Skip to main content

Biodegradation of Calcium Phosphate Cement Composites

  • Chapter
  • First Online:

Abstract

Calcium phosphate cements represent a good candidate material to use as bone graft to fill up bone defects, in the field of dental, orthopedic, or reconstructive surgery, because of their biocompatible and osteoconductive properties. A disadvantage of such cements, however, is the poor biodegradation that is required for the replacement by bone tissue. The biodegradation of the cement depends on different factors, including cement properties (e.g., chemical composition, setting reaction, porosity, crystallinity, and particle size of the calcium phosphate compounds) and the patient (e.g., medical condition and implantation site). Small alterations to these factors substantially affect the degradation rate of the cement and thus the formation of new bone. In this chapter, different factors that influence the biodegradation of calcium phosphate cements are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACP:

Amorphous calcium phosphate

BCP:

Biphasic calcium phosphate

BMP:

Bone Morphogenetic Proteins

CA:

Carbonated apatite, dahlite

CaP:

Calcium phosphate

CPC:

Calcium phosphate cement

CDHA:

Calcium deficient hydroxyapatite

CS:

Calcium sulfate

DCPA:

Dicalcium phosphate anhydrous, monetite

DCPD:

Dicalcium phosphate dihydrate, brushite

FGF:

Fibroblast growth factor

HA:

Hydroxyapatite

hBMSCs:

Human bone marrow-derived mesenchymal stem cells

MCPM:

Monocalcium phosphate monohydrate

OCP:

Octacalcium phosphate

pHA:

Precipitated hydroxyapatite

PLGA:

Poly(d,l-lactic-co glycolic acid)

PMMA:

Polymethylmethacrylate

PTMC:

Poly(trimethylene carbonate)

pVEGF165:

Plasmid encoding vascular endothelial growth factor(165)

Runx2:

Runt-related transcription factor 2

SDS:

Sodiumdodecyl sulfate

TTCP:

Tetracalcium phosphate

VEGF:

Vascular endothelial growth factor

TGF:

Transforming growth factor

α-TCP:

α-Tricalcium phosphate

β-TCP:

β-Tricalcium phosphate

μCT:

Microcomputed tomography

References

  1. Hartman EHM, Spauwen PHM, Jansen JA (2002) Donor-site complications in vascularized bone flap surgery. J Invest Surg 15(4):185–197

    Article  Google Scholar 

  2. Bodde EW, de Visser E, Duysens JEJ et al (2003) Donor-site morbidity after free vascularized autogenous fibular transfer: subjective and quantitative analyses. Plast Reconstr Surg 111(7):2237–2242

    Article  Google Scholar 

  3. Pape HC, Evans A, Kobbe P (2010) Autologous bone graft: properties and techniques. J Orthop Trauma 24(Suppl 1):S36–S40

    Article  Google Scholar 

  4. Graham SM, Leonidou A, Aslam-Pervez N et al (2010) Biological therapy of bone defects: the immunology of bone allo-transplantation. Expert Opin Biol Ther 10(6):885–901

    Article  CAS  Google Scholar 

  5. Vandevord P, Nasser S, Wooley P (2005) Immunological responses to bone soluble proteins in recipients of bone allografts. J Orthop Res 23(5):1059–1064

    Article  CAS  Google Scholar 

  6. Ruhé P, Wolke J, Spauwen P et al (2005) Calcium phosphate ceramics for bone tissue engineering. In: Bronzino J (ed) Biomedical engineering handbook, section tissue engineering, 3rd edn. CRC Press, Connecticut

    Google Scholar 

  7. Habraken WJEM, Wolke JGC, Jansen JA (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):234–248

    Article  CAS  Google Scholar 

  8. Chow L (2009) Next generation calcium phosphate-based biomaterials. Dent Mater J 28:1–10

    Article  CAS  Google Scholar 

  9. Ambard A, Mueninghoff L (2006) Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont 15(5):321–328

    Article  Google Scholar 

  10. LeGeros R (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98

    Article  Google Scholar 

  11. Yuan H, Li Y, de Bruin J et al (2000) Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials 21(12):1283–1290

    Article  CAS  Google Scholar 

  12. Arisan V, Ozdemir T, Anil A et al (2008) Injectable calcium phosphate cement as a bone-graft material around peri-implant dehiscence defects: a dog study. Int J Oral Maxillofac Implants 23(6):1053–1062

    Google Scholar 

  13. Ooms E, Wolke J, van der Waerden J et al (2002) Trabecular bone response to injectable calcium phosphate (ca-p) cement. J Biomed Mater Res 61(1):9–18

    Article  CAS  Google Scholar 

  14. Ooms EM, Wolke JGC, van de Heuvel MT et al (2003) Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials 24(6):989–1000

    Article  CAS  Google Scholar 

  15. Cavalcanti SCSXB, Pereira CL, Mazzonetto R et al (2008) Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J Craniomaxillofac Surg 36(6):354–359

    Article  Google Scholar 

  16. Youji M, Kunio I, Masaaki T et al (1997) Tissue response to fast-setting calcium phosphate cement in bone. J Biomater Mater Res 37(4):457–464

    Article  Google Scholar 

  17. Constantz B, Barr B, Ison I et al (1998) Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res 43(4):451–461

    Article  CAS  Google Scholar 

  18. LeGeros (1991) Calcium phosphate in oral biology and medicine. Karger, Basel

    Google Scholar 

  19. Brown PW, Martin RI (1999) An analysis of hydroxyapatite surface layer formation. J Phys Chem B 103(10):1671–1675

    Article  CAS  Google Scholar 

  20. Constantz BR, Ison IC, Fulmer MT et al (1995) Skeletal repair by in situ formation of the mineral phase of bone. Science 267(5205):1796–1799

    Article  CAS  Google Scholar 

  21. Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31(Supplement 4):D37–D47

    Article  Google Scholar 

  22. Apelt D, Theiss F, El-Warrak AO et al (2004) In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25(7–8):1439–1451

    Article  CAS  Google Scholar 

  23. Bohner M, Merkle HP, Landuyt PV et al (2000) Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement. J Mater Sci Mater Med 11(2):111–116

    Article  CAS  Google Scholar 

  24. Driessens FCM, Boltong MG, Maeyer EAPD et al (2000) Effect of temperature and immersion on the setting of some calcium phosphate cements. J Mater Sci Mater Med 11(7):453–457

    Article  CAS  Google Scholar 

  25. Viano AM, Auwarter JA, Rho JY et al (2001) Ultrasonic characterization of the curing process of hydroxyapatite-modified bone cement. J Biomed Mater Res 56(4):593–599

    Article  CAS  Google Scholar 

  26. Nicholson JW, Abiden F (1998) Studies on the setting of polyelectrolyte cements: part vi the effect of halide salts on the mechanical properties and water balance of zinc polycarboxylate and glass–ionomer dental cements. J Mater Sci Mater Med 9(5):269–272

    Article  CAS  Google Scholar 

  27. Hofmann MP, Nazhat SN, Gbureck U et al (2006) Real-time monitoring of the setting reaction of brushite-forming cement using isothermal differential scanning calorimetry. J Biomed Mater Res B 79B(2):360–364

    Article  CAS  Google Scholar 

  28. Doi Y, Shimizu Y, Moriwaki Y et al (2001) Development of a new calcium phosphate cement that contains sodium calcium phosphate. Biomaterials 22(8):847–854

    Article  CAS  Google Scholar 

  29. Yokoyama A, Yamamoto S, Kawasaki T et al (2002) Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials 23(4):1091–1101

    Article  CAS  Google Scholar 

  30. Miyazaki K, Horibe T, Antonucci JM et al (1993) Polymeric calcium phosphate cements: analysis of reaction products and properties. Dent Mater 9(1):41–45

    Article  CAS  Google Scholar 

  31. Majekodunmi A, Deb S (2007) Poly(acrylic acid) modified calcium phosphate cements: the effect of the composition of the cement powder and of the molecular weight and concentration of the polymeric acid. J Mater Sci Mater Med 18(9):1883–1888

    Article  CAS  Google Scholar 

  32. Takechi M, Miyamoto Y, Ishikawa K et al (1998) Initial histological evaluation of anti-washout type fast-setting calcium phosphate cement following subcutaneous implantation. Biomaterials 19(22):2057–2063

    Article  CAS  Google Scholar 

  33. Matsuya Y, Antonucci JM, Matsuya S et al (1996) Polymeric calcium phosphate cements derived from poly(methyl vinyl ether-maleic acid). Dent Mater 12(1):2–7

    Article  CAS  Google Scholar 

  34. Matsuya Y, Matsuya S, Antonucci JM et al (1999) Effect of powder grinding on hydroxyapatite formation in a polymeric calcium phosphate cement prepared from tetracalcium phosphate and poly(methyl vinyl ether-maleic acid). Biomaterials 20(7):691–697

    Article  CAS  Google Scholar 

  35. Lu J, Descamps M, Dejou J et al (2002) The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomater Mater Res B 63(4):408–412

    Article  CAS  Google Scholar 

  36. Charrière E, Terrazzoni S, Pittet C et al (2001) Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 22(21):2937–2945

    Article  Google Scholar 

  37. Hu G, Xiao L, Fu H et al (2010) Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. J Mater Sci Mater Med 21(2):627–634

    Article  CAS  Google Scholar 

  38. Chung U, Kawaguchi H, Takato T et al (2004) Distinct osteogenic mechanisms of bones of distinct origins. J Orthop Sci 9(4):410–414

    Article  CAS  Google Scholar 

  39. Ginebra MP, Driessens FCM, Planell JA (2004) Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Biomaterials 25(17):3453–3462

    Article  CAS  Google Scholar 

  40. Espanol M, Perez RA, Montufar EB et al (2009) Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater 5(7):2752–2762

    Article  CAS  Google Scholar 

  41. Hulbert S, Morrison S, Klawitter J (1972) Tissue reaction to three ceramics of porous and non-porous structures. J Biomed Mater Res 6:347–374

    Article  CAS  Google Scholar 

  42. Eggli P, Muller W, Schenk R (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res (232):127–138

    Google Scholar 

  43. De Groot K (1988) Effect of porosity and physicochemical properties on the stability, resorption, and strenght of calcium phosphate ceramics. Ann N Y Acad Sci 523:227–233

    Article  Google Scholar 

  44. el-Ghannam A, Ducheyne P, Shapiro l (1995) Bioactive material template for in vitro synthesis of bone. J Biomed Mater Res 29:359–370

    Article  CAS  Google Scholar 

  45. Chang BS, Lee CK, Hong KS et al (2000) Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 21(12):1291–1298

    Article  CAS  Google Scholar 

  46. Wang X, Ye J, Wang Y (2007) Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement. Acta Biomater 3(5):757–763

    Article  CAS  Google Scholar 

  47. Takagi S, Chow LC (2001) Formation of macropores in calcium phosphate cement implants. J Mater Sci Mater Med 12(2):135–139

    Article  CAS  Google Scholar 

  48. Girod Fullana S, Ternet H, Freche M et al (2010) Controlled release properties and final macroporosity of a pectin microspheres-calcium phosphate composite bone cement. Acta Biomater 6(6):2294–2300

    Article  CAS  Google Scholar 

  49. Lian Q, Li D, He J et al (2008) Mechanical properties and in vivo performance of calcium phosphate cement-chitosan fibre composite. Proc Inst Mech Eng H 222:347–353

    CAS  Google Scholar 

  50. Tajima S, Kishi Y, Oda M et al (2006) Fabrication of biporous low-crystalline apatite based on mannitol dissolution from apatite cement. Dent Mater J 25(3):616–620

    Article  CAS  Google Scholar 

  51. Hu G, Xiao L, Fu H et al (2009) Degradable and bioactive scaffold of calcium phosphate and calcium sulphate from self-setting cement for bone regeneration. J Porous Mater 17(5):605–613

    Article  CAS  Google Scholar 

  52. Barralet JE, Grover L, Gaunt T et al (2002) Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials 23(15):3063–3072

    Article  CAS  Google Scholar 

  53. Habraken W, de Jonge L, Wolke J et al (2008) Introduction of gelatin microspheres into an injectable calcium phosphate cement. J Biomed Mater Res A 87A(3):643–655

    Article  CAS  Google Scholar 

  54. Habraken WJEM, Wolke JGC, Mikos AG et al (2009) Porcine gelatin microsphere/calcium phosphate cement composites: an in vitro degradation study. J Biomed Mater Res B 91B(2):555–561

    Article  CAS  Google Scholar 

  55. Link DP, van den Dolder J, van den Beucken JJJP et al (2009) Evaluation of an orthotopically implanted calcium phosphate cement containing gelatin microparticles. J Biomed Mater Res A 90A(2):372–379

    Article  CAS  Google Scholar 

  56. Zuo Y, Yang F, Wolke JGC et al (2010) Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomater 6(4):1238–1247

    Article  CAS  Google Scholar 

  57. Bodde E, Cammaert C, Wolke J et al (2007) Investigation as to the osteoinductivity of macroporous calcium phosphate cement in goats. J Biomed Mater Res B 83B(1):161–168

    Article  CAS  Google Scholar 

  58. Habraken W, Wolke J, Mikos A et al (2006) Injectable plga microsphere/calcium phosphate cements: physical properties and degradation characteristics. J Biomater Sci Polym Ed 17(9):1057–1074

    Article  CAS  Google Scholar 

  59. Link D, van den JD, Beucken Jvd et al (2008) Evaluation of the biocompatibility of calcium phosphate cement/plga microparticle composites. J Biomater Mater Res A 87A(3):760–769

    Article  CAS  Google Scholar 

  60. Habraken WJEM, Zhang Z, Wolke JGC et al (2008) Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 29(16):2464–2476

    Article  CAS  Google Scholar 

  61. Habraken WJEM, Liao HB, Zhang Z et al (2010) In vivo degradation of calcium phosphate cement incorporated into biodegradable microspheres. Acta Biomater 6(6):2200–2211

    Article  CAS  Google Scholar 

  62. Almirall A, Larrecq G, Delgado JA et al (2004) Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-tcp paste. Biomaterials 25(17):3671–3680

    Article  CAS  Google Scholar 

  63. del Real R, Wolke J, Vallet-Regí M et al (2002) A new method to produce macropores in calcium phosphate cements. Biomaterials 23(17):3673–3680

    Article  Google Scholar 

  64. del Real R, Ooms E, Wolke J et al (2003) In vivo bone response to porous calcium phosphate cement. J Biomed Mater Res A 65A(1):30–36

    Article  CAS  Google Scholar 

  65. Hesaraki S, Sharifi D (2007) Investigation of an effervescent additive as porogenic agent for bone cement macroporosity. Biomed Mater Eng 17(1):29–38

    CAS  Google Scholar 

  66. Saeed H, Ali Z, Fatollah M (2008) The influence of the acidic component of the gas-foaming porogen used in preparing an injectable porous calcium phosphate cement on its properties: acetic acid versus citric acid. J Biomater Mater Res B 86B(1):208–216

    Article  CAS  Google Scholar 

  67. Miño-Fariña N, Muñoz-Guzón F, López-Peña M et al (2009) Quantitative analysis of the resorption and osteoconduction of a macroporous calcium phosphate bone cement for the repair of a critical size defect in the femoral condyle. Vet J 179(2):264–272

    Article  CAS  Google Scholar 

  68. del Valle S, Miño N, Muñoz F et al (2007) In vivo evaluation of an injectable macroporous calcium phosphate cement. J Mater Sci Mater Med 18(2):353–361

    Article  CAS  Google Scholar 

  69. Ginebra M-P, Delgado J-A, Harr I et al (2007) Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam. J Biomed Mater Res A 80A(2):351–361

    Article  CAS  Google Scholar 

  70. Dagang G, Kewei X, Yong H (2009) The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties. J Biomater Mater Res A 88A(1):43–52

    Article  CAS  Google Scholar 

  71. Xu S, Li D, Wang C et al (2007) Cell proliferation in cpc scaffold with a central channel. Biomed Mater Eng 17(1):1–8

    Google Scholar 

  72. Li X, Li D, Lu B et al (2007) Fabrication and evaluation of calcium phosphate cement scaffold with controlled internal channel architecture and complex shape. Proc Inst Mech Eng H 221:951–958

    Article  CAS  Google Scholar 

  73. Sarda S, Nilsson M, Balcells M et al (2003) Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J Biomed Mater Res A 65A(2):215–221

    Article  CAS  Google Scholar 

  74. Wang X, Ye J, Li X et al (2008) Production of in-situ macropores in an injectable calcium phosphate cement by introduction of cetyltrimethyl ammonium bromide. J Mater Sci Mater Med 19(10):3221–3225

    Article  CAS  Google Scholar 

  75. Ruhé P, Hedberg-Dirk E, Padron NT et al (2006) Porous poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects. Tissue Eng 12(4):789–800

    Article  Google Scholar 

  76. Xu HHK, Weir MD, Simon CG (2008) Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent Mater 24(9):1212–1222

    Article  CAS  Google Scholar 

  77. Xu H, Carey L, Simon C (2007) Premixed macroporous calcium phosphate cement scaffold. J Mater Sci Mater Med 18(7):1345–1353

    Article  CAS  Google Scholar 

  78. Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 113(2):102–110

    Article  CAS  Google Scholar 

  79. Ruhé P, Boerman O, Russel F et al (2006) In vivo release of rhbmp-2 loaded porous calcium phosphate cement pretreated with albumin. J Mater Sci Mater Med 17(10):919–927

    Article  CAS  Google Scholar 

  80. Tessmar JK, Göpferich AM (2007) Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):274–291

    Article  CAS  Google Scholar 

  81. Kretlow JD, Klouda L, Mikos AG (2007) Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):263–273

    Article  CAS  Google Scholar 

  82. Alkhraisat MH, Rueda C, Cabrejos-Azama J et al (2010) Loading and release of doxycycline hyclate from strontium-substituted calcium phosphate cement. Acta Biomater 6(4):1522–1528

    Article  CAS  Google Scholar 

  83. Masaaki T, Youji M, Kunio I et al (1998) Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement. J Biomater Mater Res 39(2):308–316

    Article  Google Scholar 

  84. Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (hpmc). Adv Drug Deliv Rev 48(2–3):139–157

    Article  CAS  Google Scholar 

  85. Xu H, Quinn J, Takagi S et al (2001) Strong and macroporous calcium phosphate cement: effects of porosity and fiber reinforcement on mechanical properties. J Biomed Mater Res 57(3):457–466

    Article  CAS  Google Scholar 

  86. Ruhé P, Hedberg E, Padron NT et al (2005) Biocompatibility and degradation of poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites. J Biomed Mater Res A 74A(4):533–544

    Article  CAS  Google Scholar 

  87. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22(4):233–241

    Article  CAS  Google Scholar 

  88. Woo BH, Fink BF, Page R et al (2001) Enhancement of bone growth by sustained delivery of recombinant human bone morphogenetic protein-2 in a polymeric matrix. Pharm Res 18(12):1747–1753

    Article  CAS  Google Scholar 

  89. Habraken WJEM, Boerman OC, Wolke JGC et al (2009) In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres. J Biomater Mater Res A 91A(2):614–622

    Article  CAS  Google Scholar 

  90. Kisanuki O, Yajima H, Umeda T et al (2007) Experimental study of calcium phosphate cement impregnated with dideoxy-kanamycin b. J Orthop Sci 12(3):281–288

    Article  CAS  Google Scholar 

  91. Urabe K, Naruse K, Hattori H et al (2009) In vitro comparison of elution characteristics of vancomycin from calcium phosphate cement and polymethylmethacrylate. J Orthop Sci 14(6):784–793

    Article  CAS  Google Scholar 

  92. Centrella M, Horowitz MC, Wozney JM et al (1994) Transforming growth factor-β gene family members and bone. Endocr Rev 15(1):27–39

    CAS  Google Scholar 

  93. Cao X, Chen D (2005) The bmp signaling and in vivo bone formation. Gene 357(1):1–8

    Article  CAS  Google Scholar 

  94. Bodde E, Boerman O, Russel F et al (2008) The kinetic and biological activity of different loaded rhbmp-2 calcium phosphate cement implants in rats. J Biomed Mater Res A 87A(3):780–791

    Article  CAS  Google Scholar 

  95. Blom E, Klein-Nulend J, Yin L et al (2001) Transforming growth factor-β1 incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects. Clin Oral Implants Res 12(6):609–616

    Article  CAS  Google Scholar 

  96. Phillips JE, Gersbach CA, García AJ (2007) Virus-based gene therapy strategies for bone regeneration. Biomaterials 28(2):211–229

    Article  CAS  Google Scholar 

  97. Keeney M, van den Beucken JJJP, van der Kraan PM et al (2010) The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with vegf165. Biomaterials 31(10):2893–2902

    Article  CAS  Google Scholar 

  98. Michael DW, Hockin HKX, Carl GS Jr (2006) Strong calcium phosphate cement-chitosan-mesh construct containing cell-encapsulating hydrogel beads for bone tissue engineering. J Biomater Mater Res A 77A(3):487–496

    Article  CAS  Google Scholar 

  99. Bai BMD, Yin Z, Xu Q et al (2009) Histological changes of an injectable rhbmp-2/calcium phosphate cement in vertebroplasty of rhesus monkey. Spine 34(18):1887–1892

    Article  Google Scholar 

  100. Perrier M, Lu Y, Nemke B et al (2008) Acceleration of second and fourth metatarsal fracture healing with recombinant human bone morphogenetic protein-2/calcium phosphate cement in horses. Vet Surg 37(7):648–655

    Article  Google Scholar 

  101. Blom EJ, Klein-Nulend J, Klein CPAT et al (2000) Transforming growth factor-beta1 incorporated during setting in calcium phosphate cement stimulates bone cell differentiation in vitro. J Biomed Mater Res 50(1):67–74

    Article  CAS  Google Scholar 

  102. Link DP, van den Dolder J, van den Beucken JJ et al (2008) Bone response and mechanical strength of rabbit femoral defects filled with injectable cap cements containing tgf-[beta]1 loaded gelatin microparticles. Biomaterials 29(6):675–682

    Article  CAS  Google Scholar 

  103. Gerber HP, Ferrara N (2000) Angiogenesis and bone growth. Trends Cardiovasc Med 10(5):223–228

    Article  CAS  Google Scholar 

  104. Soker S, Machado M, Atala A (2000) Systems for therapeutic angiogenesis in tissue engineering. World J Urol 18(1):10–18

    Article  CAS  Google Scholar 

  105. Sheridan MH, Shea LD, Peters MC et al (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 64(1–3):91–102

    Article  CAS  Google Scholar 

  106. Lee KY, Peters MC, Mooney DJ (2003) Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J Control Release 87(1–3):49–56

    Article  CAS  Google Scholar 

  107. Drake C, Little C (1995) Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci USA 92(17):7657–7661

    Article  CAS  Google Scholar 

  108. Zisch AH, Lutolf MP, Hubbell JA (2006) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12(6):295–310

    Article  CAS  Google Scholar 

  109. Patel Z, Ueda H, Yamamoto M et al (2008) In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds. Pharm Res 25(10):2370–2378

    Article  CAS  Google Scholar 

  110. Darnell K, Zhuo W, Kim H et al (2006) Vegf scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 21(5):735–744

    Article  Google Scholar 

  111. Patel ZS, Young S, Tabata Y et al (2008) Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43(5):931–940

    Article  CAS  Google Scholar 

  112. Kakudo N, Kusumoto K, Wang YB et al (2006) Immunolocalization of vascular endothelial growth factor on intramuscular ectopic osteoinduction by bone morphogenetic protein-2. Life Sci 79(19):1847–1855

    Article  CAS  Google Scholar 

  113. Wang L, Huang Y, Pan K et al (2010) Osteogenic responses to different concentrations/ratios of bmp-2 and bfgf in bone formation. Ann Biomed Eng 38(1):77–87

    Article  Google Scholar 

  114. Alam S, Ueki K, Marukawa K et al (2007) Expression of bone morphogenetic protein 2 and fibroblast growth factor 2 during bone regeneration using different implant materials as an onlay bone graft in rabbit mandibles. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103(1):16–26

    Article  Google Scholar 

  115. Mundy G, Garrett R, Harris S et al (1999) Stimulation of bone formation in vitro and in rodents by statins. Science 286(5446):1946–1949

    Article  CAS  Google Scholar 

  116. Notoya K, Yoshida K, Tsukuda R et al (1994) Effect of ipriflavone on expression of markers characteristic of the osteoblast phenotype in rat bone marrow stromal cell culture. J Bone Miner Res 9(3):395–400

    Article  CAS  Google Scholar 

  117. Barralet J, Gbureck U, Habibovic P et al (2009) Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng Part A 15(7):1601–1609

    Article  CAS  Google Scholar 

  118. Notoya K, Nagai H, Oda T et al (1999) Enhancement of osteogenesis in vitro and in vivo by a novel osteoblast differentiation promoting compound, tak-778. Pharmacol Exp Ther 290(3):1054–1064

    CAS  Google Scholar 

  119. Zhao J, Ohba S, Komiyama Y et al (2010) Icariin: a potential osteoinductive compound for bone tissue engineering. Tissue Eng Part A 16(1):233–243

    Article  CAS  Google Scholar 

  120. Weir MD, Xu HHK (2010) Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair. Acta Biomater 6(10):4118–4126

    Article  CAS  Google Scholar 

  121. Shanti RM, Li W-J, Nesti LJ et al (2007) Adult mesenchymal stem cells: biological properties, characteristics, and applications in maxillofacial surgery. J Oral Maxillofac Surg 65(8):1640–1647

    Article  Google Scholar 

  122. Link DP, van den Dolder J, Wolke JGC et al (2007) The cytocompatibility and early osteogenic characteristics of an injectable calcium phosphate cement. Tissue Eng 13(3):493–500

    Article  CAS  Google Scholar 

  123. Kirschner RE, Karmacharya J, Ong G et al (2001) Synthetic hybrid grafts for craniofacial reconstruction: sustained gene delivery using a calcium phosphate bone mineral substitute. Ann Plast Surg 46(5):538–545

    Article  CAS  Google Scholar 

  124. Takeuchi H, Nagayama M, Imaizumi Y et al (2009) Immunohistochemical analysis of osteoconductivity of beta-tricalciumphosphate and carbonate apatite applied in femoral and parietal bone defects in rats. Dent Mater J 28(5):595–601

    Article  CAS  Google Scholar 

  125. Sugawara A, Fujikawa K, Kusama K et al (2002) Histopathologic reaction of a calcium phosphate cement for alveolar ridge augmentation. J Biomater Mater Res 61(1):47–52

    Article  CAS  Google Scholar 

  126. Qingyi S, Jiao S, Jie W et al (2010) An in vitro investigation of the mechanical–chemical and biological properties of calcium phosphate/calcium silicate/bismutite cement for dental pulp capping. J Biomater Mater Res B 94B(1):141–148

    Google Scholar 

  127. Comuzzi L, Ooms E, Jansen JA (2002) Injectable calcium phosphate cement as a filler for bone defects around oral implants: an experimental study in goats. Clin Oral Implants Res 13(3):304–311

    Article  Google Scholar 

  128. Hayashi C, Kinoshita A, Oda S et al (2006) Injectable calcium phosphate bone cement provides favorable space and a scaffold for periodontal regeneration in dogs. J Periodontol 77(6):940–946

    Article  CAS  Google Scholar 

  129. Larsson S (2010) Calcium phosphates: what is the evidence? J Orthop Trauma 24(Supplement 1):S41–S45

    Article  Google Scholar 

  130. Russell TA, Leighton RK (2008) Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am 90(10):2057–2061

    Article  Google Scholar 

  131. Matsumine A, Kusuzaki K, Matsubara T et al (2006) Calcium phosphate cement in musculoskeletal tumor surgery. J Surg Oncol 93(3):212–220

    Article  CAS  Google Scholar 

  132. Verron E, Khairoun I, Guicheux J et al (2010) Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today 15(13–14):547–552

    Article  CAS  Google Scholar 

  133. Tani T, Okada K, Takahashi S et al (2006) Doxorubicin-loaded calcium phosphate cement in the management of bone and soft tissue tumors. In Vivo 20(1):55–60

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

van de Watering, F.C.J., van den Beucken, J.J.J.P., Lanao, R.P.F., Wolke, J.G.C., Jansen, J.A. (2012). Biodegradation of Calcium Phosphate Cement Composites. In: Eliaz, N. (eds) Degradation of Implant Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3942-4_7

Download citation

Publish with us

Policies and ethics