Skip to main content

Biological Responses to and Toxicity of Nanoscale Implant Materials

  • Chapter
  • First Online:

Abstract

Nanomaterial safety and toxicity are of great importance for nanomaterial-based medical implants. A better understanding of the fate of nanomaterials after production and after implantation is clearly necessary. In terms of implant degradation, nanoscale materials can be generated and released into peripheral host tissues regardless of their constituent grain sizes (or other characteristic features, such as particle size). Unfortunately, the biological responses to and toxicity of nanoscale implant materials have not been sufficiently studied to date, partially due to the complexity of such studies and the lack of well-established methods to do so. In this chapter, the advances and progression of biological responses (especially concerning the toxicity of nanoscale implant materials either after production or implantation) are summarized. Prior to that discussion, host responses to implant materials and properties of nanomaterials pertinent to their altered biological responses are introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. MacDonald SJ, McCalden RW, Chess DG, Bourne RB, Rorabeck CH, Cleland A, Leung F (2003) Metal-on-metal versus polyethylene in hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 406:282–296

    Article  Google Scholar 

  2. Campbell P, Urban RM, Catelas I, Skipor AK, Schmalzried TP (2003) Autopsy analysis thirty years after metal-on-metal total hip replacement: a case report. J Bone Joint Surg Am 85-A(11):2218–2222

    Google Scholar 

  3. Sarmiento-Gonzalez A, Encinar J, Marchante-Gayon JM, Sanz-Medel A (2009) Titanium levels in the organs and blood of rats with a titanium implant, in the absence of wear, as determined by double-focusing ICP-MS. Anal Bioanal Chem 393(1):335–343

    Article  CAS  Google Scholar 

  4. Anderson JM, Gristina AG, Hanson SR, Harker LA, Johnson RJ, Merritt K, Naylor PT, Schoen FJ (1996) Host reactions to biomaterials and their evaluation. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Academic, San Diego, pp 165–213

    Google Scholar 

  5. Bozic KJ (2009) The increasing number of THA revisions in the United States: why is it happening? http://www.orthosupersite.com/view.asp?rID=44153. Accessed 10/5 2009

  6. Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18(3):241–268

    Article  CAS  Google Scholar 

  7. Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–13665

    Article  CAS  Google Scholar 

  8. Chan CE, Odde DJ (2008) Traction dynamics of filopodia on compliant substrates. Science 322(5908):1687–1691. doi:322/5908/1687[pii]10.1126/science.1163595

    Article  CAS  Google Scholar 

  9. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143. doi:310/5751/1139[pii]10.1126/science.1116995

    Article  CAS  Google Scholar 

  10. Hench LL (1998) Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res 41(4):511–518. doi:10.1002/(SICI)1097-4636(19980915)41:4<511::AID-JBM1>3.0.CO;2-F [pii]

    Article  CAS  Google Scholar 

  11. Schuler M, Owen GR, Hamilton DW, De Wilde M, Textor M, Brunette DM, Tosatti SGP (2006) Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials 27(21):4003–4015

    Article  CAS  Google Scholar 

  12. Kroese-Deutman HC, Van Den Dolder J, Spauwen PHM, Jansen JA (2005) Influence of RGD-loaded titanium implants on bone formation in vivo. Tissue Eng 11(11–12):1867–1875

    Article  CAS  Google Scholar 

  13. Balasundaram G, Yao C, Webster TJ (2008) TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 84(2):447–453. doi:10.1002/jbm.a.31388

    Google Scholar 

  14. Assender H, Bliznyuk V, Porfyrakis K (2002) How surface topography relates to materials properties. Science 297(5583):973–976

    Article  CAS  Google Scholar 

  15. Thomas KA, Cook SD (1985) An evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res 19(8):875–901. doi:10.1002/jbm.820190802

    Article  CAS  Google Scholar 

  16. Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25(19):4731–4739

    Article  CAS  Google Scholar 

  17. Price RL, Waid MC, Haberstroh KM, Webster TJ (2003) Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24(11):1877–1887. doi:S0142961202006099[pii]

    Article  CAS  Google Scholar 

  18. Washburn NR, Yamada KM, Simon CG Jr, Kennedy SB, Amis EJ (2004) High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 25(7–8):1215–1224. doi:S0142961203006689[pii]

    Article  CAS  Google Scholar 

  19. Webster TJ, Hellenmeyer EL, Price RL (2005) Increased osteoblast functions on theta plus delta nanofiber alumina. Biomaterials 26(9):953–960. doi:10.1016/J.Biomaterials.0204.03.040

    Article  CAS  Google Scholar 

  20. Liu H, Slamovich EB, Webster TJ (2006) Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J Biomed Mater Res A 78A(4):798–807

    Article  CAS  Google Scholar 

  21. Balasundaram G (2007) Nanomaterials for Better Orthopedics. In: Webster TJ (ed) Nanotechnology for the regeneration of hard and soft tissues. World Scientific, Hackensack, NJ; London, pp 53–78

    Chapter  Google Scholar 

  22. Zhu XS, Zhu L, Duan ZH, Qi RQ, Li Y, Lang YP (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A 43(3):278–284

    Article  CAS  Google Scholar 

  23. McHale G, Shirtcliffe NJ, Aqil S, Perry CC, Newton MI (2004) Topography driven spreading. Phys Rev Lett 93(3):036102

    Article  CAS  Google Scholar 

  24. Liu H, Webster TJ (2006) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28(2):354–369. doi:S0142-9612(06)00763-0[pii]10.1016/j.biomaterials.2006.08.049

    Article  CAS  Google Scholar 

  25. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial–cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18

    Article  CAS  Google Scholar 

  26. Qiu Q, Sayer M, Kawaja M, Shen X, Davies JE (1998) Attachment, morphology, and protein expression of rat marrow stromal cells cultured on charged substrate surfaces. J Biomed Mater Res 42(1):117–127. doi:10.1002/(SICI)1097-4636(199810)42:1<117::AID-JBM15>3.0.CO;2-I [pii]

    Article  CAS  Google Scholar 

  27. Zahr AS, Davis CA, Pishko MV (2006) Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22(19):8178–8185

    Article  CAS  Google Scholar 

  28. Gbadamosi JK, Hunter AC, Moghimi SM (2002) PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett 532(3):338–344

    Article  CAS  Google Scholar 

  29. Cui ZR, Mumper RJ (2001) Chitosan-based nanoparticles for topical genetic immunization. J Control Release 75(3):409–419

    Article  CAS  Google Scholar 

  30. Itoh S, Nakamura S, Nakamura M, Shinomiya K, Yamashita K (2006) Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization. Biomaterials 27(32):5572–5579

    Article  CAS  Google Scholar 

  31. Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6(6):651–663

    Article  CAS  Google Scholar 

  32. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J 377:159–169

    Article  CAS  Google Scholar 

  33. Raffa V, Ciofani G, Vittorio O, Riggio C, Cuschieri A (2010) Physicochemical properties affecting cellular uptake of carbon nanotubes. Nanomedicine-UK 5(1):89–97

    Article  CAS  Google Scholar 

  34. Watari F, Abe S, Koyama C, Yokoyama A, Akasaka T, Uo M, Matsuoka M, Totsuka Y, Esaki M, Morita M, Yonezawa T (2008) Behavior of in vitro, in vivo and internal motion of micro/nano particles of titanium, titanium oxides and others. J Ceram Soc Jpn 116(1349):1–5

    Article  CAS  Google Scholar 

  35. Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54(1):135–147

    Article  CAS  Google Scholar 

  36. Kadar E, Lowe DM, Sole M, Fisher AS, Jha AN, Readman JW, Hutchinson TH (2010) Uptake and biological responses to nano-Fe versus soluble FeCl3 in excised mussel gills. Anal Bioanal Chem 396(2):657–666

    Article  CAS  Google Scholar 

  37. Papageorgiou I, Yin ZR, Ladon D, Baird D, Lewis AC, Sood A, Newson R, Learmonth ID, Case CP (2007) Genotoxic effects of particles of surgical cobalt chrome alloy on human cells of different age in vitro. Mutat Res 619(1–2):45–58. doi:Doi10.1016/J.Mrfmmm.2007.01.008

    CAS  Google Scholar 

  38. Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E, Case CP (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28(19):2946–2958. doi:S0142-9612(07)00190-1[pii]10.1016/j.biomaterials.2007.02.034

    Article  CAS  Google Scholar 

  39. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125(16):4700–4701. doi:Doi10.1021/Ja0296935

    Article  CAS  Google Scholar 

  40. Tkachenko AG, Xie H, Liu YL, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconj Chem 15(3):482–490. doi:Doi10.1021/Bc034189q

    Article  CAS  Google Scholar 

  41. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconj Chem 15(4):897–900. doi:Doi 10.1021/Bc049951i

    Article  CAS  Google Scholar 

  42. Dunford R, Salinaro A, Cai LZ, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418(1–2):87–90

    Article  CAS  Google Scholar 

  43. Li N, Ma LL, Wang J, Zheng L, Liu J, Duan YM, Liu HT, Zhao XY, Wang SS, Wang H, Hong FS, Xie YN (2010) Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett 5(1):108–115. doi:Doi 10.1007/S11671-009-9451-2

    Article  CAS  Google Scholar 

  44. Landsiedel R, Ma-Hock L, Van Ravenzwaay B, Schulz M, Wiench K, Champ S, Schulte S, Wohlleben W, Oesch F (2010) Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology 4(4):364–381. doi:Doi 10.3109/17435390.2010.506694

    Article  CAS  Google Scholar 

  45. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49. doi:Doi 10.1002/Smll.200700595

    Article  CAS  Google Scholar 

  46. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    Article  CAS  Google Scholar 

  47. Ye YY, Liu JW, Chen MC, Sun LJ, Lan MB (2010) In vitro toxicity of silica nanoparticles in myocardial cells. Environ Toxicol Pharmacol 29(2):131–137

    Article  CAS  Google Scholar 

  48. Ye Y, Liu J, Xu J, Sun L, Chen M, Lan M (2010) Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol In Vitro 24(3):751–758. doi:S0887-2333(10)00002-0[pii]10.1016/j.tiv.2010.01.001

    Article  CAS  Google Scholar 

  49. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573. doi:S0142961204004983[pii]10.1016/j.biomaterials.2004.05.022

    Article  CAS  Google Scholar 

  50. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711. doi:Doi 10.1080/10934520600966177

    Article  CAS  Google Scholar 

  51. Tsaousi A, Jones E, Case CP (2010) The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutat Res 697(1–2):1–9. doi:Doi 10.1016/J.Mrgentox.2010.01.012

    CAS  Google Scholar 

  52. Oesterling E, Chopra N, Gavalas V, Arzuaga X, Lim EJ, Sultana R, Butterfield DA, Bachas L, Hennig B (2008) Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett 178(3):160–166. doi:S0378-4274(08)00079-9[pii]10.1016/j.toxlet.2008.03.011

    Article  CAS  Google Scholar 

  53. Lin WS, Xu Y, Huang CC, Ma YF, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11(1):25–39. doi:Doi 10.1007/S11051-008-9419-7

    Article  CAS  Google Scholar 

  54. Wang AZ, Gu FX, Farokhzad OC (2009) Nanoparticles for Cancer Diagnosis and Therapy. In: safety of Nanoparticles. Nanostructure Science and Technology. Springer New York, pp 1–27. doi:10.1007/978-0-387-78608-7_10

  55. Meenach SA, Anderson KW, Hilt JZ (2009) Hydrogel Nanocomposites: biomedical Applications, Biocompatibility, and Toxicity Analysis. In: Safety of Nanoparticles. Nanostructure Science and Technology. Springer New York, pp 1–27. doi:10.1007/978-0-387-78608-7_7

  56. Wei X, Lee Y-k, Huh KM, Kim S, Park K (2009) Safety and Efficacy of Nano/Micro Materials. In: Safety of nanoparticles. Nanostructure science and technology. Springer New York, pp 1–26. doi:10.1007/978-0-387-78608-7_4

  57. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  Google Scholar 

  58. Weng H, Zhou J, Tang LP, Hu ZB (2004) Tissue responses to thermally-responsive hydrogel nanoparticles. J Biomater Sci Polym Ed 15(9):1167–1180

    Article  CAS  Google Scholar 

  59. Chun YW, Webster TJ (2009) The role of nanomedicine in growing tissues. Ann Biomed Eng 37(10):2034–2047

    Article  Google Scholar 

  60. Vandrovcova M, Vacik J, Svorcik V, Slepicka P, Kasalkova N, Vorlicek V, Lavrentiev V, Vosecek V, Grausova L, Lisa V, Bacakova L (2008) Fullerene C-60 and hybrid C-60/Ti films as substrates for adhesion and growth of bone cells. Phys Status Solidi A 205(9):2252–2261. doi:Doi 10.1002/Pssa.200879730

    Article  CAS  Google Scholar 

  61. Fiorito S, Serafino A, Andreola F, Bernier P (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon 44(6):1100–1105. doi:Doi 10.1016/J.Carbon.2005.11.009

    Article  CAS  Google Scholar 

  62. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383

    Article  CAS  Google Scholar 

  63. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4(10):1881–1887

    Article  CAS  Google Scholar 

  64. Rouse JG, Yang JZ, Barron AR, Monteiro-Riviere NA (2006) Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol In Vitro 20(8):1313–1320

    Article  CAS  Google Scholar 

  65. Webster TJ (2009) Safety of nanoparticles: from manufacturing to medical applications. Nanostructure science and technology, Springer, New York

    Google Scholar 

  66. Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155(1):73–85. doi:S0378-4274(04)00410-2[pii]10.1016/j.toxlet.2004.08.015

    Article  CAS  Google Scholar 

  67. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Lett 5(9):1676–1684

    Article  CAS  Google Scholar 

  68. Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44(6):1070–1078

    Article  CAS  Google Scholar 

  69. Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, Cooke PA, Gray JW, Chen FQF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5(12):2448–2464

    Article  CAS  Google Scholar 

  70. Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126(22):6850–6851

    Article  CAS  Google Scholar 

  71. Sayes CM, Liang F, Hudson JL, Mendez J, Guo WH, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161(2):135–142

    Article  CAS  Google Scholar 

  72. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125

    Article  CAS  Google Scholar 

  73. Yang L, Sheldon BW, Webster TJ (2009) The impact of diamond nanocrystallinity on osteoblast functions. Biomaterials 30(20):3458–3465

    Article  CAS  Google Scholar 

  74. Yang L, Sheldon BW, Webster TJ (2009) Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation. J Biomed Mater Res A 91A(2):548–556

    Article  CAS  Google Scholar 

  75. Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State 34(1–2):18–74. doi:Doi 10.1080/10408430902831987Pii910822117

    Article  CAS  Google Scholar 

  76. Schrand AM, Johnson J, Dai L, Hussain SM, Schlager JJ, Zhu L, Hong Y, Ōsawa E (2009) Cytotoxicity and genotoxicity of carbon nanomaterials. In: Safety of Nanoparticles. Nanostructure Science and Technology. Springer New York, pp 1–29. doi:10.1007/978-0-387-78608-7_8

  77. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127(50):17604–17605

    Article  CAS  Google Scholar 

  78. Schrand AM, Huang HJ, Carlson C, Schlager JJ, Osawa E, Hussain SM, Dai LM (2007) Are diamond nanoparticles cytotoxic? J Phys Chem B 111(1):2–7

    Article  CAS  Google Scholar 

  79. Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C-60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595

    Article  CAS  Google Scholar 

  80. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131

    Article  CAS  Google Scholar 

  81. Tian FR, Cui DX, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20(7):1202–1212

    Article  CAS  Google Scholar 

  82. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66(20):1909–1926

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Webster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, L., Webster, T.J. (2012). Biological Responses to and Toxicity of Nanoscale Implant Materials. In: Eliaz, N. (eds) Degradation of Implant Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3942-4_18

Download citation

Publish with us

Policies and ethics