Skip to main content

The Auxin-Stimulated ENOX and Auxin Stimulation of Plant Growth

  • Chapter
  • First Online:
  • 574 Accesses

Abstract

Classically, growth regulators of the auxin type have been used experimentally to modulate rates of cell expansion of excised stem segments floated on auxin solutions. Among the auxins are a natural plant hormone, indole-3-acetic acid (IAA) and synthetic analogs such as 2,4-dichlorophenoxyacetic acid (2,4-D) and α-naphthaleneacetic acid (α-NAA). 2,4-D was developed during World War II as a selective herbicide for control of dicotyledenous weeds in corn, small grains, and other grasses. Auxins, both natural and synthetic, stimulate plant cells to increase in size (enlarge) by similar but not identical mechanisms. Cells of organisms other than plants normally do not respond to auxins. The auxin-regulated driver of cell elongations is an ENOX protein induced by auxin but, in contrast to the other related ENOX proteins, has not been cloned. Recombinant and native ENOX1 of plants does not respond to auxins, and the two activities, auxin-responsive and auxin-nonresponsive ENOX1 activity, have been resolved as separate entities by purification on concanavalin A columns and are readily differentiated based on response to quassinoid inhibitors. The constitutive ENOX1 and the constitutive cell elongation of plant stems were inhibited by simalikalactone D but not by glaucarubolone, whereas the 2,4-D-stimulated ENOX activity and the 2,4-D-stimulated growth were inhibited by glaucarubolone but not by simalikalactone D. Also, in contrast to the constitutive plant ENOX1, the auxin-stimulated ENOX is inhibited by many of the same substances that also inhibit the human cancer-associated ENOX2. In other respects, the auxin-stimulated ENOX has functional properties similar to those of the constitutive ENOX1 including NAD(P)H and hydroquinone oxidation, the reduction of oxygen to form water, protein disulfide-thiol interchange activity directly involved in the cell enlargement process, and the typical 5-maxima periodic oscillatory activity with a period length of 24 min. The auxin-stimulated activity absolutely requires auxin for activity and activity is induced by auxin addition. Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations ensues. However after several hours, a dominant 24-min period emerges at the expense of the constitutive activity while the sum of the two activities remains constant. The recruitment process, whereby an altered ENOX form coverts a normal ENOX form of a protein into a likeness of itself, is analogous to that exhibited by prions. Unlike the response to indole-3-acetic acid, the natural auxin regulator, the response to the synthetic auxin herbicide 2,4-D is that of persistence of the new 2,4-D-induced idiotype long after the 2,4-D is completely metabolized and no longer present. The new 2,4-D induced idiotype then persists as growth of affected tissue and plant parts become unregulated and cancer like with death of the plant as the result.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bacon E, Morré DJ (2001) Plasma membrane NADH oxidase of maize roots responds to gravity and imposed centrifugal forces. Plant Physiol Biochem 39:487–494

    Article  CAS  PubMed  Google Scholar 

  • Barr R, Sandelius AS, Crane FL, Morré DJ (1985) Oxidation of reduced pyridine nucleotides by plasma membranes of soybean hypocotyl. Biochem Biophys Res Commun 131:943–948

    Article  CAS  PubMed  Google Scholar 

  • Barr R, Sandelius AS, Crane FL, Morré DJ (1986) Redox reactions of tonoplast and plasma membranes isolated from soybean hypocotyls by free-flow electrophoresis. Biochim Biophys Acta 852:254–261

    Article  CAS  PubMed  Google Scholar 

  • Barr R, Garcia C, Morré DJ (2000a) Touch-sensitive NADH oxidase activity of pea and cucumber tendrils and of soybean hypocotyl sections. Int J Plant Sci 161:387–391

    Article  CAS  PubMed  Google Scholar 

  • Barr R, Morré DJ, Crane FL (2000b) Oxidation of NADH by hypocotyl segments of soybean is stimulated by 2,4-D. Plant Physiol Biochem 38:739–745

    Article  CAS  Google Scholar 

  • Barr R, Penel C, Greppin H, Morré DJ (2000c) NADH oxidase activities of intact leaf discs of spinach. Arch Sci (Geneva) 53:225–232

    CAS  Google Scholar 

  • Batt S, Venis MA (1976) Separation and localization of two classes of auxin binding sites in corm coleoptile membranes. Planta 130:15–21

    Article  CAS  Google Scholar 

  • Batt S, Wilkins MB, Venis MA (1976) Auxin binding to corn coleoptile membranes: kinetics and specificity. Planta 130:7–13

    Article  CAS  Google Scholar 

  • Baulcombe DC, Kramer PA, Key JL (1981) Auxin and gene regulation. In: Sublenlny S, Abbott UK (eds) Levels of genetic control in development. Alan R. Liss, New York, p 83

    Google Scholar 

  • Böttger M, Lüthen H (1986) Possible linkage between NADH oxidation and proton secretion in Zea mays L. roots. J Exp Bot 37:666

    Article  Google Scholar 

  • Bridge A, Barr R, Morré DJ (2000) The plasma membrane NADH oxidase of soybean has vitamin K1 hydroquinone oxidase activity. Biochim Biophys Acta 1463:448–458

    Article  CAS  PubMed  Google Scholar 

  • Brightman AO, Barr R, Crane FL, Morré DJ (1988) Auxin-stimulated NADH oxidase purified from plasma membrane of soybean. Plant Physiol 86:1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Brightman AO, Zhu XZ, Morré DJ (1991) Activation of plasma membrane NADH oxidase activity by products of phospholipase A. Plant Physiol 96:1314–1320

    Article  CAS  PubMed  Google Scholar 

  • Buckhout TJ, Scherer GFE, Morré DJ (1978) An in vitro, auxin-stimulated, and ascorbate-dependent absorbance change in soybean endomembranes. In: Abdel Rahman M (ed) Proceedings of the fifth annual meeting, Plant Growth Regulator Working Group, Blacksburg, VA, 25–28 June 1978. Great Western Sugar Co., Longmont, CO, pp 266–271

    Google Scholar 

  • Buckhout TJ, Young KA, Löw PS, Morré DJ (1980) Response of isolated plant membranes to auxins: calcium release. Bot Gaz 141:418–421

    Article  CAS  Google Scholar 

  • Canut H, Brightman A, Boudet AM, Morré DJ (1988) Plasma membrane vesicles of opposite sidedness from soybean hypocotyls by preparative free-flow electrophoresis. Plant Physiol 86:631–637

    Article  CAS  PubMed  Google Scholar 

  • Chueh P-J, Morré DM, Penel C, DeHahn T, Morré DJ (1997a) The hormone-responsive NADH oxidase of the plant plasma membrane has properties of a NADH:protein disulfide reductase. J Biol Chem 272:11221–11227

    Article  CAS  PubMed  Google Scholar 

  • Clark JE, Morré DJ, Cherry JH, Yunghans WN (1976) Enhancement of RNA polymerase activity by non-protein components from plasma membranes of soybean hypocotyls. Plant Sci Lett 7:233–238

    Article  CAS  Google Scholar 

  • Cleland R (1959) The effect of osmotic concentration on auxin-action and on irreversible and reversible expansion of the Avena coleoptile. Physiol Plant 12:809–824

    Article  Google Scholar 

  • Cleland RE (1975) Auxin-induced hydrogen ion excretion: correlation with growth, and control by external pH and water stress. Planta 127:233–242

    Article  CAS  Google Scholar 

  • Cleland RE (1976) Kinetics of hormone-induce H+ secretion. Plant Physiol 58:210–213

    Article  CAS  PubMed  Google Scholar 

  • Coartney JS, Morré DJ (1980a) Studies on the chemical basis of cell wall loosening. Bot Gaz 141:63–68

    Article  CAS  Google Scholar 

  • Coartney JS, Morré DJ (1980b) Studies on the role of wall extensibility in the control of cell expansion. Bot Gaz 141:56–62

    Article  CAS  Google Scholar 

  • Coartney JS, Morré DJ, Key JL (1967) Inhibition of RNA synthesis and auxin-induced cell wall extensibility and growth by actinomycin D. Plant Physiol 42:434–439

    Article  CAS  PubMed  Google Scholar 

  • Crane FL, Sun IL, Clark MG, Grebing C, Löw H (1985) Transplasma-membrane redox systems in growth and development. Biochim Biophys Acta 811:233–264

    Article  CAS  PubMed  Google Scholar 

  • Cross JW, Briggs WR, Dohrmann UC, Ray PM (1978) Auxin receptors of maize coleoptile membranes do not have ATPase activity. Plant Physiol 61:581–584

    Article  CAS  PubMed  Google Scholar 

  • Davies PJ (1995) Plant hormones. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • DeHahn T, Barr R, Morré DJ (1997) NADH oxidase activity present on both the external and internal membrane surfaces of soybean plasma membranes. Biochim Biophys Acta 1328:99–108

    Article  CAS  Google Scholar 

  • Dohrmann U, Hertel R, Kowalik H (1978) Properties of auxin binding sites in different subcellular fractions from maize coleoptiles. Planta 140:97–106

    Article  CAS  Google Scholar 

  • Eisinger WR, Morré DJ (1968) The effect of sulfhydryl inhibitors on plant cell elongation. Proc Ind Acad Sci for 1967 77:136–143

    Google Scholar 

  • Eisinger WR, Morré DJ (1971) Growth regulating properties of picloram, 4-amino-3, 5, 6-trichloropicolinic acid. Can J Bot 49:889–897

    Article  CAS  Google Scholar 

  • Felle H (1987) Proton transport and pH control in Sinapis alba root hairs: a study carried out with double-barreled microelectrodes. J Exp Bot 38:340–354

    Article  CAS  Google Scholar 

  • Felle H (1988) Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174:495–499

    Article  CAS  Google Scholar 

  • Galston A, Kaur R (1963) An effect of auxins on the heat coagulability of the proteins of growing plant cells. Proc Natl Acad Sci U S A 45:1587–1590

    Article  Google Scholar 

  • Garcia C, Hicks C, Morré DJ (1999) Plasma membrane NADH oxidase is gravi-responsive. Plant Physiol Biochem 37:551–558

    CAS  PubMed  Google Scholar 

  • Grieco PA, VanderRoest JM, Pineiro-Nunez MM (1995) A C19 quassinoid from Castela polyandra. Phytochemistry 38:1463–1465

    Article  CAS  PubMed  Google Scholar 

  • Grieco PA, Morré DJ, Corbett TH, Valeriote FA (1996) Therapeutic quassinoid preparations. US Patent 08/334/735, 1996

    Google Scholar 

  • Grieco PA, Morré DJ, Valeriote FA (1997) Therapeutic quassinoid preparations and antineoplastic antiviral and herbistatic activity. US Patent 5,639,712, 1997

    Google Scholar 

  • Griffith JS (1967) Self-replication and scrapie. Nature 215:1043–1044

    Article  CAS  PubMed  Google Scholar 

  • Hardin JW, Cherry JH, Morré DJ, Lembi CA (1972) Enhancement of RNA polymerase activity by a factor released by auxin from plasma membrane. Proc Natl Acad Sci U S A 63:3146–3150

    Article  Google Scholar 

  • Hassidim M, Rubinstein B, Lerner HR, Reinhold H (1987) Generation of a membrane potential by electron transport in plasmalemma-enriched vesicles of cotton and radish. Plant Physiol 85:872–875

    Article  CAS  PubMed  Google Scholar 

  • Helgerson SL, Cramer WA, Morré DJ (1976) Evidence for an increase in microviscosity of plasma membranes from soybean hypocotyls induced by the plant hormone indole-3-acetic acid. Plant Physiol 58:548–551

    Article  CAS  PubMed  Google Scholar 

  • Hicks C, Morré DJ (1998) Oxidation of NADH by intact segments of soybean hypocotyls and stimulation by 2,4-D. Biochim Biophys Acta 1375:1–5

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Gorenstein NM, Morré DM, Morré DJ (2008) Molecular cloning and characterization of a candidate human growth-related and time-keeping constitutive cell surface hydroquinone (NADH) oxidase. Biochemistry 47:14028–14038

    Article  CAS  PubMed  Google Scholar 

  • Kelker M, Kim C, Chueh P-J, Guimont R, Morré DM, Morré DJ (2001) Cancer isoform of a tumor-associated cell surface NADH oxidase (tNOX) has properties of a prion. Biochemistry 40:7351–7354

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Lucas WJ (1985) Potassium transport in corn roots. III. Perturbation by exogenous NADH and ferricyanide. Plant Physiol 77:429–436

    Article  CAS  PubMed  Google Scholar 

  • Lembi CA, Morré DJ, St.-Thomson K, Hertel R (1971) N-1-naphthylphthalamic acid-binding activity of a plasma membrane-rich fraction from maize coleoptiles. Planta 99:37–45

    Article  CAS  Google Scholar 

  • Lin W (1982a) Isolation of NADH oxidation system from the plasmalemma of corn root protoplast. Plant Physiol 70:326–328

    Article  CAS  PubMed  Google Scholar 

  • Lin W (1982b) Responses of corn root protoplasts to exogenous NADH: oxygen consumption, ion uptake and membrane potential. Proc Natl Acad Sci U S A 79:3773–3776

    Article  CAS  PubMed  Google Scholar 

  • Löbler M, Klämbt D (1985) Auxin-binding protein from coleoptile membranes of corn. I. Purification by immunological methods. J Biol Chem 260:9848–9853

    PubMed  Google Scholar 

  • Lüthen H, Böttger M (1992) A high-tech low-cost auxanometer for high-resolution determination of elongation rates in six simultaneous experimental setups. Mitt Inst Allg Bot Hamburg 24:13–22

    Google Scholar 

  • Marré E, Ballarin-Denti A (1985) The proton pumps of the plasmalemma and the tonoplast of higher plants. J Bioenerg Biomembr 17:1–21

    Article  PubMed  Google Scholar 

  • McRae DH, Bonner J (1953) Chemical structure and antiauxin activity. Physiol Plant 6:485–510

    Article  CAS  Google Scholar 

  • Miller S, Carnell L, Moore HH (1992) Post-Golgi membrane traffic: brefeldin A inhibits export from distal Golgi compartments to the cell surface but not recycling. J Cell Biol 118:267–283

    Article  CAS  PubMed  Google Scholar 

  • Moher ED, Collins JL, Grieco PA (1992) Synthetic studies on quassinoids: total synthesis of simalikalactone D and assignment of the absolute configuration of the α-methyl hydrate ester side chain. J Am Chem Soc 114:2764–2765

    Article  CAS  Google Scholar 

  • Morré DJ (1970) Auxin effects on the aggregation and heat coagulability of cytoplasmic proteins and lipoproteins. Physiol Plant 23:38–50

    Article  Google Scholar 

  • Morré DJ (1986) Calcium modulation of auxin-membrane interactions in plant cell elongation. In: Trewavas AJ (ed) Molecular and cellular aspects of calcium in plant development. Plenum Press, New York, pp 293–300

    Google Scholar 

  • Morré DJ (1989) Stimulus-response coupling in auxin regulation of plant cell elongation. In: Boss WF, Morré DJ (eds) Second messengers in plant growth and development. Alan R. Liss, New York, pp 81–114

    Google Scholar 

  • Morré DJ (1990a) Activation of phospholipase A: an alternative mechanism for signal transduction. In: Morré DJ, Boss WF, Loewus FA (eds) Inositol metabolism in plants. Wiley-Liss, New York, pp 227–257

    Google Scholar 

  • Morré DJ (1990b) Comparison of plant and animal signal transducing systems. In: Ranjeva R, Boudet AM (eds) Signal perception and transduction in higher plants, Toulouse, France, 9–13 July 1989. NATO ASI series, vol H47. Springer, Berlin, pp 307–322

    Google Scholar 

  • Morré DJ (1990c) Transmembrane signal transduction and the control of plant growth. In: Randall DD, Blevins DG (eds) Current topics in plant biochemistry and physiology, vol 9. University of Missouri Press, Columbia, pp 47–65

    Google Scholar 

  • Morré DJ (1994a) The hormone- and growth factor-stimulated NADH oxidase. J Bioenerg Biomembr 26:421–433

    Article  PubMed  Google Scholar 

  • Morré DJ (1998a) A protein disulfide-thiol interchange protein with NADH:protein-disulfide-reductase (NADH oxidase) activity as a molecular target for low levels of exposure to organic solvents in plant growth. Hum Exp Toxicol 17:272–277

    Article  PubMed  Google Scholar 

  • Morré DJ (1998b) Cell-free analysis of Golgi apparatus membrane traffic in rat liver. Histochem Cell Biol 109:487–504

    Article  PubMed  Google Scholar 

  • Morré DJ (1998d) NADH oxidase activity of soybean plasma membranes inhibited by submicromolar concentrations of ATP. Mol Cell Biochem 187:41–46

    Article  PubMed  Google Scholar 

  • Morré DJ (2000) Chemical hormesis in cell growth: a molecular target at the cell surface. J Appl Toxicol 20:157–163

    Article  PubMed  Google Scholar 

  • Morré DJ, Bonner J (1965) A mechanical analysis of root growth. Physiol Plant 18:635–639

    Article  Google Scholar 

  • Morré DJ, Bracker CE (1976) Ultrastructural alteration of plant plasma membranes induced by auxin and calcium ions. Plant Physiol 58:544–547

    Article  PubMed  Google Scholar 

  • Morré DJ, Brightman AO (1991) NADH oxidase of plasma membranes. J Bioenerg Biomembr 23:469–489

    Article  PubMed  Google Scholar 

  • Morré DJ, Brightman AO (1997) Parallel inhibition by external osmotica of auxin-induced elongation in stem sections and auxin-stimulated NADH oxidase activity of plasma membrane vesicles from soybean hypocotyls. Plant Physiol Biochem 35:311–319

    Google Scholar 

  • Morré DJ, Cherry JH (1977) Auxin hormone-plasma membrane interactions. In: Pilet PE (ed) Plant growth regulation. Proceedings of the ninth international conference on plant growth substances. Springer, Berlin, pp 35–43

    Google Scholar 

  • Morré DJ, Drobes B (1987) A membrane-located, calcium-/calmodulin-activated phospholipase stimulated by auxin. In: Stumpf PK, Mudd JB, Ness WD (eds) The metabolism, structure and function of plant lipids. Proceedings of the seventh international symposium on methods, function and structural plant lipids, David, CA, 27 July 27 to 1 Aug 1986. Plenum, New York, pp 217–219

    Google Scholar 

  • Morré DJ, Eisinger WR (1968) Cell wall extensibility: its control by auxin and relationship to cell elongation. In: Wrightman F, Setterfied G (eds) Biochemistry and physiology of plant growth substances. Runge Press, Ottawa, pp 625–645

    Google Scholar 

  • Morré DJ, Grieco PA (1999) Glaucarubolone and simalikalactone D, respectively, preferentially inhibit auxin-induced and constitutive components of plant cell enlargement and the plasma membrane NADH oxidase. Int J Plant Sci 160:291–297

    Article  Google Scholar 

  • Morré DJ, Mollenhauer HH (2009) The Golgi apparatus. The first 100 years. Springer, New York

    Book  Google Scholar 

  • Morré DJ, Morré DM (1998) NADH oxidase activity of soybean plasma membranes oscillates with a temperature compensated period of 24 min. Plant J 16:277–284

    Article  Google Scholar 

  • Morré DJ, Tautvydas K (1986) Mefluidide-chlorsulfuron-2,4-D- surfactant combinations for roadside vegetation management. J Plant Growth Regul 4:189–201

    Article  Google Scholar 

  • Morré DJ, Gripshover B, Monroe A, Morré JT (1984) Phosphatidyl inositol turnover in isolated soybean membranes stimulated by the synthetic growth hormone, 2,4-dichlorophenoxyacetic acid. J Biol Chem 259:15364–15368

    PubMed  Google Scholar 

  • Morré DJ, Navas P, Penel C, Castillo FJ (1986a) Auxin-stimulated NADH oxidase (semidehydroascorbate reductase) of soybean plasma membrane: role in acidification of cytoplasm? Protoplasma 133:195–197

    Article  Google Scholar 

  • Morré DJ, Schnepf E, Deichgräber G (1986c) Inhibition of elongation growth in Pellia setae by the monovalent ionosphere monensin. Bot Gaz 147:252–257

    Article  Google Scholar 

  • Morré DJ, Crowe JH, Morré DM, Crowe LM (1987) Infrared spectroscopic evidence for a conformational alteration of plant plasma membranes upon exposure to the growth hormone analog, 2,4- dichlorophenoxyacetic acid. Biochem Biophys Res Commun 147:506–512

    Article  PubMed  Google Scholar 

  • Morré DJ, Crane FL, Barr R, Penel C, Wu L-Y (1988a) Inhibition of plasma membrane redox activities and elongation growth of soybean. Physiol Plant 72:236–240

    Article  Google Scholar 

  • Morré DJ, Brightman AO, Wang J, Barr R, Crane FL (1988b) Role for plasma membrane redox systems in cell growth. In: Crane FL, Löw H, Morré DJ (eds) Plasma membrane oxidoreductases in control of plant and animal growth. Proceedings of the NATO advanced research workshop. Alan R. Liss, New York, pp 45–55

    Google Scholar 

  • Morré DJ, Brightman AO, Wu L-Y, Barr R, Leak B, Crane FL (1988c) Role of plasma membrane redox activities in elongation growth in plants. Physiol Plant 73:187–193

    Article  Google Scholar 

  • Morré DJ, Brightman AO, Crane FL (1991b) Oxidoreductase activities of the plant plasma membrane and the control of plant growth. In: Penel C, Greppin H (eds) Plant signalling, plasma membrane and change of state. University of Geneva, Switzerland, pp 59–77

    Google Scholar 

  • Morré DJ, Selldén G, Zhu XZ, Brightman AO (1991c) Triacontanol stimulates NADH oxidase of soybean hypocotyl plasma membrane. Plant Sci 79:31–36

    Article  Google Scholar 

  • Morré DJ, Brightman AO, Hidalgo A, Navas P (1995a) Selective inhibition of auxin-stimulated NADH oxidase activity and elongation growth of soybean hypocotyls by thiol reagents. Plant Phys 107:1285–1291

    Google Scholar 

  • Morré DJ, de Cabo R, Jacobs E, Morré DM (1995d) Auxin-modulated protein disulfide-thiol interchange activity from soybean plasma membranes. Plant Physiol 109:573–578

    PubMed  Google Scholar 

  • Morré DM, Dai S, Wu L-Y, Morré DJ (1996a) Correlation of inhibition of growth and induction of apoptosis in HeLa cells with various synthetic retinoids. FASEB J 10:A525

    Google Scholar 

  • Morré DJ, Grieco PA, Morré DM (1998b) Mode of action of the anticancer quassinoids—inhibition of the plasma membrane NADH oxidase. Life Sci 63:595–604

    Article  PubMed  Google Scholar 

  • Morré DJ, Morré JT, Lawrence J, Moini M (1998c) Activity of triclopyr herbicide enhanced by combination with cobalt chloride or ammonium nitrate. J Plant Growth Regul 17:125–129

    Article  Google Scholar 

  • Morré DJ, Morré DM, Penel C, Greppin H (1998d) Auxin modulated protein disulfide-thiol interchange activity from plasma membranes of spinach leaves responds to photoperiod and NADH. Int J Plant Sci 159:105–109

    Article  Google Scholar 

  • Morré DJ, Gomez-Rey ML, Schramke C, Em O, Lawler J, Hobeck J, Morré DM (1999a) Use of dipyridyl-dithio substrates to measure directly the protein disulfide-thiol interchange activity of the auxin stimulated NADH: protein disulfide reductase (NADH oxidase) of soybean plasma membranes. Mol Cell Biochem 200:7–13

    Article  PubMed  Google Scholar 

  • Morré DJ, Morré DM, Penel C, Greppin H (1999b) NADH oxidase periodicity of spinach leaves synchronized by light. Int J Plant Sci 160:855–860

    Article  PubMed  Google Scholar 

  • Morré DJ, Penel C, Greppin H, Morré DM (2002c) The plasma membrane-associated NADH oxidase of spinach leaves responds to blue light. Int J Plant Sci 613:543–547

    Article  Google Scholar 

  • Morré DJ, Ternes P, Morré DM (2002d) Cell enlargement of plant tissue explants oscillates with a temperature-compensated period length of ca. 24 min. In Vitro Cell Dev Biol Plant 38:18–28

    Article  PubMed  Google Scholar 

  • Morré DJ, Morré DM, Ternes P (2003b) Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties. In Vitro Cell Dev Biol Plant 39:368–376

    PubMed  Google Scholar 

  • Morré DJ, Kim C, Hicks-Berger C (2006a) ATP-dependent and drug-inhibited vesicle enlargement reconstituted using synthetic lipids and recombinant proteins. Biofactors 28:105–117

    Article  PubMed  Google Scholar 

  • Noguchi T, Morré DJ (1991) Vesicular membrane transfer between endoplasmic reticulum and the Golgi apparatus of a green alga, Micrasterias americana. A 16°C block and reconstitution in a cell-free system. Protoplasma 162:128–139

    Article  Google Scholar 

  • Palmgren MG, Sommarin M (1989) Lysophosphatidylcholine stimulates ATP-dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol 90:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Sommarin M, Ulvskov P, Jorgensen PL (1988) Modulation of plasma membrane H+-ATPase from oat roots by lysophosphatidylcholine, free fatty acids and phospholipase A2. Physiol Plant 74:11–19

    Article  CAS  Google Scholar 

  • Pfaffmann H, Hartmann E, Brightman AO, Morré DJ (1987) Phosphatidylinositol specific phospholipase C of plant stems: membrane associated activity concentrated in plasma membranes. Plant Physiol 85:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Pogue R, Morré DM, Morré DJ (2000) CHO cell enlargement oscillates with a temperature-compensated period of 24 minutes. Biochim Biophys Acta 1498:44–51

    Article  CAS  PubMed  Google Scholar 

  • Poole RJ (1978) Energy coupling for membrane transport. Annu Rev Plant Physiol 29:437–460

    Article  CAS  Google Scholar 

  • Prusiner SB (1994) Biology and genetics of prion diseases. Annu Rev Microbiol 48:655–686

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB, Scott MR, DeArmon MR, Cohen FE (1998) Prion protein biology. Cell 93:337–348

    Article  CAS  PubMed  Google Scholar 

  • Rayle DL (1973) Auxin-induced hydrogen ion secretion in Avena coleoptiles and its implications. Planta 114:63–73

    Article  CAS  Google Scholar 

  • Roland J-C, Lembi CA, Morré DJ (1972) Phosphotungstic acid- chromic acid as a selective electron-dense stain for plasma membrane of plant cells. Stain Technol 47:195–200

    CAS  PubMed  Google Scholar 

  • Rubstein B, Stern AI, Sout RG (1984) Redox activity at the surface of oat root cells. Plant Physiol 76:386–391

    Article  Google Scholar 

  • Sandelius AS, Morré DJ (1987) Characteristics of a phosphatidylinositol exchange activity of soybean microsomes. Plant Physiol 84:1022–1027

    Article  CAS  PubMed  Google Scholar 

  • Sandelius AS, Barr R, Crane FL, Morré DJ (1986) Redox reactions of plasma membranes isolated from soybean hypocotyls by phase partition. Plant Sci 48:1–10

    Article  Google Scholar 

  • Scherer GFE, Morré DJ (1978a) Action and inhibition of endogenous phospholipases during isolation of plant membranes. Plant Physiol 62:933–937

    Article  CAS  PubMed  Google Scholar 

  • Scherer GFE, Morré DJ (1978b) In vitro stimulation by 2,4-dichlorophenoxyacetic acid of an ATPase and inhibition of phosphatidate phosphatase of plant membranes. Biochem Biophys Res Commun 84:238–247

    Article  CAS  PubMed  Google Scholar 

  • Schindler T, Bergfeld R, Hohl M, Schopfer P (1994) Inhibition of Golgi-apparatus function by brefeldin A in maize coleoptiles and its consequences on auxin-mediated growth, cell-wall extensibility and secretion of cell-wall proteins. Planta 192:404–413

    Article  CAS  Google Scholar 

  • Schnepf E, Herth W, Morré DJ (1979) Elongation growth of setae of Pellia (Bryophyta): effects of auxin and inhibitors. Z Pflanzenphysiol 94:211–217

    CAS  Google Scholar 

  • Sedlak D, Morré DM, Morré DJ (2001) A drug-unresponsive and protease-resistant CNOX protein from human sera. Arch Biochem Biophys 386:106–116

    Article  CAS  PubMed  Google Scholar 

  • Spanswick RM (1981) Electrogenic ion pumps. Annu Rev Plant Physiol 32:267–289

    Article  CAS  Google Scholar 

  • Sun IL, Crane FL (1981) Transplasmalemma NADH dehydrogenase is inhibited by actinomycin D. Biochem Biophys Res Commun 101:68–75

    Article  CAS  PubMed  Google Scholar 

  • Sun IL, Crane FL (1984) The antitumor drug, cis-platin, inhibits trans plasmalemma electron transport in HeLa cells. Biochem Int 9:299–306

    CAS  PubMed  Google Scholar 

  • Sun IL, Crane FL (1985) Bleomycin control of transplasma membrane redox activity and proton movement in HeLa cells. Biochem Pharmacol 34:617–622

    Article  CAS  PubMed  Google Scholar 

  • Tartakoff AM (1986) Temperature and energy dependence of secretory protein transport in the exocrine pancreas. EMBO J 5:1477–1482

    CAS  PubMed  Google Scholar 

  • Van Der Woude WJ, Lembi CA, Morré DJ (1972) Auxin (2,4-D) stimulation (in vivo and in vitro) of polysaccharide synthesis in plasma membrane fragments isolated from onion stem. Biochem Biophys Res Commun 46:245–253

    Article  Google Scholar 

  • Van Der Woude WJ, Lembi CA, Morré DJ, Kidinger JA, Ordin L (1974) Beta-glucan synthetases of plasma membrane and Golgi apparatus from onion stem. Plant Physiol 54:333–340

    Article  Google Scholar 

  • Varnold RL, Morré DJ (1985) Phosphorylation of membrane-located proteins of soybean hypocotyls: inhibition by calcium in the presence of 2,4-dichlorophenoxyacetic acid. Bot Gaz 146:315–319

    Article  CAS  Google Scholar 

  • Varnold RL, Morré DJ, Sandelius AS (1986) Phosphorylation of membrane-located proteins of soybean: in vitro response of purified plasma membranes to auxin and calcium. In: Trewavas AJ (ed) Molecular and cellular aspects of calcium in plant development. Plenum Press, New York, pp 355–356

    Google Scholar 

  • Williamson FA, Morré DJ, Hess K (1977) Auxin binding activities of subcellular fractions from soybean hypocotyls. Cytobiologie 16:63–71

    CAS  Google Scholar 

  • Yunghans WN, Morré DJ (1977) Adenylate cyclase activities not found in soybean hypocotyl and onion meristem. Plant Physiol 60:144–149

    Article  CAS  PubMed  Google Scholar 

  • Yunghans WN, Clark JE, Morré DJ, Clegg ED (1978) Nature of the phosphotungstic acid-chromic acid (PACP) stain for plasma membranes of plants and mammalian sperm. Cytobiologie 17:165–172

    CAS  PubMed  Google Scholar 

  • Zbell B, Paulik M, Morré DJ (1990) Comparison of [35S] GTP S binding to plasma membranes and endomembranes prepared from soybean and rat. Protoplasma 154:74–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morré, D.J., Morré, D.M. (2012). The Auxin-Stimulated ENOX and Auxin Stimulation of Plant Growth. In: ECTO-NOX Proteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3958-5_10

Download citation

Publish with us

Policies and ethics