Skip to main content

Molecular Typing Techniques: State of the Art

  • Chapter
  • First Online:

Abstract

The treatment of infectious disease centers around the goals of both curing the patient and preventing or at least restricting the spread of disease. In a perfect world, health care professionals would know that these goals have been achieved when the patient’s health is restored and there are no new occurrences of infected patients. However, the real world of infectious disease is far from perfect. The individual patient may present with evidence of recurring or additional infection by a pathogen (e.g., at a different body site). Different members of a patient population may yield cultures of the same organism. In both instances, the question commonly asked is whether multiple isolates of a given pathogen represent the same strain. In the individual patient, this question commonly relates to issues of therapeutic efficacy while in a patient population the concern is infection control. However, in both settings, the resolution of these questions is aided by specific epidemiological assessment. In the past, a variety of methods based on phenotypic characteristics have been used for this purpose including biotype, serotype, susceptibility to antimicrobial agents, or bacteriophages, etc. [1–4]. However, in the 1970, techniques developed for the recombinant DNA laboratory began to find application in the molecular characterization of clinical isolates. These included comparing protein molecular weight distributions by polyacrylamide gel electrophoresis, relative mobility of specific enzymes by starch-gel electrophoresis (multi-locus enzyme electrophoresis), specific antibody reactions with immobilized cellular proteins (immunoblotting), and cellular plasmid content (i.e., plasmid fingerprinting) [2, 5, 6]. However, by 1980 it was clear that comparisons at the genomic level would provide the most fundamental measure of epidemiological relatedness. Thus, molecular typing was born. While a wide range of etiological agents are of clinical concern, this review focuses on molecular approaches to the epidemiological analysis of bacterial pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tenover FC, Arbeit RD, Goering RV (1997) How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Infect Control Hosp Epidemiol 18(6):426–439

    Article  CAS  PubMed  Google Scholar 

  2. Riley LW (2004) Molecular epidemiology of infectious disease: principles and practices. ASM, Washington, DC

    Google Scholar 

  3. Chen Y, Brown E, Knabel SJ (2011) Molecular Epidemiology of Foodborne Pathogens. In: Wiedmann M, Zhang W (eds) Genomics of foodborne bacterial pathogens. Springer, New York, pp 403–453

    Chapter  Google Scholar 

  4. Van Belkum A, Tassios PT, Dijkshoorn L et al (2007) Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 13(Suppl 3):1–46

    Article  PubMed  Google Scholar 

  5. Goering RV (2000) The molecular epidemiology of nosocomial infection: past, present, and future. Rev Med Microbiol 11:145–152

    Article  Google Scholar 

  6. Goering RV (2000) Molecular strain typing for the clinical laboratory: current application and future direction. Clin Microbiol News 22:169–173

    Article  Google Scholar 

  7. Halpern D, Chiapello H, Schbath S et al (2007) Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling. PLoS Genet 3(9):1614–1621

    Article  CAS  PubMed  Google Scholar 

  8. Lindsay JA, Moore CE, Day NP et al (2006) Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188(2):669–676

    Article  CAS  PubMed  Google Scholar 

  9. Lindsay JA (2010) Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol 300(2–3):98–103

    Article  CAS  PubMed  Google Scholar 

  10. Goering RV (2002) The influence of genomics on the molecular epidemiology of nosocomial pathogens. In: Shaw KJ (ed) Pathogen genomics: impact on human health. Humana, Totowa, pp 113–131

    Chapter  Google Scholar 

  11. Bialkowska-Hobrzanska H, Jaskot D, Hammerberg O (1990) Evaluation of restriction endonuclease fingerprinting of chromosomal DNA and plasmid profile analysis for characterization of multiresistant coagulase-negative staphylococci in bacteremic neonates. J Clin Microbiol 28:269–275

    CAS  PubMed  Google Scholar 

  12. Tenover FC, Akerlund T, Gerding DN et al (2011) Comparison of strain typing results for Clostridium difficile isolates from North America. J Clin Microbiol 49(5):1831–1837

    Article  PubMed  Google Scholar 

  13. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503–517

    Article  CAS  PubMed  Google Scholar 

  14. Van Belkum A (2003) High-throughput epidemiologic typing in clinical microbiology. Clin Microbiol Infect 9:86–100

    Article  PubMed  Google Scholar 

  15. Thorne N, Borrell S, Evans J et al (2011) IS6110-based global phylogeny of Mycobacterium tuberculosis. Infect Genet Evol 11(1):132–138

    Article  PubMed  Google Scholar 

  16. Schwartz DC, Saffran W, Welsh J, Haas R, Goldenberg M, Cantor CR (1983) New techniques for purifying large DNA’s and studying their properties and packaging. Cold Spring Harbor Symp Quant Biol 47:189–195

    Article  PubMed  Google Scholar 

  17. Schwartz DC, Koval M (1989) Conformational dynamics of individual DNA molecules during gel electrophoresis. Nature 338:520–522

    Article  CAS  PubMed  Google Scholar 

  18. Goering RV, Ribot EM, Gerner-Smidt P (2011) Pulsed-field gel electrophoresis: laboratory and epidemiologic considerations for interpretation of data. In: Persing DH, Tenover FC, Tang YW, Nolte FS, Hayden RT et al (eds) Molecular microbiology, 2nd edn. ASM, Washington, DC, pp 167–177

    Google Scholar 

  19. Goering RV (2010) Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10(7):866–875

    Article  CAS  PubMed  Google Scholar 

  20. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41(11):5113–5120

    Article  CAS  PubMed  Google Scholar 

  21. Goering RV, McDougal LK, Fosheim GE, Bonnstetter KK, Wolter DJ, Tenover FC (2007) Epidemiologic distribution of the arginine catabolic mobile element among selected methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates. J Clin Microbiol 45(6):1981–1984

    Article  CAS  PubMed  Google Scholar 

  22. Schwan WR, Briska A, Stahl B et al (2010) Use of optical mapping to sort uropathogenic Escherichia coli strains into distinct subgroups. Microbiology 156(Pt 7):2124–2135

    Article  CAS  PubMed  Google Scholar 

  23. Petersen RF, Litrup E, Larsson JT et al (2011) Molecular characterization of Salmonella typhimurium highly successful outbreak strains. Foodborne Pathog Dis 8(6):655–661

    Article  CAS  PubMed  Google Scholar 

  24. Goering RV, Stemper ME, Shukla SK, Foley SL (2011) Restriction analysis techniques. In: Foley SL, Chen AY, Simjee S, Zervos MJ (eds) Molecular techniques for the study of hospital acquired infection. Wiley-Blackwell, Hoboken, N.J., pp 135–144

    Chapter  Google Scholar 

  25. Melles DC, Schouls L, Francois P et al (2009) High-throughput typing of Staphylococcus aureus by amplified fragment length polymorphism (AFLP) or multi-locus variable number of tandem repeat analysis (MLVA) reveals consistent strain relatedness. Eur J Clin Microbiol Infect Dis 28(1):39–45

    Article  CAS  PubMed  Google Scholar 

  26. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in Eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  CAS  PubMed  Google Scholar 

  27. Van Belkum A, Sluijter M, De Groot R, Verbrugh H, Hermans PWM (1996) Novel BOX repeat PCR assay for high-resolution typing of Streptococcus pneumoniae strains. J Clin Microbiol 34:1176–1179

    PubMed  Google Scholar 

  28. Deplano A, Vaneechoutte M, Verschraegen G, Struelens MJ (1997) Typing of Staphylococcus aureus and Staphylococcus epidermidis strains by PCR analysis of Inter-IS256 spacer length polymorphisms. J Clin Microbiol 35:2580–2587

    CAS  PubMed  Google Scholar 

  29. Frye SR, Healy M (2011) Repetitive sequence-based PCR typing of bacteria and fungi. In: Persing DH, Tenover FC, Tang YW, Nolte FS, Hayden RT, Van Belkum A (eds) Molecular microbiology: diagnostic principles and practice. ASM, Washington, DC, pp 199–212

    Google Scholar 

  30. Ross TL, Merz WG, Farkosh M, Carroll KC (2005) Comparison of an automated repetitive sequence-based PCR microbial typing system to pulsed-field gel electrophoresis for analysis of outbreaks of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43(11):5642–5647

    Article  CAS  PubMed  Google Scholar 

  31. Roussel S, Felix B, Colaneri C et al (2010) Semi-automated repetitive-sequence-based polymerase chain reaction compared to pulsed-field gel electrophoresis for Listeria monocytogenes subtyping. Foodborne Pathog Dis 7(9):1005–1012

    Article  CAS  PubMed  Google Scholar 

  32. Bouchet V, Huot H, Goldstein R (2008) Molecular genetic basis of ribotyping. Clin Microbiol Rev 21(2):262–273

    Article  CAS  PubMed  Google Scholar 

  33. Tenover FC, Novak-Weekley S, Woods CW et al (2010) Impact of strain types on detection of toxigenic Clostridium difficile: comparison of molecular diagnostic and enzyme immunoassay approaches. J Clin Microbiol 48(10):3719–3724

    Article  PubMed  Google Scholar 

  34. Valiente E, Dawson LF, Cairns MD, Stabler RA, Wren BW (2011) Emergence of new PCR-ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol 61(Pt 1):49–56

    PubMed  Google Scholar 

  35. Solomon K, Fanning S, McDermott S et al (2011) PCR ribotype prevalence and molecular basis of macrolide-lincosamide-streptogramin B (MLSB) and fluoroquinolone resistance in Irish clinical Clostridium difficile isolates. J Antimicrob Chemother 66(9):1976–1982

    Article  CAS  PubMed  Google Scholar 

  36. Gerding DN (2010) Global epidemiology of Clostridium difficile infection in 2010. Infect Control Hosp Epidemiol 31(Suppl 1):S32–S34

    Article  PubMed  Google Scholar 

  37. Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549–1555

    Article  CAS  PubMed  Google Scholar 

  38. IWG-SCC (2009) Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 53(12):4961–4967

    Article  Google Scholar 

  39. Kondo Y, Ito T, Ma XX et al (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51(1):264–274

    Article  CAS  PubMed  Google Scholar 

  40. Milheirico C, Oliveira DC, De Lencastre H (2007) Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: ‘SCCmec IV multiplex’. J Antimicrob Chemother 60(1):42–48

    Article  CAS  PubMed  Google Scholar 

  41. Oliveira DC, De Lencastre H (2002) Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 46(7):2155–2161

    Article  CAS  PubMed  Google Scholar 

  42. Deurenberg RH, Stobberingh EE (2008) The evolution of Staphylococcus aureus. Infect Genet Evol 8:747–763

    Article  CAS  PubMed  Google Scholar 

  43. Van Belkum A, Scherer S, van Alphen L, Verbrugh H (1998) Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62:275–293

    PubMed  Google Scholar 

  44. Lindstedt BA (2005) Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26(13):2567–2582

    Article  CAS  PubMed  Google Scholar 

  45. Hammerschmidt S, Muller A, Sillmann H et al (1996) Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol Microbiol 20(6):1211–1220

    Article  CAS  PubMed  Google Scholar 

  46. Pourcel C, Vergnaud G (2011) Strain typing using multiple “variable number of tandem repeat” analysis and genetic element CRISPR. In: Persing DH, Tenover FC, Tang YW, Nolte FS, Hayden RT, Van Belkum A (eds) Molecular microbiology: diagnostic principles and practice, 2nd edn. ASM, Washington, DC, pp 179–197

    Google Scholar 

  47. Bannerman TL, Hancock GA, Tenover FC, Miller JM (1995) Pulsed-field gel electrophoresis as a replacement for bacteriophage typing of Staphylococcus aureus. J Clin Microbiol 33:551–555

    CAS  PubMed  Google Scholar 

  48. Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV (2001) PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 7:382–389

    CAS  PubMed  Google Scholar 

  49. Harmsen D, Claus H, Witte W et al (2003) Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442–5448

    Article  CAS  PubMed  Google Scholar 

  50. Church DL, Chow BL, Lloyd T, Gregson DB (2011) Comparison of automated repetitive-sequence-based polymerase chain reaction and spa typing versus pulsed-field gel electrophoresis for molecular typing of methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 69:30–37

    Article  CAS  PubMed  Google Scholar 

  51. Frenay HME, Bunschoten AE, Schouls LM et al (1996) Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism. Eur J Clin Microbiol Infect Dis 15:60–64

    Article  CAS  PubMed  Google Scholar 

  52. Shopsin B, Gomez M, Montgomery SO et al (1999) Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37:3556–3563

    CAS  PubMed  Google Scholar 

  53. Bessen DE (2009) Population biology of the human restricted pathogen, Streptococcus pyogenes. Infect Genet Evol 9:581–593

    Article  CAS  PubMed  Google Scholar 

  54. Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR (2009) Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis 9:611–616

    Article  PubMed  Google Scholar 

  55. Wajima T, Murayama SY, Sunaoshi K, Nakayama E, Sunakawa K, Ubukata K (2008) Distribution of emm type and antibiotic susceptibility of group A streptococci causing invasive and noninvasive disease. J Med Microbiol 57:1383–1388

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka D, Gyobu Y, Kodama H et al (2002) emm typing of group A streptococcus clinical isolates: identification of dominant types for throat and skin isolates. Microbiol Immunol 46(7):419–423

    CAS  PubMed  Google Scholar 

  57. Ryffel C, Bucher R, Kayser FH, Berger-Bächi B (1991) The Staphylococcus aureus mec determinant comprises an unusual cluster of direct repeats and codes for a gene product similar to the Escherichia coli sn-glycerophosphoryl diester phosphodiesterase. J Bacteriol 173:7416–7422

    CAS  PubMed  Google Scholar 

  58. Ionescu R, Mediavilla JR, Chen L et al (2010) Molecular characterization and antibiotic susceptibility of Staphylococcus aureus from a multidisciplinary hospital in Romania. Microb Drug Resist 16:263–272

    Article  CAS  PubMed  Google Scholar 

  59. Goering RV, Morrison D, Al-Doori Z, Edwards GF, Gemmell CG (2008) Usefulness of mec-associated direct repeat unit (dru) typing in the epidemiological analysis of highly clonal methicillin-resistant Staphylococcus aureus in Scotland. Clin Microbiol Infect 14:964–969

    Article  CAS  PubMed  Google Scholar 

  60. Fessler A, Scott C, Kadlec K, Ehricht R, Monecke S, Schwarz S (2010) Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. J Antimicrob Chemother 65:619–625

    Article  CAS  PubMed  Google Scholar 

  61. Shore AC, Rossney AS, Kinnevey PM et al (2010) Enhanced discrimination of highly clonal ST22-methicillin-resistant Staphylococcus aureus IV isolates achieved by combining spa, dru, and pulsed-field gel electrophoresis typing data. J Clin Microbiol 48(5):1839–1852

    Article  PubMed  Google Scholar 

  62. Smyth DS, Wong A, Robinson DA (2011) Cross-species spread of SCCmec IV subtypes in staphylococci. Infect Genet Evol 11:446–453

    Article  PubMed  Google Scholar 

  63. Smyth DS, McDougal LK, Gran FW et al (2010) Population structure of a hybrid clonal group of methicillin-resistant Staphylococcus aureus, ST239-MRSA-III. PLoS One 5:e8582

    Article  PubMed  Google Scholar 

  64. Maiden MCJ, Bygraves JA, Feil E et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–5145

    Article  CAS  PubMed  Google Scholar 

  65. Feil EJ, Spratt BG (2001) Recombination and the population structures of bacterial pathogens. Annu Rev Microbiol 55:561–590

    Article  CAS  PubMed  Google Scholar 

  66. Aanensen DM, Spratt BG (2005) The multilocus sequence typing network: mlst.net. Nucleic Acids Res 33(Web Server issue):W728–W733

    Article  CAS  PubMed  Google Scholar 

  67. Yan Y, Cui Y, Han H et al (2011) Extended MLST-based population genetics and phylogeny of Vibrio parahaemolyticus with high levels of recombination. Int J Food Microbiol 145:106–112

    Article  CAS  PubMed  Google Scholar 

  68. Ch’ng SL, Octavia S, Xia Q et al (2011) Population structure and evolution of pathogenicity of Yersinia pseudotuberculosis. Appl Environ Microbiol 77:768–775

    Article  PubMed  Google Scholar 

  69. Litrup E, Torpdahl M, Malorny B, Huehn S, Christensen H, Nielsen EM (2010) Association between phylogeny, virulence potential and serovars of Salmonella enterica. Infect Genet Evol 10:1132–1139

    Article  PubMed  Google Scholar 

  70. Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22:611–633

    Article  CAS  PubMed  Google Scholar 

  71. Musser JM, Shelburne SA III (2009) A decade of molecular pathogenomic analysis of group A Streptococcus. J Clin Invest 119:2455–2463

    Article  CAS  PubMed  Google Scholar 

  72. Li W, Raoult D, Fournier PE (2009) Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33:892–916

    Article  CAS  PubMed  Google Scholar 

  73. Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363:71–82

    Article  CAS  PubMed  Google Scholar 

  74. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  Google Scholar 

  75. Mellmann A, Harmsen D, Cummings CA et al (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751

    Article  CAS  PubMed  Google Scholar 

  76. Rasko DA, Webster DR, Sahl JW et al (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365:709–717

    Article  CAS  PubMed  Google Scholar 

  77. Willemse-Erix DF, Jachtenberg JW, Schut TB et al (2010) Towards Raman-based epidemiological typing of Pseudomonas aeruginosa. J Biophotonics 3:506–511

    Article  CAS  PubMed  Google Scholar 

  78. Wulf MW, Willemse-Erix D, Verduin CM, Puppels G, van Belkum A, Maquelin K (2012) The use of Raman spectroscopy in the epidemiology of methicillin-resistant Staphylococcus aureus of human- and animal-related clonal lineages. Clin Microbiol Infect 18(2):147–152

    Article  CAS  PubMed  Google Scholar 

  79. Moura H, Woolfitt AR, Carvalho MG et al (2008) MALDI-TOF mass spectrometry as a tool for differentiation of invasive and noninvasive Streptococcus pyogenes isolates. FEMS Immunol Med Microbiol 53:333–342

    Article  CAS  PubMed  Google Scholar 

  80. Wolters M, Rohde H, Maier T et al (2011) MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int J Med Microbiol 301:64–68

    Article  CAS  PubMed  Google Scholar 

  81. Williamson YM, Moura H, Woolfitt AR et al (2008) Differentiation of Streptococcus pneumoniae conjunctivitis outbreak isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:5891–5897

    Article  CAS  PubMed  Google Scholar 

  82. Dieckmann R, Malorny B (2011) Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 77(12):4136–4146

    Article  CAS  PubMed  Google Scholar 

  83. Goering RV (1998) The molecular epidemiology of nosocomial infection: an overview of principles, application, and interpretation. In: Specter S, Bendinelli M, Friedman H (eds) Rapid detection of infectious agents, 1st edn. Plenum, New York, pp 131–157

    Google Scholar 

  84. Rademaker JL, Savelkoul P (2004) PCR amplification-based microbial typing. In: Persing DH, Tenover FC, Versalovic J, Tang YW, Unger ER, Relman DA et al (eds) Molecular microbiology: diagnostic principles and practice. ASM, Washington, DC, pp 197–221

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard V. Goering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goering, R.V. (2013). Molecular Typing Techniques: State of the Art. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3970-7_13

Download citation

Publish with us

Policies and ethics