Skip to main content

Instrumentation

  • Chapter
  • First Online:

Abstract

Questions to be answered in this section include:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abergel D, Louis-Joseph A, Lallemend JY (1996) Amplification of radiation damping in a 600-MHz NMR spectrometer: application to the study of water-protein interactions. J Biomol NMR 8:15–22

    Article  PubMed  CAS  Google Scholar 

  • Augustine MP (2002) Transient properties of radiation damping. Prog Nucl Magn Reson Spectrosc 40:111–150

    Article  CAS  Google Scholar 

  • Bloembergen N, Pound RV (1954) Radiation damping in magnetic resonance experiments. Phys Rev 95:8–12

    Article  Google Scholar 

  • Bockmann A, Guittet E (1995) Water selective pseudo-3D NOESY-TOCSY experiment using ‘radiation damping’: application to the study of the effects of SCN- on the hydration of BPTI. J Chim Phys Chim Biol 92:1923–1928

    Google Scholar 

  • Broekaert P, Jeener J (1995) Suppression of radiation damping in NMR in liquids by active electronic feedback. J Magn Reson 113A:60–64

    Google Scholar 

  • Coombs CF (ed) (1972) Basic electronis instrument handbook. McGraw-Hill, New York

    Google Scholar 

  • Dooley DJ (ed) (1980) Data conversion integrated circuits. IEEE Press, New York

    Google Scholar 

  • Krishnan VV, Thornton KH, Cosman M (1999) An improved experimental scheme to measure self-diffusion coefficients of biomolecules with an advantageous use of radiation damping. Chem Phys Lett 302:317–323

    Article  CAS  Google Scholar 

  • Lippens G, Dhallium C, Wieruszeski JM (1995) Use of a water flip-back pulse in the homonuclear NOESY experiment. J Biomol NMR 5:327–331

    Article  PubMed  CAS  Google Scholar 

  • Mazda FF (1987) Electronic instruments and measurement techniues. Cambridge University Press, New York

    Google Scholar 

  • Oliver BM, Cage JM (1971) Electronic measurements and instrumentation. McGraw-Hill, New York

    Google Scholar 

  • Oxenoid K, Kim HJ, Jacob J, Sonnichsen FD, Sanders CR (2004) NMR assignments for a helical 40 kDa membrane protein. J Am Chem Soc 126:5048–5049

    Article  PubMed  CAS  Google Scholar 

  • Parker SP, Weil J, Richman B (1984) McGraw-Hill encyclopedia of electronics and computers. McGraw-Hill, New York

    Google Scholar 

  • Picard L, von Keinlin M, Decorps M (1996) An overcoupled NMR probe for the reduction of radiation damping. J Magn Reson 117A:262–266

    Google Scholar 

  • Sheingold D (ed) (1977) Analog-digital conversion notes. Prenctice-Hall, NJ

    Google Scholar 

  • Szoke A, Meiboom S (1959) Radiation damping in nuclear magnetic resonance. Phys Rev 113:585–586

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quincy Teng .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Teng, Q. (2013). Instrumentation. In: Structural Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3964-6_2

Download citation

Publish with us

Policies and ethics