Skip to main content

Adenosine and Pain

  • Chapter
  • First Online:
Adenosine

Abstract

Adenosine A1 receptors (A1Rs) have been shown to be involved in antinociception in preclinical models for several decades. Thus, systemic, peripheral, spinal, and supraspinal administration of A1R agonists universally produces antinociception in nociceptive, inflammatory, and neuropathic pain models. The clinical potential for adenosine (given intravenously), or A1R ligands (given systemically or spinally) to produce analgesia in humans was supported by earlier trials, but more recent, larger controlled trials have generally not demonstrated analgesic activity for postoperative pain. Adenosine A2ARs have more complex effects on pain, generating pronociceptive effects peripherally and spinally, but antinociceptive effects supraspinally. The presence of A2ARs on astrocytes and microglia within the spinal cord may be particularly important for their pronociceptive actions in states of nerve injury. There is also a report that ultralow doses of A2AR agonists produce long lasting antinociception in such states. Manipulation of endogenous levels of adenosine by inhibiting adenosine kinase represented a promising novel approach, but development in this area is no longer active. Recent data have demonstrated that specific ectonucleotidases are localized on sensory afferent neurons, and that spinal delivery of recombinant forms of these enzymes produce long-lasting antinociceptive actions; this led to the suggestion that manipulating ectonucleotidases may represent a potential new approach for development. Additional observations have implicated tissue release of nucleotides and adenosine in acupuncture analgesia, and shown analgesia results from peripheral actions at adenosine A1Rs. Finally, other recent observations indicate that caffeine, which inhibits both A1- and A2ARs with high affinity, blocks antinociception in preclinical studies by several drugs currently used to treat pain in humans. As caffeine is widely consumed, it will be important to attend to caffeine intake in future trial design with respect to evaluating novel therapies that use these receptor systems, some existing analgesics, as well as acupuncture analgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A, Filipek B, Zimmer A, Müller CE (2004) Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther 308:358–366

    Article  CAS  PubMed  Google Scholar 

  • Ackley MA, Governo RJM, Cass CE, Young JD, Baldwin SA, King AE (2003) Control of glutamatergic neurotransmission in the rat spinal dorsal horn by nucleoside transporter ENT1. J Physiol 548:507–517

    Article  CAS  PubMed  Google Scholar 

  • Bagley EE, Vaughan CW, Christie MJ (1999) Inhibition by adenosine receptor agonists of synaptic transmission in rat periaqueductal grey neurons. J Physiol 516:219–225

    Article  CAS  PubMed  Google Scholar 

  • Bailey A, Matthes H, Kieffer B, Slowe S, Hourani SMO, Kitchen I (2002) Quantitative autoradiography of adenosine receptors and NBTI-sensitive adenosine transporters in the brains and spinal cords of mice deficient in the μ-opioid receptor gene. Brain Res 943:68–79

    Article  CAS  PubMed  Google Scholar 

  • Bantel C, Li X, Eisehach JC (2003) Intraspinal adenosine induces spinal cord norepinephrine release in spinal nerve-ligated rats but not in normal or sham controls. Anesthesiology 98:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Bastia E, Varani K, Monopoli A, Bertorelli R (2002) Effects of A1 and A2A adenosine receptor ligands in mouse acute models of pain. Neurosci Lett 328:241–244

    Article  CAS  PubMed  Google Scholar 

  • Benito-Garcia E, Heller JE, Chibnik LB, Maher NE, Matthews HM, Bilics JA, Weinblatt ME, Shadick NA (2006) Dietary caffeine intake does not affect methotrexate efficacy in patients with rheumatoid arthritis. J Rheumatol 33:1275–1281

    CAS  PubMed  Google Scholar 

  • Bilkei-Gorzo A, Abo-Salem OM, Hayallah AM, Michel K, Müller CE, Zimmer A (2008) Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn-Schmiedeberg’s Arch Pharmacol 377:65–76

    Article  CAS  Google Scholar 

  • Boison D, Chen JF, Fredholm BB (2010) Adenosine signalling and function in glial cells. Cell Death Differ 17:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Borghi V, Przewlocka B, Labuz D, Maj M, Ilona O, Pavone F (2002) Formalin-induced pain and μ-opioid receptor density in brain and spinal cord are modulated by A1 and A2A adenosine agonists in mice. Brain Res 956:339–348

    Article  CAS  PubMed  Google Scholar 

  • Brooke RE, Deuchars J, Deuchars SA (2004) Input-specific modulation of neurotransmitter release in the lateral horn of the spinal cord via adenosine receptors. J Neurosci 24:127–137

    Article  CAS  PubMed  Google Scholar 

  • Bura SA, Nadal X, Ledent C, Maldonado R, Valverde O (2008) A2A adenosine receptor regulates glia proliferation and pain after peripheral nerve injury. Pain 140:95–103

    Article  CAS  PubMed  Google Scholar 

  • By Y, Condo J, Durand-Gorde JM, Lejeune PJ, Mallet B, Guieu R, Ruf G (2011) Intracerebroventricular injection of an agonist-like monoclonal antibody to adenosine A2A receptor has antinociceptive effects in mice. J Neuroimmunol 230:178–182

    Article  CAS  PubMed  Google Scholar 

  • Carruthers AM, Sellers LA, Jenkins DW, Jarvie EM, Feniuk W, Humphrey PPA (2001) Adenosine A1 receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 59:1533–1541

    CAS  PubMed  Google Scholar 

  • Choca JI, Green RD, Proudfit HK (1988) Adenosine A1 and A2 receptors of the substantia gelatinosa are located predominantly on intrinsic neurons: an autoradiography study. J Pharmacol Exp Ther 247:757–764

    CAS  PubMed  Google Scholar 

  • Crain SM, Shen K-F (2000) Antagonists of excitatory opioid receptor functions enhance morphine’s analgesic potency and attenuate opioid tolerance/dependence liability. Pain 84:121–131

    Article  CAS  PubMed  Google Scholar 

  • Curros-Criado MM, Herrero JF (2005) The antinociceptive effects of the systemic adenosine A1 receptor agonist CPA in the absence and in the presence of spinal cord sensitization. Pharmacol Biochem Behav 82:721–726

    Article  CAS  PubMed  Google Scholar 

  • DeLeo JA, Colburn RW, Rickman AJ, Yeager MP (1997) Intrathecal catheterization alone induces neuroimmune activation in the rat. Eur J Pain 1:115–122

    Article  CAS  PubMed  Google Scholar 

  • DeLeo JA, Tawfik VL, LaCroix-Fralish ML (2006) The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain 122:17–21

    Article  CAS  Google Scholar 

  • Deuchars SA, Brooke RE, Deuchars J (2001) Adenosine A1 receptors reduce release from excitatory but not inhibitory synaptic inputs onto lateral horn neurons. J Neurosci 21:6308–6320

    CAS  PubMed  Google Scholar 

  • Dickenson A, Suzuki R, Reeve AJ (2000) Adenosine as a potential analgesic target in inflammatory and neuropathic pains. CNS Drugs 13:77–85

    Article  CAS  Google Scholar 

  • Doak GJ, Sawynok J (1995) Complex role of peripheral adenosine in the genesis of the response to subcutaneous formalin in the rat. Eur J Pharmacol 281:311–318

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  CAS  PubMed  Google Scholar 

  • Erion MD, Wiesner JB, Rosengren S, Ugarkar B, Boyer SH, Tsuchiya M, Nakane M, Pettersen BA, Nagahisa A (2000) Therapeutic potential of adenosine kinase inhibitors as analgesic agents. Drug Dev Res 50:22, S14-06

    Google Scholar 

  • Esser MJ, Sawynok J (2000) Caffeine blockade of the thermal antihyperalgesic effect of acute amitriptyline in a rat model of neuropathic pain. Eur J Pharmacol 399:131–139

    Article  CAS  PubMed  Google Scholar 

  • Ferré S, Diamond I, Goldberg SR, Yao L, Hourani SMO, Huang ZL, Urade Y, Kitchen I (2007) Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain. Prog Neurobiol 83:332–347

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Ni Y (2010) Nonsynaptic communication through ATP release from volume-activated anion channels in axons. Sci Signal 3(142):ra73

    Article  PubMed  CAS  Google Scholar 

  • Frary CD, Johnson RK, Wang MQ (2005) Food sources and intake of caffeine in the diets of persons in the United States. J Am Diet Assoc 105:110–113

    Article  PubMed  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvaratau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001a) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Irenius E, Kull B, Schulte G (2001b) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61:443–448

    Article  CAS  PubMed  Google Scholar 

  • Fukuda KI, Hayashida M, Fukunaga A, Kasahara M, Koukita Y, Ichinohe T, Kaneko Y (2007) Pain-relieving effects of intravenous ATP in chronic intractable orofacial pain: an open-label study. J Anesth 21:24–30

    Article  PubMed  Google Scholar 

  • Gan TJ, Habib AS (2007) Adenosine as a non-opioid analgesic in the perioperative setting. Anesth Analg 105:487–494

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Merighi S, Vareni K, Leung E, MacLennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140

    Article  CAS  PubMed  Google Scholar 

  • Godfrey L, Yan L, Clarke GD, Ledent C, Kitchen I, Hourani SMO (2006) Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice. Eur J Pharmacol 531:80–86

    Article  CAS  PubMed  Google Scholar 

  • Goldman N, Chen M, Fujita T, Wu Q, Peng W, Liu W, Jensen TK, Pai Y, Wang F, Han X, Chen JF, Schnermann J, Takano T, Bekar L, Tieu K, Nedergaard M (2010) Adenosine A1 receptors mediate local antinociceptive effects of acupuncture. Nat Neurosci 13:883–889

    Article  CAS  PubMed  Google Scholar 

  • Golembiowska K, White TD, Sawynok J (1996) Adenosine kinase inhibitors augment release of adenosine from spinal cord slices. Eur J Pharmacol 307:157–162

    Article  CAS  PubMed  Google Scholar 

  • Gong Q-J, Li Y-Y, Xin W-J, Wei X-H, Wang J, Liu Y, Liu C-C, Li Y-Y, Liu X-G (2010) Differential effects of adenosine A1 receptor on pain-related behavior in normal and nerve-injured rats. Brain Res 1361:23–30

    Article  CAS  PubMed  Google Scholar 

  • Granados-Soto V, Castaneda-Hernández G (1999) A review of the pharmacokinetic and pharmacodynamic factors in the potentiation of the antinociceptive effect of nonsteroidal anti-inflammatory drugs by caffeine. J Pharmacol Toxicol 42:67–72

    Article  CAS  Google Scholar 

  • Haas HL, Selbach O (2000) Functions of neuronal adenosine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 362:375–381

    Article  CAS  Google Scholar 

  • Habib AS, Minkowitz H, Osborn T, Ogunnaike B, Candiotti K, Viscusi E, Gu J, Creed MR, Gan TJ (2008) Phase 2, double-blind, placebo-controlled, dose-response trial of intravenous adenosine for perioperative analgesia. Anesthesiology 109:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Handa T, Fukuda KI, Hayashida M, Koukita Y, Ichinohe T, Kaneko Y (2009) Effects of intravenous adenosine 5’-triphosphate on intraoperative hemodynamics and postoperative pain in patients undergoing major orofacial surgery: a double-blind placebo-controlled study. J Anesth 23:315–322

    Article  PubMed  Google Scholar 

  • Haskó G, Csóka B, Németh ZH, Vizi ES, Pacher P (2009) A2B adenosine receptors in immunity and inflammation. Trends Immunol 30:263–270

    Article  PubMed  CAS  Google Scholar 

  • Hayashida M, Fukuda KI, Fukunaga A (2005) Clinical application of adenosine and ATP for pain control. J Anesth 19:225–235

    Article  PubMed  Google Scholar 

  • Hussey MJ, Clarke GD, Ledent C, Hourani SMO, Kitchen I (2007) Reduced response to the formalin test and lowered spinal NMDA glutamate receptor binding in adenosine A2A receptor knockout mice. Pain 129:287–294

    Article  CAS  PubMed  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Giménez-Llort L, Escorihuela RM, Fernández-Teruel A, Wiesenfeld-Hallin Z, Xu X-J, Hårdemark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci 98:9407–9412

    Article  CAS  PubMed  Google Scholar 

  • Kaelin-Lang A, Lauterburg T, Burgunder JM (1998) Expression of adenosine A2A receptor gene in rat dorsal root and autonomic ganglia. Neurosci Lett 246:21–24

    Article  CAS  PubMed  Google Scholar 

  • Karlsten R, Gordh T, Post C (1992) Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol Toxicol 70:434–438

    Article  CAS  PubMed  Google Scholar 

  • Keil GJ, DeLander GE (1994) Adenosine kinase and adenosine deaminase inhibition modulate spinal adenosine- and opioid agonist-induced antinociception in mice. Eur J Pharmacol 271:37–46

    Article  CAS  PubMed  Google Scholar 

  • Khasar SG, Wang JF, Taiwo YO, Heller PH, Green PG, Levine JD (1995) Mu-opioid agonist enhancement of prostaglandin-induced hyperalgesia in the rat: a G-protein βγ subunit-mediated effect? Neuroscience 67:189–195

    Article  CAS  PubMed  Google Scholar 

  • King T, Vera-Portocarrero L, Gutierrez T, Vanderah TW, Dussor G, Lai J, Fields HL, Porreca F (2009) Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci 12:1364–1366

    Article  CAS  PubMed  Google Scholar 

  • Kolesnikov YA, Jain S, Wilson R, Pasternak G (1996) Peripheral morphine analgesia: synergy with central sites and a target of morphine tolerance. J Pharmacol Exp Ther 279:502–506

    CAS  PubMed  Google Scholar 

  • Langevin HM, Bouffard NA, Badger GJ, Churchill DL, Howe AK (2006) Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: evidence for a mechanotransduction-based mechanism. J Cell Physiol 207:767–774

    Article  CAS  PubMed  Google Scholar 

  • Lao L-J, Kawasaki Y, Yang K, Fujita T, Kumamoto E (2004) Modulation by adenosine of Aδ and C primary-afferent glutamatergic transmission in adult rat substantia gelatinosa neurons. Neuroscience 125:221–231

    Article  CAS  PubMed  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2A receptor. Nature 388:674–678

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-W, Yaksh TL (1996) Pharmacology of the spinal adenosine receptor which mediates the antiallodynic action of intrathecal adenosine agonists. J Pharmacol Exp Ther 277:1642–1648

    CAS  PubMed  Google Scholar 

  • Li X, Eisenach JC (2005) Adenosine reduces glutamate release in rat spinal synaptosomes. Anesthesiology 103:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Li J, Perl ER (1994) Adenosine inhibition of synaptic transmission in the substantia gelatinosa. J Neurophysiol 72:1611–1621

    CAS  PubMed  Google Scholar 

  • Li L, Hao JX, Fredholm BB, Schulte G, Wiesenfeld-Hallin Z, Xu XJ (2010) Peripheral adenosine A2A receptors are involved in carrageenan-induced mechanical hyperalgesia in mice. Neuroscience 170:923–928

    Article  CAS  PubMed  Google Scholar 

  • Lima FO, Souza GR, Verri WA, Parada CA, Ferreira SH, Cunha FQ, Cunha TM (2010) Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 151:506–515

    Article  CAS  PubMed  Google Scholar 

  • Liu XJ, White TD, Sawynok J (2002) Enhanced release of adenosine in rat hindpaw following spinal nerve ligation: involvement of capsaicin-sensitive sensory afferents. Neuroscience 114:379–387

    Article  CAS  PubMed  Google Scholar 

  • Loram LC, Harrison JA, Sloane EM, Hutchison MR, Sholar P, Taylor FR, Berkelhammer D, Coats BD, Poole S, Milligan ED, Maier SF, Riegers J, Watkins LR (2009) Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 29:14015–14025

    Article  CAS  PubMed  Google Scholar 

  • Maione S, de Novellis V, Cappellacci L, Palazzo E, Vita D, Luongo L, Stella L, Franchetti P, Marabese I, Rossi F, Grifantini M (2007) The antinociceptive effect of 2-chloro-2’-C-methyl-N6-cyclopentyladenosine (2’-Me-CCPA), a highly selective adenosine A1 receptor agonist, in the rat. Pain 131:281–292

    Article  CAS  PubMed  Google Scholar 

  • Marchand S, Li J, Charest J (1995) Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. N Eng J Med 333:325–326

    Article  CAS  Google Scholar 

  • Matsuka Y, Ono T, Iwase H, Mitrirattanakul S, Omote KS, Cho T, Lam YYN, Synder B, Spigelman I (2008) Altered ATP release and metabolism in dorsal root ganglia of neuropathic rats. Mol Pain 4:66

    Article  PubMed  CAS  Google Scholar 

  • Mauborgne A, Poliénor H, Hamon M, Cesselin F, Bourgoin S (2002) Adenosine receptor-mediated control of in vitro release of pain-related neuropeptides from the rat spinal cord. Eur J Pharmacol 441:47–55

    Article  CAS  PubMed  Google Scholar 

  • McGaraughty S, Chu K, Wismer CT, Mikusa J, Zhu CZ, Cowart M, Kowaluk EA, Jarvis MF (2001) Effects of A-134974, a novel ADO kinase inhibitor, on carrageenan-induced inflammatory hyperalgesia and locomotor activity in rats: evaluation of the sites of action. J Pharmacol Exp Ther 296:501–509

    CAS  PubMed  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF, Berman RF (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58

    Article  CAS  PubMed  Google Scholar 

  • Nascimento FP, Figueredo SM, Marcon R, Martins DF, Macedo SJ, Lima DAN, Almeida RC, Ostroski RM, Rodrigues ALS, Santos ARS (2010) Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways. J Pharmacol Exp Ther 334:590–598

    Article  CAS  PubMed  Google Scholar 

  • Nelapa I, Vetulani J, Borghi V, Kowalska M, Przewlocka B, Roman AD, Pavone F (2010) Changes induced by formalin pain in central α1-receptor density are modulated by adenosine receptor agonists. J Neural Transm 117:549–558

    Article  CAS  Google Scholar 

  • Nesher G, Mates M, Zevin S (2003) Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis. Arthritis Rheum 48:571–572

    Article  PubMed  Google Scholar 

  • NIH Consensus Conference (1998) Acupuncture. J Am Med Assoc 280:1518–1524

    Article  Google Scholar 

  • Ocaña M, Bayens JM (1994) Role of ATP-sensitive K+-channels in antinociception induced by R-PIA, an adenosine A1 receptor agonist. Naunyn Schmiedeberg’s Arch Pharmacol 350:57–62

    Article  Google Scholar 

  • Palmer H, Graham G, Williams K, Day R (2010) A risk-benefit assessment of paracetamol (acetaminophen) combined with caffeine. Pain Med 11:951–965

    Article  PubMed  Google Scholar 

  • Patel MK, Pinnock RD, Lee K (2001) Adenosine exerts multiple effects in dorsal horn neurones of the adult rat spinal cord. Brain Res 920:19–26

    Article  CAS  PubMed  Google Scholar 

  • Poon A, Sawynok J (1998) Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 74:235–245

    Article  CAS  PubMed  Google Scholar 

  • Raffa RB, Stone DJJR, Tallarida RJ (2000) Discovery of “self-synergistic” spinal/supraspinal antinociception produced by acetaminophen (paracetamol). J Pharmacol Exp Ther 295:291–294

    CAS  PubMed  Google Scholar 

  • Ramos-Zepeda G, Schröder W, Rosenow S, Herrero JF (2004) Spinal vs. supraspinal antinociceptive activity of the adenosine A1 receptor agonist cyclopentyl-adenosine in rats with inflammation. Eur J Pharmacol 499:247–256

    Article  CAS  PubMed  Google Scholar 

  • Reeve AJ, Dickenson AH (1995) The roles of spinal adenosine receptors in the control of acute and more persistent nociceptive responses of dorsal horn neurons in the anaesthetized rat. Br J Pharmacol 116:2221–2228

    Article  CAS  PubMed  Google Scholar 

  • Reeves JJ, Jones CA, Sheehan MJ, Cardey CJ, Whelan CJ (1997) Adenosine A3 receptors promote degranulation of rat mast cells both in vitro and in vivo. Inflamm Res 46:180–184

    Article  CAS  PubMed  Google Scholar 

  • Regaya I, Pham T, Andreotti N, Sauze N, Carrega L, Martin-Eauclaire MF, Jouirou B, Peragut JC, Vacher H, Rochat H, Devaux C, Sabatier JM, Guieu R (2004) Small conductance calcium-activated K+ channels, SkCa, but not voltage-gated K+ (Kv) channels, are implicated in the antinociception induced by CGS21680, a A2A adenosine receptor agonist. Life Sci 76:367–377

    Article  CAS  PubMed  Google Scholar 

  • Renner B, Clarke G, Grattan T, Beisel A, Mueller C, Werner U, Kobal G, Brune K (2007) Caffeine accelerates absorption and enhances the analgesic effect of acetaminophen. J Clin Pharmacol 47:715–726

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR, Stehle JH, Rivkees SA (1991) Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol 5:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Riberio JA, Sebastiao AM, Mendoca A (2003) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    Article  Google Scholar 

  • Rice ASC, Cimino-Brown D, Eisenach JC, Kontinen VK, Lacroix-Fralish ML, Machin I (2008) Animal models and the prediction of efficacy in clinical trials of analgesic drugs: a critical appraisal and call for uniform reporting standards. Pain 139:243–247

    Article  PubMed  Google Scholar 

  • Santicioli P, Del Bianco E, Maggi CA (1993) Adenosine A1 receptors mediate the presynaptic inhibition of calcitonin gene-related peptide release by adenosine in the rat spinal cord. Eur J Pharmacol 231:139–142

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 347:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J, Zarrindast MR, Reid AR, Doak GJ (1997) Adenosine A3 receptor activation produces nociceptive behavior and edema by release of histamine and 5-hydroxytryptamine. Eur J Pharmacol 333:1–7

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J, Reid AR, Fredholm BB (2008) Caffeine reverses antinociception by amitriptyline in wild type mice but not those lacking adenosine A1 receptors. Neurosci Lett 440:181–184

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J, Reid AR, Fredholm BB (2010) Caffeine reverses antinociception by oxcarbazepine by inhibition of adenosine A1 receptors: insights using knockout mice. Neurosci Lett 473:178–181

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AP, Böhmer AE, Antunes C, Schallenberger C, Porciúncula LO, Elisabetsky E, Lara DR, Souza DO (2009) Anti-nociceptive properties of the xanthine oxidase inhibitor allopurinal in mice: role of A1 adenosine receptors. Br J Pharmacol 156:163–172

    Article  CAS  PubMed  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Schulte G, Robertson B, Fredholm BB, DeLander GE, Shortland P, Molander C (2003) Distribution of antinociceptive adenosine A1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience 121:907–916

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Mohta M, Chawla R (2006) Efficacy of intrathecal adenosine for postoperative pain relief. Eur J Anaesthesiol 23:449–453

    Article  CAS  PubMed  Google Scholar 

  • Sneyd JR, Langton JA, Allan LG, Peacock JE, Rowbotham DJ (2007) Multicentre evaluation of the adenosine agonist GR79236X in patients with dental pain after third molar extraction. Br J Anaesth 98:672–676

    Article  CAS  PubMed  Google Scholar 

  • Sowa NA, Vadakkan KI, Zylka MJ (2009) Recombinant mouse PAP has pH-dependent ectonucleotidase activity and acts through A1-adenosine receptors to mediate antinociception. PLoS One 4:e4248

    Article  PubMed  CAS  Google Scholar 

  • Sowa NA, Street SE, Vihko P, Zylka MJ (2010a) Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate. J Neurosci 30:10282–10293

    Article  CAS  PubMed  Google Scholar 

  • Sowa NA, Taylor-Blake B, Zylka MJ (2010b) Ecto-5’-nucleotidase (CD73) inhibits nociception by hydrolyzing AMP to adenosine in nociceptive circuits. J Neurosci 30:2235–2244

    Article  CAS  PubMed  Google Scholar 

  • Sowa NA, Voss M, Zylka MJ (2010c) Recombinant ecto-5’-nucleotidase (CD73) has long lasting antinociceptive effects that are dependent on adenosine A1 receptor activation. Mol Pain 6:20

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Gale A, Dickenson AH (2000) Altered effects of an A1 adenosine receptor agonist on the evoked responses of spinal dorsal horn neurons in a rat model of mononeuropathy. J Pain 1:99–110

    Article  Google Scholar 

  • Taiwo YO, Levine JD (1990) Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 38:757–762

    Article  CAS  PubMed  Google Scholar 

  • Tanase D, Baghdoyan HA, Lydic R (2002) Microinjection of an adenosine A1 agonist into the medial pontine reticular formation increases tail flick latency to thermal stimulation. Anesthesiology 97:1597–1601

    Article  CAS  PubMed  Google Scholar 

  • Taylor-Blake B, Zylka MJ (2010) Prostatic acid phosphatase is expressed in peptidergic and nonpeptidergic nociceptive neurons of mice and rats. PLoS One 5:e8674

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Ji G, Wang C, Bai X, Lu Y, Xiong L (2010) Excitatory synaptic transmission in the spinal substantia gelatinosa is under an inhibitory tone of endogenous adenosine. Neurosci Lett 477:28–32

    Article  CAS  PubMed  Google Scholar 

  • Tomić MA, Vučović SM, Stepanović-Petrović RM, Ugrešić N, Prostran MS, Bošković B (2004) The anti-hyperalgesic effects of carbamazepine and oxcarbazepine are attenuated by treatment with adenosine receptor antagonists. Pain 111:253–260

    Article  PubMed  CAS  Google Scholar 

  • Wu W-P, Hao J-X, Halldner-Henricksson L, Xu XJ, Jacobson MA, Wiesenfeld-Hallin Z, Fredholm BB (2002) Decreased inflammatory pain due to reduced carrageenan-induced inflammation in mice lacking adenosine A3 receptors. Neuroscience 114:523–527

    Article  CAS  PubMed  Google Scholar 

  • Wu W-P, Hao J-X, Halldner L, Lövdahl C, DeLander GE, Wisenfeldl-Hallin Z, Fredholm BB, Xu X-J (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113:395–404

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, Jones MR, St. Hilaire C, Seldin DC, Toselli P, Lamperti E, Schreiber BM, Gavras H, Wagner DD, Ravid K (2006) The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 116:1913–1923

    Article  CAS  PubMed  Google Scholar 

  • Zahn PK, Straub H, Wenk M, Pogatzki-Zahn EM (2007) Adenosine A1 but not A2a receptor agonist reduces hyperalgesia caused by a surgical incision in rats. A pertussis toxin-sensitive G protein-dependent process. Anesthesiology 107:797–806

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZQ (2008) Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 85:355–375

    Article  PubMed  Google Scholar 

  • Zhu CZ, Mikusa J, Chu K, Cowart M, Kowaluk EA, Jarvis MF (2001) A-134974, a novel ADO kinase inhibitor, relieves tactile allodynia via spinal sites of action in peripheral nerve injured rats. Brain Res 905:104–110

    Article  CAS  PubMed  Google Scholar 

  • Zylka MJ (2010) Needling adenosine receptors for pain relief. Nat Neurosci 13:783–784

    Article  CAS  PubMed  Google Scholar 

  • Zylka MJ (2011) Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 17:188–196

    Article  CAS  PubMed  Google Scholar 

  • Zylka MJ, Sowa NA, Taylor-Blake B, Twomey MA, Herrala A, Voikar V, Vihko P (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60:111–122

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Sawynok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sawynok, J. (2013). Adenosine and Pain. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_17

Download citation

Publish with us

Policies and ethics