Skip to main content

Role of Striatal A2A Receptor Subpopulations in Neurological Disorders

  • Chapter
  • First Online:
Adenosine

Abstract

A very significant density of adenosine A2A receptors (A2AR) is present in the striatum, where they are preferentially localized postsynaptically in enkephalinergic-GABAergic-medium spiny neurons (enkephalinergic MSN). In this localization, different subpopulations of A2AR with different functions exist. Their differential function seems to depend mostly on their ability to form heteromers with other G-protein-coupled receptors, such as dopamine D2, cannabinoid CB1 and glutamate mGlu5 receptors. Furthermore, striatal A2AR are also localized presynaptically, in corticostriatal glutamatergic terminals that contact dynorphinergic-GABAergic-medium spiny neurons (dynorphinergic MSN). These presynaptic A2AR heteromerize with A1 receptors and their activation facilitates glutamate release. Pharmacological tools are becoming available that allow the functional evaluation of some of these different subpopulations of A2AR, which can therefore provide selective targets for drug development in different basal ganglia disorders. In fact, alterations in the function of different A2AR subpopulations have recently been observed in Parkinson’s disease and in animal models of Huntington disease and Restless Legs Syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RP, Picchietti D, Hening WA, Trenkwalder C, Walters AS, Montplaisir J (2003) Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology. A report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health. Sleep Med 4:101–119

    Article  PubMed  Google Scholar 

  • Allen R (2004) Dopamine and iron in the pathophysiology of restless legs syndrome (RLS). Sleep Med 5:385–391

    Article  PubMed  Google Scholar 

  • Allen RP, Walter AS, Montplaisir J, Hening W, Myers A, Bell TJ, Ferini-Strambi L (2005) Restless legs syndrome prevalence and impact: REST general population study. Arch Intern Med 165:1286–1292

    Article  PubMed  Google Scholar 

  • Andersson M, Usiello A, Borgkvist A, Pozzi L, Dominguez C, Fienberg AA, Svenningsson P, Fredholm BB, Borrelli E, Greengard P, Fisone G (2005) Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci 25:8432–8438

    Article  CAS  PubMed  Google Scholar 

  • Angulo-Kinzler RM, Peirano P, Lin E, Algarin C, Garrido M, Lozoff B (2002) Twenty-four-hour motor activity in human infants with and without iron deficiency anemia. Early Hum Dev 70:85–101

    Article  CAS  PubMed  Google Scholar 

  • Azdad K, Gall D, Woods AS, Ledent C, Ferré S, Schiffmann SN (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology 34:972–986

    Article  CAS  PubMed  Google Scholar 

  • Bauer A, Zilles K, Matusch A, Holzmann C, Riess O, von Hörsten S (2005) Regional and subtype selective changes of neurotransmitter receptor density in a rat transgenic for the Huntington’s disease mutation. J Neurochem 94:639–650

    Article  CAS  PubMed  Google Scholar 

  • Beard JL (2003) Iron deficiency alters brain development and functioning. J Nutr 133:1468S–1472S

    CAS  PubMed  Google Scholar 

  • Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23:41–58

    Article  CAS  PubMed  Google Scholar 

  • Brooks DJ, Papapetropoulos S, Vandenhende F, Tomic D, He P, Coppell A, O’Neill G (2010) An open-label, positron emission tomography study to assess adenosine A2A brain receptor occupancy of vipadenant (BIIB014) at steady-state levels in healthy male volunteers. Clin Neuropharmacol 33:55–60

    Article  CAS  PubMed  Google Scholar 

  • Cabello N, Gandia J, Bertarelli DC, Watanabe M, Lluis C, Franco R, Ferré S, Lujan R, Ciruela F (2009) Metabotropic glutamate type 5, dopamine D2 and adenosine A2A receptors form higher-order oligomers in living cells. J Neurochem 109:1497–1507

    Article  CAS  PubMed  Google Scholar 

  • Calon F, Hadj Tahar A, Blanchet PJ, Morissette M, Grondin R, Goulet M, Doucet JP, Robertson GS, Nestler E, Di Paolo T, Bédard PJ (2000) Dopamine-receptor stimulation: biobehavioral and biochemical consequences. Trends Neurosci 23:S92–S100

    Article  CAS  PubMed  Google Scholar 

  • Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bédard PJ, Di Paolo T (2002) Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol 61:186–196

    CAS  PubMed  Google Scholar 

  • Calon F, Dridi M, Hornykiewicz O, Bédard PJ, Rajput AH, Di Paolo T (2004) Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain 127:1075–1084

    Article  PubMed  Google Scholar 

  • Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259

    Article  CAS  PubMed  Google Scholar 

  • Carriba P, Navarro G, Ciruela F, Ferré S, Casado V, Agnati LF, Cortes A, Mallol J, Fuxe K, Canela EI, Lluis C, Franco R (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5:727–733

    Article  CAS  PubMed  Google Scholar 

  • Cha JH, Frey AS, Alsdorf SA, Kerner JA, Kosinski CM, Mangiarini L, Penney JB Jr, Davies SW, Bates GP, Young AB (1999) Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philos Trans R Soc Lond B Biol Sci 354:981–989

    Article  CAS  PubMed  Google Scholar 

  • Chen JF, Moratalla R, Impagnatiello F, Grandy DK, Cuellar B, Rubinstein M, Beilstein MA, Hackett E, Fink JS, Low MJ, Ongini E, Schwarzschild MA (2001) The role of the D(2) dopamine receptor (D(2)R) in A(2A) adenosine receptor (A(2A)R)-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice. Proc Natl Acad Sci U S A 98:1970–1975

    Article  CAS  PubMed  Google Scholar 

  • Ciruela F, Casado V, Rodrigues RJ, Luján R, Burgueno J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087

    Article  CAS  PubMed  Google Scholar 

  • Connor JR, Wang XS, Patton SM, Menzies SL, Troncoso JC, Earley CJ, Allen RP (2004) Decreased transferrin receptor expression by neuromelanin cells in restless legs syndrome. Neurology 62:1563–1567

    Article  CAS  PubMed  Google Scholar 

  • Connor JR, Wang XS, Allen RP, Beard JL, Wiesinger JA, Felt BT, Earley CJ (2009) Altered dopaminergic profile in the putamen and substantia nigra in Restless Leg Syndrome. Brain 132:2403–2412

    Article  PubMed  Google Scholar 

  • Dhaenens CM, Burnouf S, Simonin C, Van Brussel E, Duhamel A, Defebvre L, Duru C, Vuillaume I, Cazeneuve C, Charles P, Maison P, Debruxelles S, Verny C, Gervais H, Azulay JP, Tranchant C, Bachoud-Levi AC, Dürr A, Buée L, Krystkowiak P, Sablonnière B, Blum D (2009) A genetic variation in the ADORA2A gene modifies age at onset in Huntington’s disease. Neurobiol Dis 35:474–476

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  • Earley CJ, Connor JR, Beard JL, Malecki EA, Epstein DK, Allen RP (2000) Abnormalities in CSF concentrations of ferritin and transferrin in restless legs syndrome. Neurology 54:1698–1700

    Article  CAS  PubMed  Google Scholar 

  • Earley CJ, Barker PB, Horska A, Allen RP (2006) MRI-determined regional brain iron concentrations in early- and late-onset restless legs syndrome. Sleep Med 7:459–461

    Google Scholar 

  • Erikson KM, Jones BC, Beard JL (2000) Iron deficiency alters dopamine transporter functioning in rat striatum. J Nutr 130:2831–2837

    CAS  PubMed  Google Scholar 

  • Erikson KM, Jones BC, Hess EJ, Zhang Q, Beard JL (2001) Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacol Biochem Behav 69:409–418

    Article  CAS  PubMed  Google Scholar 

  • Factor S, Mark MH, Watts R, Struck L, Mori A, Ballerini R, Sussman NM, Istradefylline 6002-US-007 Study Group (2010) A long-term study of istradefylline in subjects with fluctuating Parkinson’s disease. Parkinsonism Relat Disord 16:423–426

    Article  PubMed  Google Scholar 

  • Fernandez HH, Greeley DR, Zweig RM, Wojcieszek J, Mori A, Sussman NM, 6002-US-051 Study Group (2010) Istradefylline as monotherapy for Parkinson disease: results of the 6002-US-051 trial. Parkinsonism Relat Disord 16:16–20

    Article  CAS  PubMed  Google Scholar 

  • Ferré S, Fuxe K, von Euler G, Johansson B, Fredholm BB (1992) Adenosine-dopamine interactions in the brain. Neuroscience 51:501–512

    Article  PubMed  Google Scholar 

  • Ferré S, Popoli P, Gimenez-Llort L, Rimondini R, Müller CE, Stromberg I, Ogren SO, Fuxe K (2001) Adenosine/dopamine interaction: implications for the treatment of Parkinson’s disease. Parkinsonism Relat Disord 7:235–241

    Article  PubMed  Google Scholar 

  • Ferré S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueno J, Casado V, Fuxe K, Lluis C, Goldberg SR, Franco R, Ciruela F (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function. 99:11940–11945

    Google Scholar 

  • Ferré S, Ciruela F, Woods AS, Lluis C, Franco R (2007) Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosci 30:440–446

    Article  PubMed  Google Scholar 

  • Ferré S, Quiroz C, Woods AS, Cunha R, Popoli P, Ciruela F, Lluis C, Franco R, Azdad K, Schiffmann SN (2008) An update on adenosine A2A-dopamine D2 receptor interactions. Implications for the function of G protein-coupled receptors. Curr Pharm Des 14:1468–1474

    Article  PubMed  Google Scholar 

  • Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KDG, Pin J-P, Volkow N, Waldhoer M, Woods AS, Franco R (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134

    Article  PubMed  Google Scholar 

  • Ferré S, Lluis C, Justinova Z, Quiroz C, Orru M, Navarro G, Canela EI, Franco R, Goldberg SR (2010) Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br J Pharmacol 160:443–453

    Article  PubMed  Google Scholar 

  • Fiorentini C, Busi C, Gorruso E, Gotti C, Spano P, Missale C (2008) Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol 74:59–69

    Article  CAS  PubMed  Google Scholar 

  • Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97:505–519

    Article  CAS  PubMed  Google Scholar 

  • Grondin R, Bédard PJ, Hadj Tahar A, Grégoire L, Mori A, Kase H (1999) Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 52:1673–1677

    Article  CAS  PubMed  Google Scholar 

  • Gulyani S, Earley CJ, Camandola S, Maudsley S, Ferré S, Mughal MR, Martin B, Cheng A, Gleichmann M, Jones BC, Allen RP, Mattson MP (2009) Diminished iron concentrations increase adenosine A(2A) receptor levels in mouse striatum and cultured human neuroblastoma cells. Exp Neurol 215:236–242

    Article  CAS  PubMed  Google Scholar 

  • Håkansson K, Galdi S, Hendrick J, Snyder G, Greengard P, Fisone G (2006) Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 96:482–488

    Article  PubMed  Google Scholar 

  • Hauser RA, Hubble JP, Truong DD, Istradefylline US-001 Study Group (2003) Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology 61:297–303

    Article  CAS  PubMed  Google Scholar 

  • Hettinger BD, Lee A, Linden J, Rosin DL (1998) Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 431:331–346

    Article  Google Scholar 

  • Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13:958–966

    Article  CAS  PubMed  Google Scholar 

  • Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferré S, Fuxe K (2002) Coaggregation, cointernalization and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097

    Article  CAS  PubMed  Google Scholar 

  • James S, Richardson PJ (1993) The subcellular distribution of [3H]-CGS 21680 binding sites in the rat striatum: copurification with cholinergic nerve terminals. Neurochem Int 23:115–122

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Johansson B, Fredholm BB (1993) Effects of adenosine A1 and A2 receptor activation on electrically evoked dopamine and acetylcholine release from rat striatal slices. J Pharmacol Exp Ther 267:801–808

    CAS  PubMed  Google Scholar 

  • Justinova Z, Ferré S, Redhi GH, Mascia P, Stroik J, Quarta D, Yasar S, Muller CE, Franco R, Goldberg SR (2010) Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist. Addict Biol 16:405–415

    Article  PubMed  Google Scholar 

  • Kachroo A, Orlando LR, Grandy DK, Chen JF, Young AB, Schwarzschild MA (2005) Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 25:10414–10419

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (2000) Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162:321–327

    Article  CAS  PubMed  Google Scholar 

  • Kull B, Ferré S, Arslan G, Svenningsson P, Fuxe K, Owman C, Fredholm BB (1999) Reciprocal interactions between adenosine A2A and dopamine D2 receptors in CHO cells co-transfected with the two receptors. Biochem Pharmacol 58:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Lerner TN, Horne EA, Stella N, Kreitzer AC (2010) Endocannabinoid signaling mediates psychomotor activation by adenosine A2A antagonists. J Neurosci 30:2160–2164

    Article  CAS  PubMed  Google Scholar 

  • LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, Sussman NM, 6002-US-005 Study Group (2008) Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 63:295–302

    Article  CAS  PubMed  Google Scholar 

  • Lozoff B, Georgieff MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13:158–165

    Article  PubMed  Google Scholar 

  • Martire A, Tebano MT, Chiodi V, Ferreira SG, Cunha RA, Köfalvi A, Popoli P (2011) Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission. J Neurochem 116:273–280

    Article  CAS  PubMed  Google Scholar 

  • Mizuno Y, Hasegawa K, Kondo T, Kuno S, Yamamoto M, Japanese Istradefylline Study Group (2010) Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord 25:1437–1443

    Article  PubMed  Google Scholar 

  • Moresco RM, Todde S, Belloli S, Simonelli P, Panzacchi A, Rigamonti M, Galli-Kienle M, Fazio F (2005) In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur J Nucl Med Mol Imaging 32:405–413

    Article  CAS  PubMed  Google Scholar 

  • Morissette M, Goulet M, Soghomonian JJ, Blanchet PJ, Calon F, Bédard PJ, Di Paolo T (1997) Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with L-DOPA therapy. Brain Res Mol Brain Res 49:55–62

    Article  CAS  PubMed  Google Scholar 

  • Navarro G, Ferré S, Cordomi A, Moreno E, Mallol J, Casadó V, Cortés A, Hoffmann H, Ortiz J, Canela EI, Lluís C, Pardo L, Franco R, Woods AS (2010) Interactions between intracellular domains as key determinants of the quaternary structure and function of receptor heteromers. J Biol Chem 285:27346–27359

    Article  CAS  PubMed  Google Scholar 

  • Nelson C, Erikson K, Piñero DJ, Beard JL (1997) In vivo dopamine metabolism is altered in iron-deficient anemic rats. J Nutr 127:2282–2288

    CAS  PubMed  Google Scholar 

  • Nguyen HP, Kobbe P, Rahne H, Wörpel T, Jäger B, Stephan M, Pabst R, Holzmann C, Riess O, Korr H, Kántor O, Petrasch-Parwez E, Wetzel R, Osmand A, von Hörsten S (2006) Behavioral abnormalities precede neuropathological markers in rats transgenic for Huntington’s disease. Hum Mol Genet 15:3177–3194

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Liu F, Matsuyama S, Hamada M, Higashi H, Nairn AC, Greengard P (2003) Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc Natl Acad Sci U S A 100:1322–1327

    Article  PubMed  Google Scholar 

  • Nordlander NB (1954) Restless Legs. Brit J Phys Med 17:160–162

    CAS  Google Scholar 

  • Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Arbizu J, Giménez-Amaya JM (2002) The basal ganglia and disorders of movement: pathophysiological mechanisms. News Physiol Sci 17:51–55

    PubMed  Google Scholar 

  • Orrú M, Quiroz C, Guitart X, Ferré S (2011a) Pharmacological evidence for different populations of postsynaptic adenosine A2A receptors in the rat striatum. Neuropharmacology 61:967–974

    Article  PubMed  Google Scholar 

  • Orrú M, Bakešová J, Brugarolas M, Quiroz C, Beaumont V, Goldberg SR, Lluís C, Cortés A, Franco R, Casadó V, Canela EI, Ferré S (2011b) Striatal Pre- and Postsynaptic Profile of Adenosine A(2A) Receptor Antagonists. PLoS One 6:e16088

    Article  PubMed  Google Scholar 

  • Orrú M, Zanoveli JM, Quiroz C, Nguyen HP, Guitart X, Ferré S (2011c) Functional changes in postsynaptic adenosine A(2A) receptors during early stages of a rat model of Huntington disease. Exp Neurol 232:76–80

    Article  PubMed  Google Scholar 

  • Popoli P, Betto P, Reggio R, Ricciarello G (1995) Adenosine A2A receptor stimulation enhances striatal extracellular glutamate levels in rats. Eur J Pharmacol 287:215–217

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Pezzola A, Torvinen M, Reggio R, Pintor A, Scarchili L, Fuxe K, Ferré S (2001) The selective mGlu5 receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D2 receptors in the rat striatum: Interactions with adenosine A2A receptors. Neuropsychopharmacology 25:505–513

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Blum D, Martire A, Ledent C, Ceruti S, Abbracchio MP (2007) Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 81:331–348

    Article  CAS  PubMed  Google Scholar 

  • Preston Z, Lee K, Widdowson L, Freeman TC, Dixon AK, Richardson PJ (2000) Adenosine receptor expression and function in rat striatal cholinergic interneurons. Br J Pharmacol 130:886–890

    Article  CAS  PubMed  Google Scholar 

  • Quiroz C, Lujan R, Uchigashima M, Simoes AP, Lerner TN, Borycz J, Kachroo A, Canas PM, Orru M, Schwarzschild MA, Rosin DL, Kreitzer AC, Cunha RA, Watanabe M, Ferré S (2009) Key modulatory role of presynaptic adenosine A2A receptors in cortical neurotransmission to the striatal direct pathway. ScientificWorldJournal 9:1321–1344

    Article  CAS  PubMed  Google Scholar 

  • Quiroz C, Pearson V, Gulyani S, Allen R, Earley C, Ferré S (2010) Up-regulation of striatal adenosine A2A receptors with iron deficiency in rats. Effects on locomotion and cortico-striatal neurotransmission. Exp Neurol 224:292–298

    Article  CAS  PubMed  Google Scholar 

  • Ramlackhansingh AF, Bose SK, Ahmed I, Turkheimer FE, Pavese N, Brooks DJ (2011) Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology 76:1811–1816

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues RJ, Alfaro TM, Rebola N, Oliveira CR, Cunha RA (2005) Co-localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J Neurochem 92:433–441

    Article  PubMed  Google Scholar 

  • Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401:163–186

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann SN, Fisone G, Moresco R, Cunha R, Ferré S (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83:277–292

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, Coelho JE, Ohtsuka N, Canas PM, Day YJ, Huang QY, Rebola N, Yu L, Boison D, Cunha RA, Linden J, Tsien JZ, Chen JF (2008) A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J Neurosci 28:2970–2975

    Article  CAS  PubMed  Google Scholar 

  • Soria G, Castañé A, Ledent C, Parmentier M, Maldonado R, Valverde O (2004) Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC. Eur J Neurosci 20:2203–2213

    Article  PubMed  Google Scholar 

  • Taherzadeh-Fard E, Saft C, Wieczorek S, Epplen JT, Arning L (2010) Age at onset in Huntington’s disease: replication study on the associations of ADORA2A, HAP1 and OGG1. Neurogenetics 11:435–439

    Article  CAS  PubMed  Google Scholar 

  • Tanganelli S, Sandager-Nielsen K, Ferraro L, Antonelli T, Kehr J, Franco R, Ferré S, Agnati LF, Fuxe K, Scheel-Krüger J (2004) Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson’s disease. Parkinsonism Relat Disord 10:273–280

    Article  CAS  PubMed  Google Scholar 

  • Tarditi A, Camurri A, Varani K, Borea PA, Woodman B, Bates G, Cattaneo E, Abbracchio MP (2006) Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol Dis 23:44–53

    Article  CAS  PubMed  Google Scholar 

  • Tebano MT, Martire A, Chiodi V, Pepponi R, Ferrante A, Domenici MR, Frank C, Chen JF, Ledent C, Popoli P (2009) Adenosine A2A receptors enable the synaptic effects of cannabinoid CB1 receptors in the rodent striatum. J Neurochem 110:1921–1930

    Article  CAS  PubMed  Google Scholar 

  • Tergau F, Wische S, Paulus W (1999) Motor system excitability in patients with Restless Legs Syndrome. Neurology 52:1060–1063

    Article  CAS  PubMed  Google Scholar 

  • Tozzi A, de Iure A, Di Filippo M, Tantucci M, Costa C, Borsini F, Ghiglieri V, Giampà C, Fusco FR, Picconi B, Calabresi P (2011) The distinct role of medium spiny neurons and cholinergic interneurons in the D2/A2A receptor interaction in the striatum: implications for Parkinson’s disease. J Neurosci 31:1850–1862

    Article  CAS  PubMed  Google Scholar 

  • Unger EL, Wiesinger JA, Hao L, Beard JL (2008) Dopamine D2 receptor expression is altered by changes in cellular iron levels in PC12 cells and rat brain tissue. J Nutr 138:2487–2494

    Article  CAS  PubMed  Google Scholar 

  • Varani K, Rigamonti D, Sipione S, Camurri A, Borea PA, Cattabeni F, Abbracchio MP, Cattaneo E (2001) Aberrant amplification of A2A receptor signaling in striatal cells expressing mutant huntingtin. FASEB J 15:1245–1247

    CAS  PubMed  Google Scholar 

  • Varani K, Abbrachio MP, Cannella M, Cislaghi G, Giallonardo P, Mariotti C, Cattabriga E, Borea PA, Squitieri F, Cattaneo E (2003) Aberrant A2A receptor function in peripheral blood cells in Huntington’s disease. FASEB J 17:2148–2150

    CAS  PubMed  Google Scholar 

  • Varani K, Vincenzi F, Tosi A, Gessi S, Casetta I, Granieri G, Fazio P, Leung E, MacLennan S, Granieri E, Borea PA (2010) A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson’s disease. FASEB J 24:587–598

    Article  CAS  PubMed  Google Scholar 

  • von Hörsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, Walther T, Bader M, Pabst R, Kobbe P, Krotova J, Stiller D, Kask A, Vaarmann A, Rathke-Hartlieb S, Schulz JB, Grasshoff U, Bauer I, Vieira-Saecker AM, Paul M, Jones L, Lindenberg KS, Landwehrmeyer B, Bauer A, Li XJ, Riess O (2003) Transgenic rat model of Huntington’s disease. Hum Mol Genet 12:617–624

    Article  Google Scholar 

  • Weinberg J, Dallman PR, Levine S (1980) Iron deficiency during early development in the rat: behavioral and physiological consequences. Pharmacol Biochem Behav 12:493–502

    Article  CAS  PubMed  Google Scholar 

  • Wellington CL, Leavitt BR, Hayden MR (2000) Huntington disease: new insights on the role of huntingtin cleavage. J Neural Transm Suppl 58:1–17

    PubMed  Google Scholar 

  • Yang W, Dunlap JR, Andrews RB, Wetzel R (2002) Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum Mol Genet 11:2905–2917

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Fan P, Jiang Z, Mailliard WS, Gordon AS, Diamond I (2003) Addicting drugs utilize a synergistic molecular mechanism in common requiring adenosine and Gi-beta gamma dimers. Proc Natl Acad Sci U S A 100:14379–14384

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Ben-Shachar D, Ashkenazi R, Yehuda S (1983) Brain iron and dopamine receptor function. Adv Biochem Psychopharmacol 37:309–321

    CAS  PubMed  Google Scholar 

  • Zeng BY, Pearce RK, MacKenzie GM, Jenner P (2000) Alterations in preproenkephalin and adenosine-2a receptor mRNA, but not preprotachykinin mRNA correlate with occurrence of dyskinesia in normal monkeys chronically treated with L-DOPA. Eur J Neurosci 12:1096–1104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work supported by NIDA IRP funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Ferré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferré, S. et al. (2013). Role of Striatal A2A Receptor Subpopulations in Neurological Disorders. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_9

Download citation

Publish with us

Policies and ethics