Skip to main content

Age-Related ENOX Proteins (arNOX)

  • Chapter
  • First Online:
ECTO-NOX Proteins

Abstract

Age-related ENOX proteins (arNOX/ENOX3) of the cell surface and endosomes with a period length of 26 min and shed into body fluids increase linearly with age beginning at about 30 years to a maximum at about age 60. Rather than only reducing oxygen to water as is characteristic of ENOX1 and ENOX2, arNOX proteins transfer electrons to oxygen to form superoxide during part of their functional cycle. By generating oxygen species at the cell surface and in body fluids (saliva, serum, perspiration, urine, interstitial fluids), arNOX proteins propagate reactive oxygen species to surrounding cells and circulating lipoprotein particles as occurs in skin aging and atherogenesis. arNOX is widely distributed among aged systems including late passage cultured cells and plants. Activity is inhibited by coenzyme Q, salicin used in skin care, and oral supplements to reduce lipoprotein oxidation leading to coronary heart disease. The arNOX protein family has been identified in yeast and humans and has been cloned. At least five arNOX protein family members (TM9SF1-5) have been identified in yeast and in humans. Synthesized as membrane anchored proteins with their catalytic N-termini directed toward the cells’ exterior, a ca. 30-kDa fragment is shed and enters the blood and other body fluids or is internalized into endosomes. A particular family member, TM9SF2 with sequence homology to the LDL receptor, binds to the AopB100 proteins of LDLs as a source of electrons for transfer to oxygen to form superoxide. The hydrogen peroxide resulting from dismutation of the superoxide results in oxidation of the lipid core of the LDL with formation of malondialdehyde-like adducts, a prerequisite for their internalization by macrophages to form foam cells, the obligate progenitors of atherosclerotic plaques. Other than superoxide production, molecular structure and response to inhibitors, arNOX proteins share many properties with other ENOX proteins including a cell surface location, the oscillatory pattern of activity, resistance to proteases, N-terminal sequencing and chemical degradation, and a propensity for the purified proteins to form aggregates. They carry out both NADH (hydroquinone) oxidation and protein disulfide-thiol interchange as determined from studies with recombinant arNOX protein family members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschbach R, Amadoò R, Neukom H (1976) Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. Biochim Biophys Acta 439:292–301

    Article  CAS  PubMed  Google Scholar 

  • American Heart Association Statistical Update (2008) Heart disease and stroke statistics—2008. Circulation 117:e25–e146

    Article  Google Scholar 

  • Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention. Systematic review and meta-analysis. JAMA 297:842–857

    Article  CAS  PubMed  Google Scholar 

  • Blumberg J (2004) Use of biomarkers of oxidative stress in research studies. J Nutr 134:1188s–1189s

    Google Scholar 

  • Bodnar AG (2009) Marine invertebrates as models for aging research. Exp Gerontol 44:477–484

    Article  CAS  PubMed  Google Scholar 

  • Butler J, Koppenol WH, Margoliash E (1982) Kinetics and mechanism of the reduction of ferricytochrome c by the superoxide anion. J Biol Chem 257:10747–10750

    CAS  PubMed  Google Scholar 

  • Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140

    Article  CAS  PubMed  Google Scholar 

  • Chluba-de Tapia J, de Tapia M, Jäggin V, Eberle AN (1997) Cloning of a human multispanning membrane protein cDNA: evidence for a new protein family. Gene 197:195–204

    Article  CAS  PubMed  Google Scholar 

  • Clark RA, Volpp BD, Leidal KG, Nauseef WM (1989) Translocation of cytosolic components of neutrophil NADPH oxidase. Trans Assoc Am Physicians 102:224–230

    CAS  PubMed  Google Scholar 

  • de Grey ADNJ (1999) The mitochondrial free radical theory of aging. R. G. Landes, Austin, TX, pp 104–110

    Google Scholar 

  • Del Principe D, Avigliano L, Savini I, Catani MV (2011) Trans-plasma membrane electron transport in mammals: functional significance in health and disease. Antioxid Redox Signal 14:2289–2318

    Article  PubMed  Google Scholar 

  • Diaz E, Schimmöller F, Pfeffer SR (1997) A novel Rab9 effector required for endosome-to-TGN transport. J Cell Biol 138:283–290

    Article  CAS  PubMed  Google Scholar 

  • Ebert TA, Southon JR (2003) Red sea urchins (Strongylocentrotus franciscanus) can live over 100 years: confirmation with A-bomb14 carbon. Fish Bull 101:915–922

    Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Enyedi B, Várnai P, Geiszt M (2010) Redox state of the endoplasmic reticulum is controlled by ErolL-alpha and intraluminal calcium. Antioxid Redox Signal 13:721–729

    Article  CAS  PubMed  Google Scholar 

  • Forman JJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842

    Article  CAS  PubMed  Google Scholar 

  • Fuller RS, Brake A, Thorner J (1989) Intracellular targeting and structural conservation of a prohormone processing endoprotease. Science 246:482–486

    Article  CAS  PubMed  Google Scholar 

  • Gillotte KL, Hörkkö S, Witztum JL, Steinberg D (2000) Oxidized phospholipids, linked to apolipoprotein B of oxidized LDL, are ligands for macrophage scavenger receptors. J Lipid Res 41:824–833

    CAS  PubMed  Google Scholar 

  • Gorman A, McGowan A, Cutler TG (1997) Role of peroxide and superoxide anion during tumor cell apoptosis. FEBS Lett 404:27–33

    Article  CAS  PubMed  Google Scholar 

  • Gray JP, Eisen T, Cline GW, Smith PJS, Heart E (2011) Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1. Am J Physiol Endocrinol Metab 301:E113–E121

    Article  CAS  PubMed  Google Scholar 

  • He P, Peng Z, Luo Y, Wang L, Yu P, Deng W, An Y, Shi T, Ma D (2009) High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy 5:52–60

    Article  CAS  PubMed  Google Scholar 

  • Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18:8126–8132

    CAS  PubMed  Google Scholar 

  • Holvoet P (1999) Endothelial dysfunction, oxidation of low-density lipo-protein, and cardiovascular disease. Ther Apher 3:287–293

    Article  CAS  PubMed  Google Scholar 

  • Hoppe U, Bergemann J, Dienbeck W, Ennen J, Gohla S, Harris L, Jacob J, Kielholz J, Mei W, Pollet D, Schachtschabel G, Sauermann G, Schreiner V, Staband F, Steckel F (1999) Coenzyme Q10, a cutaneous antioxidant and energize. Biofactors 9:371–378

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Yen Y, Ann D, Wong DT (2007) Implications of salivary proteomics in drug discovery and development: a focus on cancer drug discovery. Drug Discov Today 21–22:911–996

    Article  Google Scholar 

  • Ichihashi M, Ooe M, Inui M, Omura K, Fugi K (2007) Efficacy evaluation of coenzyme Q10 in aged human skin in vivo. In: Abstracts, Fifth conference of the international coenzyme Q10 association, Kobe, Japan, p 88

    Google Scholar 

  • Jiang Z, Gorenstein NM, Morré DM, Morré DJ (2008) Molecular cloning and characterization of a candidate human growth-related and time-keeping constitutive cell surface hydroquinone (NADH) oxidase. Biochemistry 47:14028–14038

    Article  CAS  PubMed  Google Scholar 

  • Julius D, Brake A, Kunisawa R, Thorner J (1984) Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor. Cell 37:1075–1089

    Article  CAS  PubMed  Google Scholar 

  • Kern D, Draelos Z, Morré DM, Morré DJ (2008) Age-related oxidase (arNOX) activity of epidermal punch biopsies correlate with subject age and arNOX activities of serum and saliva. In: Abstracts, Society Investigative Dermatology, Kobe, Japan, May 2008

    Google Scholar 

  • Kern DG, Draelos ZD, Meadows C, Morré DM, Morré DJ (2010) Controlling reactive oxygen species in skin at their source to reduce skin aging. Rejuvenation Res 13:165–167

    Article  CAS  PubMed  Google Scholar 

  • Kishi T, Takahashi T, Mizobachi S, Mori K, Okamoto T (2002) Effect of dicumarol, a NAD(P)H: quinone acceptor oxidoreductase 1 (DT-diaphorase) inhibitor on ubiquinone redox cycling in cultured rat hepatocytes. Free Radic Res 36:413–419

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Leeuwenburgh C, Wagner P, Holloszy JO, Sohal RS, Heinecke JW (1997) Caloric restriction attenuates dityrosine cross-linking of cardiac and skeletal muscle proteins in aging mice. Arch Biochem Biophys 346:74–80

    Article  CAS  PubMed  Google Scholar 

  • Leeuwenburgh C, Hansen P, Shaish A, Holloszy JO, Heinecke JW (1998) Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. Am J Physiol 274:453–461

    Google Scholar 

  • Levine BS, Kannel WB (2003) Coronary heart disease risk in people 65 years of age and older. Prog Cardiovasc Nurs 18:135–140

    Article  PubMed  Google Scholar 

  • Linnane AW, Eastwood H (2006) Cellular redox regulation and pro-oxidant signaling systems: a new prospective on the free radical theory of aging. Ann N Y Acad Sci 1067:47–55

    Article  CAS  PubMed  Google Scholar 

  • Linnane AW, Kios M, Vitetta I (2007) Healthy aging: regulation of the metabolome by cellular redox modulation and peroxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerentology 8:445–467

    Article  CAS  Google Scholar 

  • Littarru GP, Tiano L (2007) Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 37:31–37

    Article  CAS  PubMed  Google Scholar 

  • MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37:1613–1622

    Article  CAS  PubMed  Google Scholar 

  • Mayo LA, Curnutte J (1990) Kinetic microplate assay for superoxide production by neutrophils and other phagocytic cells. Methods Enzymol 186:567–575

    Article  CAS  PubMed  Google Scholar 

  • Moore HB, Jutare T, Bauer JC, Jones JA (1963) The biology of Lytechinus variegatus. Bull Mar Sci Gulf Caribbean 13:23–53

    Google Scholar 

  • Morré DJ (2002) Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor. Antioxid Redox Signal 4:207–212

    Article  PubMed  Google Scholar 

  • Morré DJ, Morré DM (2006a) Aging related cell surface ECTO-NOX protein, arNOX, a preventive target to reduce atherogenic risk in the elderly. Rejuvenation Res 9:231–236

    Article  PubMed  Google Scholar 

  • Morré DM, Morré DJ (2006b) Anticancer activity of grape and grape skin extracts alone and combined with green tea infusions. Cancer Lett 238:202–209

    Article  PubMed  Google Scholar 

  • Morré DM, Morré DJ (2006d) Coenzyme Q and lipid oxidation in aging and cardiovascular disease. In: Abstracts, 41st Annual south eastern regional lipid conference, Cashiers, NC, 1–3 Nov 2006, p 68

    Google Scholar 

  • Morré DJ, Morré DM (2011) Non-mitochondrial coenzyme Q. Biofactors 37:355–360

    Article  PubMed  Google Scholar 

  • Morré DJ, Pogue R, Morré DM (1999c) A multifunctional ubiquinol oxidase of the external cell surface and sera. Biofactors 9:179–187

    Article  PubMed  Google Scholar 

  • Morré DM, Lenaz G, Morré DJ (2000b) Surface oxidase and oxidative stress propagation in aging. J Exp Biol 203:1513–1521

    PubMed  Google Scholar 

  • Morré DM, Guo F, Morré DJ (2003a) An aging-related cell surface NADH oxidase (arNOX) generates superoxide and is inhibited by coenzyme Q. Mol Cell Biochem 254:101–109

    Article  PubMed  Google Scholar 

  • Morré DJ, Morré DM, Ternes P (2003b) Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties. In Vitro Cell Dev Biol Plant 39:368–376

    PubMed  Google Scholar 

  • Morré DM, Morré DJ, Rehmus W, Kern D (2008c) Supplementation with CoQ10 lowers age-related (ar) NOX levels in healthy subjects. Biofactors 32:221–230

    Article  PubMed  Google Scholar 

  • Morré DJ, Hostetler B, Weston N, Kim C, Morré DM (2009a) Cancer type-specific tNOX isoforms: a putative family of redox protein splice variants with cancer diagnostic and prognostic potential. Biofactors 34:201–207

    Article  Google Scholar 

  • Morré DJ, McClain N, Wu L-Y, Kelly G, Morré DM (2009b) Phenoxodiol treatment alters the subsequent response of tNOX and growth of HeLa cells to paclitaxel and cis-platin. Mol Biotechnol 42:100–109

    Article  PubMed  Google Scholar 

  • Morré DM, Meadows C, Hostetler B, Weston N, Kern D, Draelos Z, Morré DJ (2009c) Age-related ENOX protein (arNOX) activity correlated with oxidative skin damage in the elderly. Biofactors 34:237–244

    Article  Google Scholar 

  • Morré DM, Meadows C, Morré DJ (2010b) arNOX: generator of reactive oxygen species in the skin and sera of aging individuals subject to external modulation. Rejuvenation Res 13:162–164

    Article  PubMed  Google Scholar 

  • Morré DJ, Morré DM, Shelton TB (2010c) Aging-related nicotinamide adenine dinucleotide oxidase response to dietary supplementation: The French paradox revisited. Rejuvenation Res 13:159–161

    Article  PubMed  Google Scholar 

  • Nauseef WM (2008) Biological roles for the NOX family NADPH oxidases. J Biol Chem 283:16961–16965

    Article  CAS  PubMed  Google Scholar 

  • Nohl H, Kozlov V, Staniek K, Gille L (2001) The multiple functions of coenzyme Q. Bioorg Chem 29:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nohl H, Gille L, Staniek K (2005) Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol 69:719–723

    Article  CAS  PubMed  Google Scholar 

  • Onumah OE, Jules GE, Zhao Y, Zhou L, Yang H, Guo Z (2009) Overexpression of catalase delays GO/G1- to S-phase transition during cell cycle progression in mouse aortic endothelial cells. Free Radic Biol Med 46:1658–1667

    Article  CAS  PubMed  Google Scholar 

  • Palacios C, Wigertz K, Martin B, Weaver CM (2003) Sweat mineral loss from whole body, patch and arm bag in white and black girls. Nutr Res 23:401–411

    Article  CAS  Google Scholar 

  • Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1987) Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 80:732–742

    Article  CAS  PubMed  Google Scholar 

  • Policastro L, Molinari B, Larcher F, Blanco P, Podhajcer OL, Costa CS, Rojas P, Durán H (2004) Imbalance of antioxidant enzymes in tumor cells and inhibition of proliferation and malignant features by scavenging hydrogen peroxide. Mol Carcinog 39:103–113

    Article  CAS  PubMed  Google Scholar 

  • Ramasarma T, Swaroop A, MacKellar W, Crane FL (1981) Generation of hydrogen peroxide on oxidation of NADH by hepatic plasma membranes. J Bioenerg Biomembr 13:241–253

    Article  CAS  PubMed  Google Scholar 

  • Rehmus WE, Kern D, Janjua R, Morré DM, Morré DJ, Knaggs H (2008) Appearance of skin ageing in healthy women. Correlation with arNOX levels: a potential new mechanism in ageing? Clinical Dermatology Retinoids: Other Treatments 24:52–56

    CAS  Google Scholar 

  • Reznik AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 223:357–363

    Article  Google Scholar 

  • Schimmöller F, Diaz E, Mühlbauer B, Pfeffer SR (1998) Characterization of a 76 kDa endosomal, multispanning membrane protein that is highly conserved throughout evolution. Gene 216:311–318

    Article  PubMed  Google Scholar 

  • Schmuck A, Fuller CJ, Devaraj S, Jialal I (1995) Effect of aging on susceptibility of low-density lipoproteins to oxidation. Clin Chem 41:1628–1632

    CAS  PubMed  Google Scholar 

  • Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method of immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39:741–748

    Article  CAS  PubMed  Google Scholar 

  • Singer-Krüger B, Frank R, Crausaz F, Riezman H (1993) Partial purification and characterization of early and late endosomes from yeast. Identification of four novel proteins. J Biol Chem 268:14376–14386

    PubMed  Google Scholar 

  • Smith CD, Carney JM, Starke-Reed PO, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A 88:10540–10543

    Article  CAS  PubMed  Google Scholar 

  • Smith DC, Carney JM, Tatsumo T, Stadtman ER, Floyd RA, Markesbery WR (1992) Protein oxidation in aging brain. Ann N Y Acad Sci 663:110–119

    Article  CAS  PubMed  Google Scholar 

  • Sorkin DL, Duong DK, Miller AF (1997) Mutation of tyrosine 34 to phenylalanine eliminates the active site pK of reduced iron-containing superoxide dismutase. Biochemistry 36:8202–8208

    Article  CAS  PubMed  Google Scholar 

  • Soucy-Faulkner A, Mukawera E, Fink K, Martel A, Jouan L, Nzengue Y, Lamarre D, Vande Velde C, Grandvaux N (2010) Requirement of NOX2 and reactive oxygen species for efficient RIG-1-mediated antiviral response through regulation of MAVS expression. PLOS Pathog 6:e1000930. doi: 10.1371/journal ppat.1000930

    Article  PubMed  Google Scholar 

  • St. Pierre J, Buckingham J, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Starke-Reed PE, Oliver CN, Carney JM, Floyd RA (1992) Protein modification in aging. EXS 62:64–72

    CAS  PubMed  Google Scholar 

  • Steinberg D (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966

    Article  CAS  PubMed  Google Scholar 

  • Steinberg D, Carew TE, Fielding C, Fogelman AM, Mahley RW, Sniderman AD, Zilversmit DB (1989) Lipoproteins and the pathogenesis of atherosclerosis. Circulation 80:719–723

    Article  CAS  PubMed  Google Scholar 

  • Sugasawa T, Lenzen G, Simon S, Hidaka J, Cahen A, Guillaume J-L, Camoin L, Strosberg AD, Nahmias C (2001) The iodocyanopindolol and SM-11044 binding protein belongs to the TM9SF multispanning membrane protein superfamily. Gene 273:227–237

    Article  CAS  PubMed  Google Scholar 

  • Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 175:3249–3277

    Article  Google Scholar 

  • Sutherland MW, Learmonth BA (1997) The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase. Free Radic Res 27:283–289

    Article  CAS  PubMed  Google Scholar 

  • Tan AS, Berridge MV (2010) Evidence for NAD(P)H: quinone oxidoreductase 1 (NQO1)-mediated quinone-dependent redox cycling via plasma membrane electron transport: a sensitive cellular assay for NQO1. Free Radic Biol Med 48:421–429

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Tian Z, Chueh P-J, Chen S, Morré DM, Morré DJ (2007) Alternative splicing as the basis for specific localization of tNOX, a unique hydroquinone (NADH) oxidase, to the cancer cell surface. Biochemistry 46:12337–12346

    Article  CAS  PubMed  Google Scholar 

  • Teissedre PL, Waterhouse AL (2000) Inhibition of oxidation of human low density lipoproteins by phenolic substances in different essential oils varieties. J Agric Food Chem 48:3801–3805

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Takada K, Yamanishi H Ashida Y (2007) Inhibitory effects of coenzyme Q10 on skin aging. In: Abstracts, Fifth conference of the international coenzyme Q10 association, Kobe, Japan, p 156

    Google Scholar 

  • Tiano L, Belardinelli R, Carnevali P, Principi F, Seddalu G, Littarru GP (2007) Effect of coenzyme Q10 administration on endothelial function and extracellular superoxide dismutase in patients with ischaemic heart disease: a double-blind, randomized controlled study. Eur Heart J 28:2249–2255

    Article  CAS  PubMed  Google Scholar 

  • van der Vlies D, Wirtz KWA, Pap EHW (2001) Detection of protein oxidation in rat-1 fibroblasts by fluorescently labeled tyramine. Biochemistry 40:7783–7788

    Article  PubMed  Google Scholar 

  • Wells-Knecht MC, Huggins TG, Dyer DG, Thorpe SR, Baynes JW (1993) Oxidized amino acids in lens protein with age. Measurement of o-tyrosine and dityrosine in the aging human lens. J Biol Chem 268:12348–12352

    CAS  PubMed  Google Scholar 

  • Xu S, Ying J, Jiang B, Guo W, Adachi T, Sharov V, Lazar H, Menzoian J, Knyushko TV, Bigelow D, Schöneich C, Cohen RA (2006) Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol 290:H2220–H2227

    Article  CAS  PubMed  Google Scholar 

  • Yazdanparast R, Shahriyary I (2008) Comparative effects of Artemisia dracumculus, Satureja hortensis and Origanum majorana on inhibition of blood platelet adhesion, aggregation and secretion. Vascul Pharmacol 48:32–37

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morré, D.J., Morré, D.M. (2012). Age-Related ENOX Proteins (arNOX). In: ECTO-NOX Proteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3958-5_9

Download citation

Publish with us

Policies and ethics