Skip to main content

Role in Plasma Membrane Electron Transport

  • Chapter
  • First Online:
Book cover ECTO-NOX Proteins

Abstract

A transplasma membrane electron transport chain is possessed by all eukaryotic cells and organisms. One or more NADH-coenzyme Q reductase enzymes located on the cytosolic side of the plasma membrane, coenzyme Q within the membrane, and the ENOX proteins on the outer surface of the plasma membrane that serve as hydroquinone oxidases comprise the chain. Electron transfers to artificial electron impermeant acceptors such as ferricyanide and diferric transferrin bypass the cell surface ENOX proteins but the specific electron carriers remain to be identified. Porin isoform 1 or VDAC of the plasma membrane and a 57-kDa doxorubicin-inhibited NADH quinone oxidoreductase have been proposed as candidates. Proton pumping resulting in acidification of the medium and alkalinization of the cytosol accompanies plasma transplasma membrane electron transport to generate a transmembrane potential. NADH levels provide links to plasma membrane electron transport (PMET) to major signaling pathways, sirtuin-catalyzed reactions, regulation of clock function, modulation of the sphingosine rheostat, and the PDK-1 regulatory protein PTEN. As many aggressive and invasive cancers rely on glycolysis for their energy requirements, the increased glycolytic rates involve PMET activity in order to ameliorate reductive stress caused by a build-up of intracellular NADH. Recycling of NADH is a major function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Åberg F, Appelkvist FL, Dallner G, Ernster L (1992) Distribution and redox state of ubiquinones in rat and human tissues. Arch Biochem Biophys 295:230–234

    Article  PubMed  Google Scholar 

  • Alcaín FJ, Buron MI, Villalba JM, Navas P (1991) Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system. Biochim Biophys Acta 1073:380–385

    Article  PubMed  Google Scholar 

  • Alcaín FJ, Villalba JM, Löw H, Crane FL, Navas P (1992) Ceruloplasmin stimulates NADH oxidation of pig liver plasma membrane. Biochem Biophys Res Commun 186:951–955

    Article  PubMed  Google Scholar 

  • Alcaín FJ, Löw H, Crane FL (1994) Iron reverses impermeable chelator inhibition of DNA synthesis in CCI 39 cells. Proc Natl Acad Sci U S A 91:7903–7906

    Article  PubMed  Google Scholar 

  • Alessai DR, Sakamoto K, Bayascas JR (2006) Lkb1-dependent signaling pathways. Annu Rev Biochem 75:137–163

    Article  CAS  Google Scholar 

  • Asard H, Caubergs R, Renders D, DeGreef JA (1987) Duroquinone-stimulated NADH oxidase and b-type cytochromes in the plasma membrane of cauliflower inflorescences. Plant Sci 53:109–119

    Article  CAS  Google Scholar 

  • Asard H, Horemans N, Preger V, Trost P (1998) Plasma membrane b-type cytochromes. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma redox systems and their role in biological stress and disease. Kluwer Academic, Dordrecht, pp 1–31

    Google Scholar 

  • Baker MA, Lawen A (2000) Plasma membrane NADH-oxidoreductase system: a critical review of the structural and functional data. Antioxid Redox Signal 2:197–212

    Article  CAS  PubMed  Google Scholar 

  • Baker MA, Ly JD, Lawen A (2004a) Characterization of VDAC1 as a plasma membrane NADH-oxidoreductase. Biofactors 21:215–221

    Article  CAS  PubMed  Google Scholar 

  • Baker MA, Lane DJR, Ly JD, De Pinto V, Lawen A (2004b) VDAC1 is a transplasma membrane NADH-ferricyanide reductase. J Biol Chem 279:4811–4819

    Article  CAS  PubMed  Google Scholar 

  • Barr R, Böttger M, Crane FL, Morré DJ (1990) Electron donation to the plasma membrane redox system of cultured carrot cells stimulates proton release. Biochim Biophys Acta 1017:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bassenge E, Sommer O, Schwemmer M, Bünger R (2000) Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am J Physiol Heart Circ Physiol 279:H2431–H2438

    CAS  PubMed  Google Scholar 

  • Bérczi A, Sizensky J, Crane FL, Faulk WP (1991) Diferric transferrin reduction by K562 cells: a critical study. Biochim Biophys Acta 1073:562–570

    Article  PubMed  Google Scholar 

  • Bérczi A, Van Gestelen P, Pupillo P (1998) NAD(P)H-utilizing flavor-enzymes in the plant plasma membrane. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer Academic, Dordrecht, pp 33–67

    Google Scholar 

  • Berridge MV, Tan AS (2000) High-capacity redox control at the plasma membrane of mammalian cells: trans-membrane, cell surface, and serum NADH-oxidases. Antioxid Redox Signal 2:231–242

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer JG (1996) Coenzyme nicotinamide adenine dinucleotide: new therapeutic approach for improving dementia of the Alzheimer type. Ann Clin Lab Sci 26:1–9

    CAS  PubMed  Google Scholar 

  • Birkmayer JG, Vrecko C, Vole D, Birkmayer W (1993) Nicotinamide adenine dinucleotide (NADH)—a new therapeutic approach to Parkinson’s disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl 146:32–35

    CAS  PubMed  Google Scholar 

  • Bridge A, Barr R, Morré DJ (2000) The plasma membrane NADH oxidase of soybean has vitamin K1 hydroquinone oxidase activity. Biochim Biophys Acta 1463:448–458

    Article  CAS  PubMed  Google Scholar 

  • Brightman AO, Barr R, Crane FL, Morré DJ (1988) Auxin-stimulated NADH oxidase purified from plasma membrane of soybean. Plant Physiol 86:1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Brightman AO, Wang J, Miu RK, Sun IL, Barr R, Crane FL, Morré DJ (1992) A growth factor and hormone-stimulated NADH oxidase from rat liver plasma membranes. Biochem Biophys Acta 1105:109–117

    Article  CAS  PubMed  Google Scholar 

  • Bruno M, Brightman AO, Lawrence J, Werderitsh D, Morré DM, Morré DJ (1992) Stimulation of NADH oxidase activity from rat liver plasma membranes by growth factors and hormones is decreased or absent with hepatoma plasma membrane. Biochem J 284:625–628

    CAS  PubMed  Google Scholar 

  • Buettner R, Papoutsoglou G, Scemes E, Spray DC, Dermietzel R (2000) Evidence for secretory pathway localization of a voltage-dependent anion channel isoform. Proc Natl Acad Sci U S A 97:3201–3206

    Article  CAS  PubMed  Google Scholar 

  • Bulliard C, Zurbriggen R, Tornare J, Faty M, Dastoor Z, Dreyer JL (1997) Purification of a dichlorophenol-indophenol oxidoreductase from rat and bovine synaptic membranes: tight complex association of a glyceraldehyde-3-phosphate dehydrogenase isoform, TOAD64, enolase-gamma and aldolase C. Biochem J 324:555–563

    CAS  PubMed  Google Scholar 

  • Burgos ES, Schramm VL (2008) Weak coupling of ATP hydrolysis to the chemical equilibrium of human nicotinamide phosphoriboxyltransferase. Biochemistry 47:11086–11096

    Article  CAS  PubMed  Google Scholar 

  • Burwick NR, Wahl ML, Fang J, Zhong Z, Mosert TL, Lit B, Capaldi RA, Kenan DJ, Pizzo SV (2005) An inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem 280:1740–1745

    Article  CAS  PubMed  Google Scholar 

  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  CAS  PubMed  Google Scholar 

  • Cavalli LK, Liang BC (1998) Mutagenesis, tumorigenicity, and apoptosis: are the mitochondria involved? Mutat Res 398:19–26

    Article  CAS  PubMed  Google Scholar 

  • Cherry JM, MacKellar W, Morré DJ, Crane FL, Jacobsen LB, Schirrmacher V (1981) Evidence for a plasma membrane redox system on intact ascites tumor cells with different metastatic capacity. Biochim Biophys Acta 634:11–18

    Article  CAS  PubMed  Google Scholar 

  • Chi SL, Pizzo SV (2006) Angiostatin is directly cytotoxic to tumor cells at low extracellular pH: a mechanism dependent on cell surface-associated ATP synthase. Cancer Res 66:875–882

    Article  CAS  PubMed  Google Scholar 

  • Choi SI, Jeong CS, Cho SY, Lee YS (2007) Mechanism of apoptosis induced by apigenin in HepG2 human hepatoma cells: involvement of reactive oxygen species generated by NADPH oxidase. Arch Pharm Res 30:1328–1335

    Article  CAS  PubMed  Google Scholar 

  • Choury D, Leroux A, Kaplan JC (1981) Membrane-bound cytochrome b5 reductase (methemoglobin reductase) in human erythrocytes. Study in normal and methemoglobinemic subjects. J Clin Invest 67:149–155

    Article  CAS  PubMed  Google Scholar 

  • Chueh P-J (2000) Cell membrane redox systems and transformation. Antioxid Redox Signal 2:177–187

    Article  CAS  PubMed  Google Scholar 

  • Chueh P-J, Morré DM, Penel C, DeHahn T, Morré DJ (1997a) The hormone-responsive NADH oxidase of the plant plasma membrane has properties of a NADH:protein disulfide reductase. J Biol Chem 272:11221–11227

    Article  CAS  PubMed  Google Scholar 

  • Chueh P-J, Wu L-Y, Morré DM, Morré DJ (2004) tNOX is both necessary and sufficient as a cellular target for the anticancer actions of capsaicin and the green tea catechin (−)-epigallocatechin-3-gallate. Biofactors 20:235–249

    PubMed  Google Scholar 

  • Clarke CF, Williams W, Teruya JH (1991) Ubiquinone biosynthesis in Saccharomyces cerevisiae. Isolation and sequence of CoQ3, the 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase gene. J Biol Chem 266:16636–16644

    CAS  PubMed  Google Scholar 

  • Connett RJ, Honig CR, Gayeski TEJ, Brooks GA (1990) Defining hypoxia: a systems view of Vo2, glycolysis, energetics, and intracellular Po2. J Appl Physiol 68:833–842

    CAS  PubMed  Google Scholar 

  • Crane FL, Löw H (2008) Reactive oxygen species generation at the plasma membrane for antibody control. Autoimmun Rev 7:518–522

    Article  CAS  PubMed  Google Scholar 

  • Crane FL, Sun IL, Clark MG, Grebing C, Löw H (1985) Transplasma-membrane redox systems in growth and development. Biochim Biophys Acta 811:233–264

    Article  CAS  PubMed  Google Scholar 

  • Crane FL, Löw H, Sun IL, Isaksson M (1990a) Transmembrane electron transport and growth of transformed cells. In: Crane FL, Morré DJ, Löw HE (eds) Oxidoreduction at the plasma membrane: relation to growth and transport, I. Animals. CRC Press, Boca Raton, FL, pp 145–170

    Google Scholar 

  • Crane FL, Morré DJ, Löw HE (eds) (1990b) Oxidoreduction at the plasma membrane: relation to growth and transport, I. Animals. CRC Press, Boca Raton, FL, 318pp

    Google Scholar 

  • Crane FL, Sun IL, Crowe RA, Alcain FJ, Löw H (1994) Coenzyme Q10, plasma membrane oxidase and growth control. Mol Aspects Med 15:s1–s11

    Article  CAS  PubMed  Google Scholar 

  • Cross AR (1987) The inhibitory effects of some iodonium compounds on the superoxide generating system of neutrophils and their failure to inhibit diaphorase activity. Biochem Pharmacol 36:489–493

    Article  CAS  PubMed  Google Scholar 

  • Darr D, Fridovich I (1984) Vanadate and molybdate stimulate the oxidation of NADH by superoxide radical. Arch Biochem Biophys 232:562–565

    Article  CAS  PubMed  Google Scholar 

  • de Grey ADNJ (2003) A hypothesis for the minimal overall structure of the mammalian plasma membrane redox system. Protoplasma 221:3–9

    Article  PubMed  CAS  Google Scholar 

  • De Luca T, Morré DM, Zhao H, Morré DJ (2005) NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and sphingosine-1-phosphate levels accompanying G1 arrest and apoptosis. Biofactors 25:43–60

    Article  PubMed  Google Scholar 

  • De Luca T, Morré DM, Morré DJ (2010) Reciprocal relationship between cytosolic NADH and ENOX2 inhibition triggers sphingolipid-induced apoptosis in HeLa cells. J Cell Biochem 110:1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Del Principe D, Avigliano L, Savini I, Catani MV (2011) Trans-plasma membrane electron transport in mammals: functional significance in health and disease. Antioxid Redox Signal 14:2289–2318

    Article  PubMed  CAS  Google Scholar 

  • Denko N, Schindler C, Koong A, Laderoute K, Green C, Giagcia A (2000) Epigenetic regulation of gene expression in cervical cancer cells by the tumor microenvironment. Clin Cancer Res 6:480–487

    CAS  PubMed  Google Scholar 

  • Dewhurst MW, Secomb TW, Ong ET, Hsu R, Gross JF (1994) Determination of local oxygen consumption rates in tumors. Cancer Res 54:3333–3336

    Google Scholar 

  • Diaz E, Schimmöller F, Pfeffer SR (1997) A novel Rab9 effector required for endosome-to-TGN transport. J Cell Biol 138:283–290

    Article  CAS  PubMed  Google Scholar 

  • Dick S, Ryuzoji A, Morré DM, Morré DJ (2011) Ultradian oscillators of the circadian clock in Saccharomyces cerevisiae. FEMS Yeast Res (in press)

    Google Scholar 

  • Döring O, Lüthje S (1996) Molecular components and biochemistry of electron transport in plant plasma membranes. Mol Membr Biol 13:127–142

    Article  PubMed  Google Scholar 

  • Döring O, Lüthje S, Hilgendorf F, Böttger M (1990) Membrane depolarization by hexacyanoferrate (III), hexabromoiridate (IV) and hexachloroiridate (IV). J Exp Bot 43:1055–1061

    Article  Google Scholar 

  • Dreyer JL (1990) Plasma membrane dehydrogenases in rat brain synaptic membranes. Multiplicity and subunit composition. J Bioenerg Biomembr 22:619–633

    Article  CAS  PubMed  Google Scholar 

  • Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 24:5612–5625

    Article  CAS  Google Scholar 

  • Ellem KAO, Kay GF (1983) Ferricyanide can replace pyruvate to stimulate growth and attachment of serum restricted human melanoma cells. Biochem Biophys Res Commun 112:183–190

    Article  CAS  PubMed  Google Scholar 

  • Fantin VR, St. Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434

    Article  CAS  PubMed  Google Scholar 

  • Faulk WP, Barabas K, Sun IL, Crane FL (1991) Transferrin-adriamycin conjugates which inhibit tumor cell proliferation without interaction with DNA inhibit plasma membrane oxidoreductase and proton release in K562 cells. Biochem Int 25:815–822

    CAS  PubMed  Google Scholar 

  • Forsyth LM, Preuss HG, MacDowell AL, Chiazze I Jr, Birkmayer GD, Bellanti JA (1999) Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann Allergy Asthma Immunol 82:185–191

    Article  CAS  PubMed  Google Scholar 

  • Froy O, Miskin R (2010) Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging 2:7–27

    CAS  PubMed  Google Scholar 

  • Garber K (2006) Energy deregulation: licensing tumors to grow. Science 312:1158–1159

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Cañero R, Guerra M (1988) External Na dependency and variation of ferricyanide reductase in tumor cell growth. Oncologia 11:187–195

    Google Scholar 

  • Garcia-Cañero R, Diaz-Gis JJ, Guerra MA (1987) Is transmembrane ferricyanide reductase connected with the early expression of mitogenic signals in hepatocytes. In: Ramirez J (ed) Redox function of the eukaryotic plasma membrane. Consejo Superior de Investigaciones Cientificas, Madrid, p 41

    Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Gronow M, Cuchacovich M, Francos R, Cuchacovich S, del Pilar Fernandez M, Blanco A, Bowers EV, Kaczowka S, Pizzo SV (2010) Antibodies against the voltage-dependent anion channel (VDAC) and its protective ligand hexokinase-I in children with autism. J Neuroimmunol 227:153–161

    Article  CAS  PubMed  Google Scholar 

  • Grinstein S, Rothstein A (1986) Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol 90:1–12

    Article  CAS  PubMed  Google Scholar 

  • Guppy M (2002) The hypoxic core: a possible answer to the cancer paradox. Biochem Biophys Res Commun 2994:676–680

    Article  CAS  Google Scholar 

  • Guppy M, Leedman P, Zu X, Russell V (2002) Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 364:309–315

    CAS  PubMed  Google Scholar 

  • Guppy M, Brunner S, Buchanan M (2005) Metabolic depression: a response of cancer cells to hypoxia? Comp Biochem Physiol B Biochem Mol Biol 140:233–239

    Article  PubMed  CAS  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    Article  CAS  PubMed  Google Scholar 

  • Herst PM, Berridge MV (2006) Plasma membrane electron transport: a new target for cancer drug development. Curr Mol Med 6:895–904

    Article  CAS  PubMed  Google Scholar 

  • Herst PM, Tan AS, Scarlett DG, Berridge MV (2004) Cell surface oxygen consumption by mitochondrial gene knockout cells. Biochim Biophys Acta 1656:79–87

    Article  CAS  PubMed  Google Scholar 

  • Hicks-Berger C, Sokolchik I, Kim C, Morré DJ (2006) A plasma membrane-associated associated AAA-ATPase from Glycine max. Mol Cell Biochem 28:135–149

    Google Scholar 

  • Hipkiss AR (2006) Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works? Ann N Y Acad Sci 1067:361–368

    Article  CAS  PubMed  Google Scholar 

  • Hipkiss AR (2010) Aging, proteotoxicity, mitochondria, glycation, NAD and carnosine: possible inter-relationships and resolution of the oxygen paradox. Front Aging Neurosci 2:10

    CAS  PubMed  Google Scholar 

  • Hofhaus G, Johns DR, Hurko O, Attardi G, Chomyn A (1996) Respiration and growth defects in transmitochondrial cell lines carrying the I1778 mutation associated with Leber’s hereditary optic neuropathy. J Biol Chem 271:12155–13161

    Google Scholar 

  • Hyun DH, Emerson SS, Jo DG, Mattson MP, De Cabo R (2006) Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci U S A 103:19908–19912

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Gorenstein NM, Morré DM, Morré DJ (2008) Molecular cloning and characterization of a candidate human growth-related and time-keeping constitutive cell surface hydroquinone (NADH) oxidase. Biochemistry 47:14028–14038

    Article  CAS  PubMed  Google Scholar 

  • Kalén A, Norling B, Appelkvist EL, Dallner G (1987) Ubiquinone biosynthesis by the microsomal fraction from rat liver. Biochim Biophys Acta 926:70–78

    Article  PubMed  Google Scholar 

  • Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, Van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA (2003) AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 31:162–168

    Article  CAS  PubMed  Google Scholar 

  • Kennett EC, Kuchel PW (2003) Redox reactions and electron transfer across the red cell membrane. IUBMB Life 55:375–385

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Crane FL, Faulk WP, Morré DJ (2002) Purification and characterization of a doxorubicin-inhibited NADH-quinone (NADH-ferricyanide) reductase from rat liver plasma membranes. J Biol Chem 10:16441–16447

    Article  CAS  Google Scholar 

  • Kishi T, Morré DM, Morré DJ (1999) The plasma membrane NADH oxidase of Hela cells has hydroquinone reductase activity. Biochim Biophys Acta 1412:66–77

    Article  CAS  PubMed  Google Scholar 

  • Kishi T, Takahashi T, Mizobachi S, Mori K, Okamoto T (2002) Effect of dicumarol, a NAD(P)H: quinone acceptor oxidoreductase 1 (DT-diaphorase) inhibitor on ubiquinone redox cycling in cultured rat hepatocytes. Free Radic Res 36:413–419

    Article  CAS  PubMed  Google Scholar 

  • Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, Bartenstein P, Wagner W, Whiteside TL (2003) Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 97:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • L’Allemain G, Franchi A, Cragoe E Jr, Pouysségur J (1984) Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. J Biol Chem 259:4313–4319

    PubMed  Google Scholar 

  • Lambeth JD, Cheng G, Arnold RS, Edens WA (2000) Novel homologs of gp91 phox. Trends Biochem Sci 25:459–461

    Article  CAS  PubMed  Google Scholar 

  • Larm JA, Vaillant F, Linnane AW, Lawen A (1994) Up-regulation of the plasma membrane oxidoreductase as a prerequisite for the viability of human Namalwa ρo cells. J Biol Chem 269:30097–30100

    CAS  PubMed  Google Scholar 

  • Lawen A, Martinus RD, McMullen GL, Nagley P, Vaillant F, Wolvetang EJ, Linnane AW (1994) The universality of bioenergetic disease: the role of mitochondrial mutation and the putative inter-relationship between mitochondria and plasma membrane NADH oxidoreductase. Mol Aspects Med 15:s13–s27

    Article  CAS  PubMed  Google Scholar 

  • Lawen A, Ly JD, Lane DJR, Zarschler K, Messina A, De Pinto V (2005) Voltage-dependent anion-selective channel 1 (VDAC1)—a mitochondrial protein, rediscovered as a novel enzyme in the plasma membrane. Int J Biochem Cell Biol 37:277–282

    Article  CAS  PubMed  Google Scholar 

  • Lee SRKS, Yang J, Kwon C, Lee WJ, Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277:20336–20342

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Paolucci U, Fato R, D’Aurelio M, Parenti Castelli G, Sgarbi G, Biagini G, Ragni L, Salardi S, Cacciari E (2002) Enhanced activity of the plasma membrane oxidoreductase in circulating lymphocytes from insulin-dependent diabetes mellitus patients. Biochem Biophys Res Commun 290:1589–1592

    Article  CAS  PubMed  Google Scholar 

  • Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E, Park J-W (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell 38:864–878

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Guarente L (2003a) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Guarente L (2003b) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lazaro M (2008) The Warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem 8:305–312

    Article  CAS  PubMed  Google Scholar 

  • Löw H, Werner S (1976) Effect of reducing and oxidizing agents on the adenylate cyclase activity in adipocyte plasma membranes. FEBS Lett 65:96–98

    Article  PubMed  Google Scholar 

  • Löw H, Crane FL, Sun IL (1990) Oxidoreduction in the plasma membrane. In: Crane FL, Morré DJ, Löw HE (eds) Oxidoreduction at the plasma membrane: relation to growth and transport, I. Animals. CRC Press, Boca Raton, FL, pp 29–65

    Google Scholar 

  • Lüthje S, Döring OS, Heuer H, Lüthen H, Böttger M (1997) Oxidoreductases in plant plasma membranes. Biochim Biophys Acta 1331:81–102

    Article  PubMed  Google Scholar 

  • Lüthje S, Van Gestelen P, Córdoba-Pedregosa P, González-Reyes JA, Asard H, Villalba JM, Böttger M (1998) Quinones in plant plasma membranes—a missing link. Protoplasma 25:43–51

    Article  Google Scholar 

  • Macquet JP, Butour JL (1983) Platinum-amine compounds: importance of the labile and inert ligands for their pharmacological activities toward L1210 leukemia cells. J Natl Cancer Inst 70:899–905

    CAS  PubMed  Google Scholar 

  • Malik SG, Vaillant F, Lawen A (2004) Plasma membrane NADH-oxidoreductase in cells carrying mitochondrial DNA G11778A mutation and in cells devoid of mitochondrial DNA (ρo). Biofactors 20:189–198

    Article  CAS  PubMed  Google Scholar 

  • Martinus RD, Linnane AW, Nagley P (1993) Growth of rho 0 human Namalwa cells lacking oxidative phosphorylation can be sustained by redox compounds potassium ferricyanide or coenzyme Q10 putatively acting through the plasma membrane oxidase. Biochem Mol Biol Int 31:997–1005

    CAS  PubMed  Google Scholar 

  • McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755–1759

    Article  CAS  PubMed  Google Scholar 

  • Merker M, Bongard RD, Kettenhofen NJ, Okamot Y, Dawson CA (2002) Intracellular redox status affects transplasma membrane electron transport in pulmonary arterial endothelial cells. Am J Physiol Lung Cell Physiol 282:L26–L43

    Google Scholar 

  • Møller IM, Bérczi A (1985) Oxygen consumption by purified plasmalemma vesicles from wheat roots. Stimulation by NADH and salicylhydroxamic acid. FEBS Lett 193:180–184

    Article  Google Scholar 

  • Moolenaar WH, Defize LHK, van der Saag PT, De Laat SW (1986) The generation of ionic signals by growth factor. In: Aronson PS, Bororn WF (eds) Current topics in membranes and transport, vol 26. Academic, Orlando, FL, pp 137–156

    Google Scholar 

  • Morré DJ (1998c) NADH oxidase: a multifunctional ectoprotein of the eukaryotic cell surface. In: Asard H, Bérczi A, Caubergs R (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer Academic, Dordrecht, The Netherlands, pp 121–156

    Google Scholar 

  • Morré DJ (2002) Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor. Antioxid Redox Signal 4:207–212

    Article  PubMed  Google Scholar 

  • Morré DJ (2004) Quinone oxidoreductases of the plasma membrane. Methods Enzymol 378A:179–199

    Article  Google Scholar 

  • Morré DJ, Brightman AO (1991) NADH oxidase of plasma membranes. J Bioenerg Biomembr 23:469–489

    Article  PubMed  Google Scholar 

  • Morré DJ, Crane FL (1990) NADH oxidase. In: Crane FL, Morré DJ, Löw H (eds) Oxidoreduction at the plasma membrane: relation to growth and transport. I. Animals. CRC Press, Boca Raton, FL, pp 67–84

    Google Scholar 

  • Morré DJ, Grieco PA (1999) Glaucarubolone and simalikalactone D, respectively, preferentially inhibit auxin-induced and constitutive components of plant cell enlargement and the plasma membrane NADH oxidase. Int J Plant Sci 160:291–297

    Article  Google Scholar 

  • Morré DJ, Morré DM (1989) Mammalian plasma membranes by aqueous two-phase partition. Biotechniques 7:946–958

    PubMed  Google Scholar 

  • Morré DJ, Morré DM (1995a) Differential response of the NADH oxidase of plasma membranes of rat liver and hepatoma and HeLa cells to thiol reagents. J Bioenerg Biomembr 27:137–144

    Article  PubMed  Google Scholar 

  • Morré DJ, Morré DM (2003a) Cell surface NADH oxidases (ECTO-NOX proteins) with roles in cancer, cellular time-keeping, growth, aging and neurodegenerative disease. Free Radic Res 37:795–808

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Morré DM (2011) Non-mitochondrial coenzyme Q. Biofactors 37:355–360

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Navas P, Penel C, Castillo FJ (1986a) Auxin-stimulated NADH oxidase (semidehydroascorbate reductase) of soybean plasma membrane: role in acidification of cytoplasm? Protoplasma 133:195–197

    Article  Google Scholar 

  • Morré DJ, Crane FL, Barr R, Penel C, Wu L-Y (1988a) Inhibition of plasma membrane redox activities and elongation growth of soybean. Physiol Plant 72:236–240

    Article  Google Scholar 

  • Morré DJ, Brightman AO, Wang J, Barr R, Crane FL (1988b) Role for plasma membrane redox systems in cell growth. In: Crane FL, Löw H, Morré DJ (eds) Plasma membrane oxidoreductases in control of plant and animal growth. Proceedings of the NATO advanced research workshop. Alan R. Liss, New York, pp 45–55

    Google Scholar 

  • Morré DJ, Brightman AO, Wu L-Y, Barr R, Leak B, Crane FL (1988c) Role of plasma membrane redox activities in elongation growth in plants. Physiol Plant 73:187–193

    Article  Google Scholar 

  • Morré DJ, Brightman AO, Hidalgo A, Navas P (1995a) Selective inhibition of auxin-stimulated NADH oxidase activity and elongation growth of soybean hypocotyls by thiol reagents. Plant Phys 107:1285–1291

    Google Scholar 

  • Morré DJ, Chueh P-J, Lawler J, Morré DM (1998a) The sulfonylurea-inhibited NADH oxidase activity of HeLa plasma membranes has properties of a protein disulfide-thiol oxido-reductase with protein disulfide-thiol interchange activity. J Bioenerg Biomembr 30:477–487

    Article  PubMed  Google Scholar 

  • Morré DJ, Gomez-Rey ML, Schramke C, Em O, Lawler J, Hobeck J, Morré DM (1999a) Use of dipyridyl-dithio substrates to measure directly the protein disulfide-thiol interchange activity of the auxin stimulated NADH: protein disulfide reductase (NADH oxidase) of soybean plasma membranes. Mol Cell Biochem 200:7–13

    Article  PubMed  Google Scholar 

  • Morré DJ, Morré DM, Penel C, Greppin H (1999b) NADH oxidase periodicity of spinach leaves synchronized by light. Int J Plant Sci 160:855–860

    Article  PubMed  Google Scholar 

  • Morré DJ, Pogue R, Morré DM (1999c) A multifunctional ubiquinol oxidase of the external cell surface and sera. Biofactors 9:179–187

    Article  PubMed  Google Scholar 

  • Morré DJ, Sedlak D, Tang X, Chueh P-J, Geng T, Morré DM (2001c) Surface NADH oxidase of HeLa cells lacks intrinsic membrane binding motifs. Arch Biochem Biophys 392:251–256

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Kim C, Hicks-Berger C (2006a) ATP-dependent and drug-inhibited vesicle enlargement reconstituted using synthetic lipids and recombinant proteins. Biofactors 28:105–117

    Article  PubMed  Google Scholar 

  • Morré DJ, Dick S, Bosneaga E, Balicki A, Wu L-Y, McClain N, Morré DM (2008a) tNOX (ENOX1) target for chemosensitization-low-dose responses in the hormetic concentration range. Am J Pharmacol Toxicol 3:16–26

    Google Scholar 

  • Morré DJ, Jiang Z, Marjanovic M, Orczyk J, Morré DM (2008b) Response of the regulatory behavior of copperII-containing ECTO-NOX proteins and CuIICl2 in solution to electromagnetic fields. J Inorg Biochem 102:1812–1818

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Nakamura M, Minakami S (1986) 2,6-Dichlorophenolindophenol-reducing activity of phagocytosis-associated NADPH oxidase. J Biochem 100:1493–1497

    CAS  PubMed  Google Scholar 

  • Murphee SA, Cunningham LS, Hwang KM, Sartorelli AC (1976) Effects of adriamycin on surface properties of sarcoma 180 ascites cells. Biochem Pharmacol 25:1227–1231

    Article  Google Scholar 

  • Nadlinger K, Westerthaler W, Storga-Tomic D, Birkmayer JG (2002) Extracellular metabolisation of NADH by blood cells correlates with intracellular ATP levels. Biochim Biophys Acta 1573:177–182

    Article  CAS  PubMed  Google Scholar 

  • Navarro F, Villalba JM, Crane FL, Mackellar WC, Navas P (1995) A phospholipids-dependent NADH-coenzyme Q reductase from liver plasma membrane. Biochem Biophys Res Commun 212:138–143

    Article  CAS  PubMed  Google Scholar 

  • Navas P, Alcain FJ, Burón I, Rodriguez-Aguilera JC, Villalba JM, Morré DM, Morré DJ (1992) Growth factor-stimulated transplasma membrane electron transport in HL-60 cells. FEBS Lett 3:223–226

    Article  Google Scholar 

  • Noh KM, Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20:RC111

    CAS  PubMed  Google Scholar 

  • O’Donnell VB, Smith GC, Jones OT (1994) Involvement of phenyl radicals in iodonium inhibition of flavoenzymes. Mol Pharmacol 46:778–785

    PubMed  Google Scholar 

  • Orczyk J, Morré DM, Morré DJ (2005) Periodic fluctuations in oxygen consumption comparing HeLa (cancer) and CHO (non-cancer) cells and response to external NAD(P)+/NAD(P)H. Mol Cell Biochem 273:161–167

    Article  CAS  PubMed  Google Scholar 

  • Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274

    CAS  PubMed  Google Scholar 

  • Prata C, Maraldi T, Fiorenstini D, Zambonin L, Hakin G, Landi L (2006) Is NOX the source of ROS involved in glut 1 activity in B1647 cells? Acta Biol Szeged 50:79–82

    Google Scholar 

  • Pupillo P, Valenti V, DeLuca L, Hertel R (1986) Kinetic characteristics of reduced pyridine nucleotide dehydrogenases duroquinone-dependent in Cucurbita microsomes. Plant Physiol 80:384–389

    Article  CAS  PubMed  Google Scholar 

  • Rafeloff-Phail R, Ding L, Conner L, Yeh WK, McClure D, Guo H, Emerson K, Brooks H (2004) Biochemical regulation of mammalian AMP-activated protein kinase activity by NAD and NADH. J Biol Chem 279:52934–52939

    Article  CAS  Google Scholar 

  • Reiss PD, Zuurendonk PF, Beech RL (1984) Measurement of tissue purine, pyrimidine, and other nucleotides by radial compression high-performance liquid chromatography. Anal Biochem 140:162–171

    Article  CAS  PubMed  Google Scholar 

  • Remers WA (1989) Adriamycin. In: The chemistry of antitumor antibiotics. Wiley, New York, p 144

    Google Scholar 

  • Rozengurt E (1986) Early signals in the mitogenic response. Science 234:1612–1616

    Article  Google Scholar 

  • Sanchez A, Malagarie-Cazenave S, Olea N, Vara D, Chiloeches A, Diaz-Laviada I (2007) Apoptosis induced by capsaicin in prostate pc-3 cells involves ceramide accumulation, neutral sphingomyelinase, and jnk activation. Apoptosis 12:2013–2024

    Article  CAS  PubMed  Google Scholar 

  • Scarlett DJ, Herst PM, Tan A, Prata C, Berridge MV (2004) Mitochondrial gene-knockout (rho0) cells: a versatile model for exploring the secrets of trans-plasma membrane electron transport. Biofactors 20:199–206

    Article  PubMed  Google Scholar 

  • Scarlett D-JG, Herst PM, Berridge MV (2005) Multiple proteins with single activities or a single protein with multiple activities: the conundrum of cell surface NADH oxidases. Biochim Biophys Acta 1708:108–119

    Article  CAS  PubMed  Google Scholar 

  • Schomack PA, Gillies RJ (2003) Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia 5:135–145

    Google Scholar 

  • Schwartz JP, Passonneau JV, Johnson GS, Pastan I (1974) The effect of growth conditions on NAD+ and NADH concentrations and the NAD+:NADH ratio in normal and transformed fibroblasts. J Biol Chem 249:4138–4143

    CAS  PubMed  Google Scholar 

  • Sener A, Blachier F, Malaisse WJ (1988) Crabtree effect in tumoral pancreatic islet cells. J Biol Chem 263:1904–1909

    CAS  PubMed  Google Scholar 

  • Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol 18:598–608

    Article  CAS  PubMed  Google Scholar 

  • Sijmons PC, Lanfermeijer FC, De Boer AR, Prins HB, Bienfait HF (1984) Depolarization of cell membrane potential during trans-plasma membrane electron transfer to extracellular electron acceptors in iron-deficient roots of Phaseolus vulgaris L. Plant Physiol 76:943–946

    Article  CAS  PubMed  Google Scholar 

  • Simonnet H, Dermont J, Pfeiffer K, Guenaneche L, Bouvier R, Brandt U, Schagger H, Godinot C (2003) Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis 24:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Slade N, Storga-Tomic D, Birkmayer GD, Pavelic K, Pavelic J (1999) Effect of extracellular NADH on human tumor cell proliferation. Anticancer Res 19:5355–5360

    CAS  PubMed  Google Scholar 

  • Sparla F, Tedeschi G, Trost P (1996) NAD(P)H: quinone-acceptor oxidoreductase of tobacco leaves is a flavin mononucleotide-containing flavoenzyme. Plant Physiol 112:249–258

    CAS  PubMed  Google Scholar 

  • Su D, May JM, Koury MJ, Asard H (2006) Human erythrocyte membranes contain a cytochrome b561 that may be involved in extracellular ascorbate recycling. J Biol Chem 281:39852–39859

    Article  CAS  PubMed  Google Scholar 

  • Sun IL, Crane FL (1984) The antitumor drug, cis-platin, inhibits trans plasmalemma electron transport in HeLa cells. Biochem Int 9:299–306

    CAS  PubMed  Google Scholar 

  • Sun IL, Crane FL (1990) Interactions of antitumor drugs with plasma membranes. In: Crane FL, Morré DJ, Löw H (eds) Oxidation at the plasma membrane: relation to growth and transport, vol 1. CRC Press, Boca Raton, FL, pp 257–280

    Google Scholar 

  • Sun IL, Crane FL, Grebing C, Löw H (1984a) Properties of a transplasma membrane electron transport system in HeLa cells. J Bioenerg Biomembr 16:583–595

    Article  CAS  PubMed  Google Scholar 

  • Sun IL, Crane FL, Löw H, Grebing C (1984b) Transplasma membrane redox stimulates HeLa cell growth. Biochem Biophys Res Commun 125:649–654

    Article  CAS  PubMed  Google Scholar 

  • Sun IL, Garcia-Cañero R, Lui W, Crane FL, Morré DJ, Löw H (1987a) Diferric transferrin reduction stimulates the Na+/H+ antiport of HeLa cells. Biochem Biophys Res Commun 145:467–473

    Article  CAS  PubMed  Google Scholar 

  • Sun IL, Navas P, Crane FL, Morré DJ, Löw H (1987b) NADH diferric transferrin reductase in liver plasma membranes. J Biol Chem 262:15915–15921

    CAS  PubMed  Google Scholar 

  • Sun IL, Toole-Simms W, Crane FL, Golub ES, Diaz de Pagan T, Morré DJ, Löw H (1987c) Retinoic acid inhibition of transplasmalemma diferric transferrin reductase. Biochem Biophys Res Commun 146:976–982

    Article  CAS  PubMed  Google Scholar 

  • Sun IL, Sun EE, Crane FL, Morré DJ, Faulk WP (1992a) Inhibition of transplasma membrane electron transport by transferrin adriamycin conjugates. Biochim Biophys Acta 1105:84–88

    Article  CAS  PubMed  Google Scholar 

  • Sun IL, Sun EE, Crane FL, Morré DJ, Lindgren A, Löw H (1992b) A requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci U S A 89:1126–1130

    Google Scholar 

  • Sun E, Lawrence J, Morré DM, Sun I, Crane FL, MacKellar WC, Morré DJ (1995) Proton release from HeLa cells and alkalization of cytoplasma induced by differic transferrin or ferricyanide and its inhibition by the diarylsulfonylurea antitumor drug N-4-methylphenylsulfonylurea-N′-4-chlorophenylurea LY181984. Biochem Pharmacol 50:1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Sweiczer A, Novak B, Mitchison JM (1996) The size control of fission yeast revisited. J Cell Sci 109:2947–2957

    Google Scholar 

  • Tamguney T, Stokoe D (2007) New insights into PTEN. J Cell Sci 120:4071–4079

    Article  CAS  PubMed  Google Scholar 

  • Turi JL, Wang X, McKie AT, Nozik-Grayck E, Mamo LB, Crissman K, Piantadosi CA, Ghio AJ (2006) Duodenal cytochrome b: a novel ferrireductase in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 291:L272–L280

    Article  CAS  PubMed  Google Scholar 

  • Van Gestelen P, Asard H, Caubergs RJ (1996) Partial purification of a plasma membrane flavoprotein and NADPH-oxidoreductase activity. Physiol Plant 98:389–398

    Article  Google Scholar 

  • van Iwaarden PR, Driessen AJ, Konings WN (1992) What we can learn from the effects of thiol reagents on transport proteins. Biochim Biophys Acta 1113:161–170

    Article  PubMed  Google Scholar 

  • Vianello A, Macri F (1989) NAD(P)H oxidation elicits anion superoxide formation in radish plasmalemma vesicles. Biochim Biophys Acta 980:202–208

    Article  CAS  PubMed  Google Scholar 

  • Vijaya S, Crane FL, Ramasarma TA (1984) A vanadate-stimulated NADH oxidase in erythrocyte membrane generates hydrogen peroxide. Mol Cell Biochem 62:175–185

    Article  CAS  PubMed  Google Scholar 

  • Villalba JM, Navas P (2000) Plasma membrane redox system in the control of stress-induced apoptosis. Antioxid Redox Signal 2:213–230

    Article  CAS  PubMed  Google Scholar 

  • Villalba JM, Navarro F, Cordoba F, Serrano A, Arroyo A, Crane FL, Navas P (1995) Coenzyme Q reductase from liver plasma membrane: purification and role in transplasma membrane electron transport. Proc Natl Acad Sci U S A 92:4887–4891

    Article  CAS  PubMed  Google Scholar 

  • Villalba JM, Navarro F, Gomez-Diaz C, Arroyo A, Bello RI, Navas P (1997) Role of cytochrome b5 reductase on the antioxidant function of coenzyme Q in the plasma membrane. Mol Aspects Med 18:S7–S13

    Article  CAS  PubMed  Google Scholar 

  • Villalba JM, Crane FL, Navas P (1998) Antioxidative role of ubiquinone in the animal plasma membrane. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer Academic, Dordrecht, pp 247–265

    Google Scholar 

  • Wang S, Pogue R, Morré DM, Morré DJ (2001) NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms. Biochim Biophys Acta 1539:192–204

    Article  CAS  PubMed  Google Scholar 

  • Wang H-M, Chueh P-J, Chang S-P, Yang C-L, Shao K-N (2009) Effect of capsaicin on tNOX (ENOX2) protein expression in stomach cancer cells. Biofactors 34:209–217

    Article  Google Scholar 

  • Warburg O (1921) The physical chemistry of cell-breathing. Biochem Z 119:134

    CAS  Google Scholar 

  • Warburg O (1929) Is the aerobic glycolysis specific for tumors? Biochem Z 2004:482–483

    Google Scholar 

  • Warburg O (1930) The metabolism of tumors. Arnold Constable, London

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) Ueber den Stoffwechsel der Tumoren. Biochem Z 152:319–344

    Google Scholar 

  • Weber G (1983) Biochemical strategy of cancer cells and the design of chemotherapy. G. H. A. Clowes Memorial Lecture. Cancer Res 43:3466–3492

    CAS  PubMed  Google Scholar 

  • Williamson JR, Chang K, Frangos M, Hasan KS, Idom Y, Kawamura T, Nyengaard JR, van den Enden M, Kilo C, Tilton RG (1993) Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42:801–813

    Article  CAS  PubMed  Google Scholar 

  • Wolvetang EJ, Larm JA, Moutsoulas P, Lawen A (1996) Apoptosis induced by inhibitors of the plasma membrane NADH-oxidase involves Bc1-2 and calcineurin. Cell Growth Differ 7:1315–1325

    CAS  PubMed  Google Scholar 

  • Wright MV, Kuhn TB (2002) CNS neurons express two distinct plasma membrane electron transport systems implicated in neuronal viability. J Neurochem 83:655–664

    Article  CAS  PubMed  Google Scholar 

  • Wu L-Y, De Luca T, Watanabe T, Morré DM, Morré DJ (2011) Metabolite modulation of HeLa cell response to ENOX2 inhibitors EGCG and phenoxodiol. Biochim Biophys Acta 1810:784–789

    Article  CAS  PubMed  Google Scholar 

  • Yagiz K, Morré DJ, Morré DM (2006) Transgenic mouse line overexpressing the cancer-specific tNOX protein has an enhanced growth and acquired drug-response phenotype. J Nutr Biochem 17:750–759

    Article  CAS  PubMed  Google Scholar 

  • Yagiz K, Wu L-Y, Kuntz CP, Morré DJ, Morré DM (2007) Mouse embryonic fibroblast cells from transgenic mice overexpressing tNOX express an altered growth and drug response phenotype. J Cell Biochem 101:295–306

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Hara N, Shibata T, Osago H, Tsuchiya M (2006) The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Biochem 352:282–285

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, de Cabo R, Sauve AA, Sinclair DA (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Yasuda S, Arii S, Mori A, Isobe N, Yang W, Oe H, Fujimoto A, Yonenaga Y, Sakashita H, Imamura M (2004) Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance. J Hepatol 40:117–123

    Article  CAS  PubMed  Google Scholar 

  • Yong V, Dreyer JL (1995) Developmental changes in the localization of the transplasma membrane NADH-dehydrogenases in the rat brain. Brain Res Dev Brain Res 89:253–263

    Article  CAS  PubMed  Google Scholar 

  • Zemková H, Teisinger T, Vyskocil F (1984) Hyperpolarization of mouse skeletal muscle plasma membrane induced by extracellular NADH. Biochim Biophys Acta 775:64–70

    Article  PubMed  Google Scholar 

  • Zhang Q, Wang SY, Nottke AC, Rocheleau JV, Piston DW, Goodman RH (2006) Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proc Natl Acad Sci U S A 103:9029–9033

    Article  CAS  PubMed  Google Scholar 

  • Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313:459–465

    Article  CAS  PubMed  Google Scholar 

  • Zurbriggen R, Dreyer JL (1994) An NADH-diaphorase is located at the cell plasma membrane in a mouse neuroblastoma cell line NB41A3. Biochim Biophys Acta 1183:513–520

    Article  CAS  PubMed  Google Scholar 

  • Zurbriggen R, Dreyer JL (1996) The plasma membrane NADH-diaphorase is active during selective phases of the cell cycle in mouse neuroblastoma cell line NB41A3. Its relation to cell growth and differentiation. Biochim Biophys Acta 1312:215–222

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morré, D.J., Morré, D.M. (2012). Role in Plasma Membrane Electron Transport. In: ECTO-NOX Proteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3958-5_4

Download citation

Publish with us

Policies and ethics