Skip to main content

Plasmon Biophotonic Arrays for Multi-analyte Biosensing in Complex Media

  • Chapter
  • First Online:
Book cover Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

The design of plasmon-based sensors for analysis of complex media such as serum is sensitive to the effects of non-specific binding. A simple analysis is presented to provide insight into the orders of magnitude involved in the kinetics of the problem and how label-free Immuno-kinetic assays may compensate for these effects. We then consider some specific challenges including sensitivity and non-specific binding discussed in terms of the kinetic and thermodynamic parameters of the protein–protein interactions which define the extent of fouling of the target sensor surface. Nanoparticle plasmon arrays have some fundamental advantages in multi-analyte sensing in complex media such as blood and the advantages of multiple measurements are considered in the context of a global mechanistic, kinetic analysis to profile the complex medium composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zlotta AR, Djavan B, Marberger M, Schulman CC. Prostate specific antigen density of the transition zone: a new effective parameter for prostate cancer prediction. J Urol. 1997;157:1315–21.

    Article  CAS  Google Scholar 

  2. Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov. 2003;2:566–80.

    Article  CAS  Google Scholar 

  3. Giljohann DA, Mirkin CA. Drivers of biodiagnostic development. Nature. 2009;462:461–4.

    Article  CAS  Google Scholar 

  4. Li Y, Lee HJ, Corn RM. Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem. 2007;79:1082–8.

    Article  CAS  Google Scholar 

  5. Seibert V, Ebert MPA, Buschmann T. Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and biomarker discovery. Brief Funct Genomic Proteomic. 2005;4:16–26.

    Article  CAS  Google Scholar 

  6. Koomen JM, Li D, Xiao L-C, Liu TC, Coombes KR, Abbruzzese J, et al. Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery. J Proteome Res. 2005;4:972–81.

    Article  CAS  Google Scholar 

  7. Yu X, Schneiderhan-Marra N, Joos TO. Protein microarrays for personalized medicine. Clin Chem. 2010;56:376–87.

    Article  CAS  Google Scholar 

  8. Lee HJ, Wark AW, Corn RM. Microarray methods for protein biomarker detection. Analyst. 2008;133:975–83.

    Article  CAS  Google Scholar 

  9. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–53.

    Article  CAS  Google Scholar 

  10. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–93.

    Article  CAS  Google Scholar 

  11. Liedberg B, Nylander C, Lundstrom I. Surface plasmon resonance for gas detection and biosensing. Sens Actuators. 1983;4:299–304.

    Article  CAS  Google Scholar 

  12. Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, VanDuyne RP. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc. 2004;126:12669–76.

    Article  CAS  Google Scholar 

  13. Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP. Localized surface plasmon resonance biosensors. Nanomedicine. 2006;1:219–28.

    Article  CAS  Google Scholar 

  14. Barnes WL. Surface plasmon–polariton length scales: a route to sub-wavelength optics. J Opt A Pure Appl Opt. 2006;8:S87–93.

    Article  Google Scholar 

  15. Olkhov RV, Shaw AM. Label-free antibody-antigen binding detection by optical sensor array based on surface-synthesized gold nanoparticles. Biosens Bioelectron. 2008;23:1298–302.

    Article  CAS  Google Scholar 

  16. Murray AW, Suckling JR, Barnes WL. Overlayers on silver nanotriangles: field confinement and spectral position of localized surface plasmon resonances. Nano Lett. 2006;6:1772–7.

    Article  CAS  Google Scholar 

  17. Haes AJ, Van Duyne RP. A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem. 2004;379:920–30.

    Article  CAS  Google Scholar 

  18. Svedendahl M, Chen S, Dmitriev A, Käll M. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett. 2009;9:4428–33.

    Article  CAS  Google Scholar 

  19. Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B. 1999;103:9846–53.

    Article  CAS  Google Scholar 

  20. Homola J, Vaisocherová H, Dostálek J, Piliarik M. Multi-analyte surface plasmon resonance biosensing. Methods. 2005;37:26–36.

    Article  CAS  Google Scholar 

  21. Hooper IR, Sambles JR, Pitter MC, Somekh MG. Phase sensitive array detection with polarisation modulated differential sensing. Sens Actuators B Chem. 2006;119:651–5.

    Article  Google Scholar 

  22. Nikitin PI, Grigorenko AN, Beloglazov AA, Valeiko MV, Savchuk AI, Savchuk OA, et al. Surface plasmon resonance interferometry for micro-array biosensing. Sens Actuators A Phys. 2000;85:189–93.

    Article  Google Scholar 

  23. Scarano S, Mascini M, Turner APF, Minunni M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron. 2010;25:957–66.

    Article  CAS  Google Scholar 

  24. Beusink JB, Lokate AMC, Besselink GAJ, Pruijn GJM, Schasfoort RBM. Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens Bioelectron. 2008;23:839–44.

    Article  CAS  Google Scholar 

  25. Lausted C, Hu ZY, Hood L. Quantitative serum proteomics from surface plasmon resonance imaging. Mol Cell Proteomics. 2008;7:2464–74.

    Article  CAS  Google Scholar 

  26. Edwards PR, Gill A, Pollardknight DV, Hoare M, Buckle PE, Lowe PA, et al. Kinetics of protein-protein interactions at the surface of an optical biosensor. Anal Biochem. 1995;231:210–7.

    Article  CAS  Google Scholar 

  27. Su X, Wu Y-J, Knoll W. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens Bioelectron. 2005;21:719–26.

    Article  CAS  Google Scholar 

  28. Rickert J, Brecht A, Göpel W. Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens Bioelectron. 1997;12:567–75.

    Article  CAS  Google Scholar 

  29. Vörös J. The density and refractive index of adsorbing protein layers. Biophys J. 2004;87:553–61.

    Article  Google Scholar 

  30. Anderson NL, Anderson NG. The human plasma proteome—history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.

    Article  CAS  Google Scholar 

  31. Myszka DG. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol. 1997;8:50–7.

    Article  CAS  Google Scholar 

  32. Masson J-F, Battaglia T, Cramer J, Beaudoin S, Sierks M, Booksh K. Reduction of nonspecific protein binding on surface plasmon resonance biosensors. Anal Bioanal Chem. 2006;386:1951–9.

    Article  CAS  Google Scholar 

  33. Brink G, Sigl H, Sackmann E. Near-infrared surface plasmon resonance in silicon-based sensor: new opportunities in sensitive detection of biomolecules from aqueous solutions by applying microstep for discriminating specific and non-specific binding. Sens Actuators B Chem. 1995;25:756–61.

    Article  Google Scholar 

  34. van Vuuren BJ, Read T, Olkhov RV, Shaw AM. Human serum albumin interference on plasmon-based immuno-kinetic assay for antibody screening in model blood sera. Anal Biochem. 2010;405:114–20.

    Article  Google Scholar 

  35. Sadana A, Chen Z. Influence of non-specific binding on antigen-antibody binding kinetics for biosensor applications. Biosens Bioelectron. 1996;11:17–33.

    Article  CAS  Google Scholar 

  36. Atkins P, de Paula J. Physical chemistry for the life sciences. Oxford: Oxford University Press; 2005.

    Google Scholar 

  37. Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, et al. Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. Anal Biochem. 2005;344:161–7.

    Article  CAS  Google Scholar 

  38. Garcia BH, Goodman RM. Use of surface plasmon resonance imaging to study viral RNA: protein interactions. J Virol Methods. 2008;147:18–25.

    Article  CAS  Google Scholar 

  39. Wikman M, Steffen A-C, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, et al. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng Des Sel. 2004;17:455–62.

    Article  CAS  Google Scholar 

  40. Karlsson R, Fält A. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods. 1997;200:121–33.

    Article  CAS  Google Scholar 

  41. Slack Steven M, Horbett Thomas A. The Vroman effect, proteins at interfaces II. Washington, DC: American Chemical Society; 1995. p. 112–28.

    Book  Google Scholar 

  42. Choi S, Yang Y, Chae J. Surface plasmon resonance protein sensor using Vroman effect. Biosens Bioelectron. 2008;24:893–9.

    Article  CAS  Google Scholar 

  43. Rich RL, Papalia GA, Flynn PJ, Furneisen J, Quinn J, Klein JS, et al. A global benchmark study using affinity-based biosensors. Anal Biochem. 2009;386:194–216.

    Article  CAS  Google Scholar 

  44. Svitel J, Balbo A, Mariuzza RA, Gonzales NR, Schuck P. Combined affinity and rate constant distributions of ligand populations from experimental surface binding kinetics and equilibria. Biophys J. 2003;84:4062–77.

    Article  CAS  Google Scholar 

  45. Olkhov RV, Fowke JD, Shaw AM. Whole serum BSA antibody screening using a label-free biophotonic nanoparticle array. Anal Biochem. 2009;385:234–41.

    Article  CAS  Google Scholar 

  46. Olkhov RV, Shaw AM. Quantitative label-free screening for antibodies using scattering biophotonic microarray imaging. Anal Biochem. 2010;396:30–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the RCUK, Basic Technology Grant, EP/C52389X/1 and the Royal Society.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shaw, A.M., Olkhov, R.V., Jerdev, A., Barnes, W.L. (2012). Plasmon Biophotonic Arrays for Multi-analyte Biosensing in Complex Media. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_6

Download citation

Publish with us

Policies and ethics