

    Article  PubMed  CAS  Google Scholar 

  13. Spargo CA, Fraiser MS, Van CM (1996) Detection of M. tuberculosis DNA using thermophilic strand displacement amplification. Mol Cell Probes 10(4):247–256

    Article  PubMed  CAS  Google Scholar 

  14. Hellyer TJ, Nadeau JG (2004) Strand displacement amplification: a versatile tool for molecular diagnostics. Expert Rev Mol Diagn 4(2):251–261

    Article  PubMed  CAS  Google Scholar 

  15. Little MC, Andrews J, Moore R et al (1999) Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clin Chem 45(6 Pt 1):777–784

    PubMed  CAS  Google Scholar 

  16. Nadeau JG, Pitner JB, Linn CP, Schram JL, Dean CH, Nycz CM (1999) Real-time, sequence-specific detection of nucleic acids during strand displacement amplification. Anal Biochem 276(2):177–187

    Article  PubMed  CAS  Google Scholar 

  17. Walker GT, Linn CP (1996) Detection of Mycobacterium tuberculosis DNA with thermophilic strand displacement amplification and fluorescence polarization. Clin Chem 42(10):1604–1608

    PubMed  CAS  Google Scholar 

  18. Walker GT, Nadeau JG, Spears PA, Schram JL, Nycz CM, Shank DD (1994) Multiplex strand displacement amplification (SDA) and detection of DNA sequences from Mycobacterium tuberculosis and other mycobacteria. Nucleic Acids Res 22(13):2670–2677

    Article  PubMed  CAS  Google Scholar 

  19. Mazzarelli G, Rindi L, Piccoli P, Scarparo C, Garzelli C, Tortoli E (2003) Evaluation of the BDProbeTec ET system for direct detection of Mycobacterium tuberculosis in pulmonary and extrapulmonary samples: a multicenter study. J Clin Microbiol 41(4):1779–1782

    Article  PubMed  CAS  Google Scholar 

  20. Iinuma Y, Senda K, Fujihara N et al (2003) Comparison of the BDProbeTec ET system with the Cobas Amplicor PCR for direct detection of Mycobacterium tuberculosis in respiratory samples. Eur J Clin Microbiol Infect Dis 22(6):368–371

    Article  PubMed  CAS  Google Scholar 

  21. Goessens WH, de Man P, Koeleman JG et al (2005) Comparison of the COBAS AMPLICOR MTB and BDProbeTec ET assays for detection of Mycobacterium tuberculosis in respiratory specimens. J Clin Microbiol 43(6):2563–2566

    Article  PubMed  CAS  Google Scholar 

  22. Chan EL, Brandt K, Olienus K, Antonishyn N, Horsman GB (2000) Performance characteristics of the Becton Dickinson ProbeTec System for direct detection of Chlamydia trachomatis and Neisseria gonorrhoeae in male and female urine specimens in comparison with the Roche Cobas System. Arch Pathol Lab Med 124(11):1649–1652

    PubMed  CAS  Google Scholar 

  23. Gaydos CA, Theodore M, Dalesio N, Wood BJ, Quinn TC (2004) Comparison of three nucleic acid amplification tests for detection of Chlamydia trachomatis in urine specimens. J Clin Microbiol 42(7):3041–3045

    Article  PubMed  CAS  Google Scholar 

  24. Ota KV, Tamari IE, Smieja M et al (2009) Detection of Neisseria gonorrhoeae and Chlamydia trachomatis in pharyngeal and rectal specimens using the BD Probetec ET system, the Gen-Probe Aptima Combo 2 assay and culture. Sex Transm Infect 85(3):182–186

    Article  PubMed  CAS  Google Scholar 

  25. Van Der Pol B, Ferrero DV, Buck-Barrington L et al (2001) Multicenter evaluation of the BDProbeTec ET System for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine specimens, female endocervical swabs, and male urethral swabs. J Clin Microbiol 39(3):1008–1016

    Article  Google Scholar 

  26. Masek BJ, Arora N, Quinn N et al (2009) Performance of three nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae by use of self-collected vaginal swabs obtained via an Internet-based screening program. J Clin Microbiol 47(6):1663–1667

    Article  PubMed  CAS  Google Scholar 

  27. Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63

    Article  PubMed  CAS  Google Scholar 

  28. Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289(1):150–154

    Article  PubMed  CAS  Google Scholar 

  29. Aoi Y, Hosogai M, Tsuneda S (2006) Real-time quantitative LAMP (loop-mediated isothermal amplification of DNA) as a simple method for monitoring ammonia-oxidizing bacteria. J Biotechnol 125(4):484–491

    Article  PubMed  CAS  Google Scholar 

  30. Gandelman OA, Church VL, Moore CA et al (2010) Novel bioluminescent quantitative detection of nucleic acid amplification in real-time. PLoS One 5(11):e14155

    Article  PubMed  CAS  Google Scholar 

  31. Francois P, Bento M, Hibbs J et al (2011) Robustness of loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol Med Microbiol 62(1):41–48

    Article  PubMed  CAS  Google Scholar 

  32. He L, Xu HS, Wang MZ, Rong HN (2010) Development of rapid detection of infectious hypodermal and hematopoietic necrosis virus by loop-mediated isothermal amplification. Bing Du Xue Bao 26(6):490–495

    PubMed  CAS  Google Scholar 

  33. Ren X, Li P (2011) Development of reverse transcription loop-mediated isothermal amplification for rapid detection of porcine epidemic diarrhea virus. Virus Genes 42(2):229–235

    Article  PubMed  CAS  Google Scholar 

  34. Lalande V, Barrault L, Wadel S, Eckert C, Petit JC, Barbut F (2011) Evaluation of a loop-mediated isothermal amplification (LAMP) assay for the diagnosis of Clostridium difficile infections. J Clin Microbiol 49(7):2714–2716

    Article  PubMed  Google Scholar 

  35. Noren T, Alriksson I, Andersson J, Akerlund T, Unemo M (2011) Rapid and sensitive loop-mediated isothermal amplification test for Clostridium difficile detection challenges cytotoxin B cell test and culture as gold standard. J Clin Microbiol 49(2):710–711

    Article  PubMed  Google Scholar 

  36. Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5(8):795–800

    Article  PubMed  CAS  Google Scholar 

  37. An L, Tang W, Ranalli TA, Kim HJ, Wytiaz J, Kong H (2005) Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem 280(32):28952–28958

    Article  PubMed  CAS  Google Scholar 

  38. Doseeva V, Forbes T, Wolff J et al (2011) Multiplex isothermal helicase-dependent amplification assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. Diagn Microbiol Infect Dis 71(4):354–365

    Article  PubMed  CAS  Google Scholar 

  39. Gill P, Alvandi AH, Abdul-Tehrani H, Sadeghizadeh M (2008) Colorimetric detection of Helicobacter pylori DNA using isothermal helicase-dependent amplification and gold nanoparticle probes. Diagn Microbiol Infect Dis 62(2):119–124

    Article  PubMed  CAS  Google Scholar 

  40. Goldmeyer J, Kong H, Tang W (2007) Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. J Mol Diagn 9(5):639–644

    Article  PubMed  CAS  Google Scholar 

  41. Tong Y, Tang W, Kim HJ, Pan X, Ranalli T, Kong H (2008) Development of isothermal TaqMan assays for detection of biothreat organisms. Biotechniques 45(5):543–557

    Article  PubMed  CAS  Google Scholar 

  42. Kim HJ, Tong Y, Tang W et al (2011) A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2. J Clin Virol 50(1):26–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary C. She .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

She, R.C., Marlowe, E.M. (2013). Non-PCR Target Amplification Techniques. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3970-7_16

Download citation

Publish with us

Policies and ethics