Skip to main content

Adenosine and Metabolism—A Brief Historical Note

  • Chapter
  • First Online:

Abstract

Research on adenosine has a long history, and since the beginning more than 80 years ago there has been a link to energy metabolism. This is due to the fact that levels of adenosine increase under conditions of relative energy deficiency and that adenosine can have actions that limit this: increase respiration, increase blood flow, and reduce cellular work. There are also effects on intermediary metabolism and on overall energy homeostasis. This minireview provides a brief and personal historical background to these developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arch JR, Newsholme EA (1978) Activities and some properties of 5′-nucleotidase, adenosine kinase and adenosine deaminase in tissues from vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine. Biochem J 174:965–977

    CAS  PubMed  Google Scholar 

  • Atkinson B, Dwyer K, Enjyoji K, Robson SC (2006) Ecto-nucleotidases of the CD39/NTPDase family modulate platelet activation and thrombus formation: potential as therapeutic targets. Blood Cells Mol Dis 36:217–222

    Article  CAS  PubMed  Google Scholar 

  • Ballarin M, Fredholm BB, Ambrosio S, Mahy N (1991) Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta Physiol Scand 142:97–103

    Article  CAS  PubMed  Google Scholar 

  • Beldi G, Enjyoji K, Wu Y, Miller L, Banz Y, Sun X, Robson SC (2008) The role of purinergic signaling in the liver and in transplantation: effects of extracellular nucleotides on hepatic graft vascular injury, rejection and metabolism. Front Biosci 13:2588–2603

    Article  PubMed  Google Scholar 

  • Bennet DW, Drury AN (1931) Further observations relating to the physiological activity of adenine compounds. J Physiol 72:288–320

    CAS  PubMed  Google Scholar 

  • Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    CAS  PubMed  Google Scholar 

  • Boison D (2006) Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 27:652–658

    Article  CAS  PubMed  Google Scholar 

  • Burgess FW, el Kouni MH, Parks RE Jr (1985) Nucleotidase activities of human peripheral lymphocytes. Biochem Pharmacol 34:3061–3070

    Article  CAS  PubMed  Google Scholar 

  • Butcher RW, Ho RJ, Meng HC, Sutherland EW (1965) Adenosine 3′,5′-monophosphate in biological materials. II. The measurement of adenosine 3′,5′-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J Biol Chem 240:4515–4523

    CAS  PubMed  Google Scholar 

  • Caputto R (1951) The enzymatic synthesis of adenylic acid; adenosinekinase. J Biol Chem 189:801–814

    CAS  PubMed  Google Scholar 

  • Cass CE, Paterson AR (1975) Inhibition by nitrobenzylthioinosine of uptake of adenosine, 2′-deoxyadenosine and 9-beta-D-arabinofuranosyladenine by human and mouse erythrocytes. Biochem Pharmacol 24:1989–1993

    Article  CAS  PubMed  Google Scholar 

  • Chapal J, Loubatieres-Mariani MM, Roye M (1981) Effect of adenosine and phosphated derivatives on insulin release from the newborn dog pancreas. J Physiol (Paris) 77:873–875

    CAS  Google Scholar 

  • Conway EJ, Cooke R (1939) The deaminases of adenosine and adenylic acid in blood and tissues. Biochem J 33:479–492

    CAS  PubMed  Google Scholar 

  • Curnish RR, Berne RM, Rubio R (1972) Effect of aminophylline on myocardial reactive hyperemia. Proc Soc Exp Biol Med 141:593–598

    CAS  PubMed  Google Scholar 

  • Deussen A, Borst M, Kroll K, Schrader J (1988a) Formation of S-adenosylhomocysteine in the heart. II: a sensitive index for regional myocardial underperfusion. Circ Res 63:250–261

    Article  CAS  PubMed  Google Scholar 

  • Deussen A, Borst M, Schrader J (1988b) Formation of S-adenosylhomocysteine in the heart. I: an index of free intracellular adenosine. Circ Res 63:240–249

    Article  CAS  PubMed  Google Scholar 

  • Dhalla AK, Shryock JC, Shreeniwas R, Belardinelli L (2003) Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr Top Med Chem 3:369–385

    Article  CAS  PubMed  Google Scholar 

  • Dole VP (1962) Insulin-like actions of ribonucleic acid, adenylic acid, and adenosine. J Biol Chem 237:2758–2762

    CAS  PubMed  Google Scholar 

  • Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 102:1713–1726

    Article  CAS  PubMed  Google Scholar 

  • Drury AN (1932) Nucleic acid derivatives and the heart beat. J Physiol 74:147–155

    CAS  PubMed  Google Scholar 

  • Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237

    CAS  PubMed  Google Scholar 

  • Duff F, Patterson GC, Shepherd JT (1954) A quantitative study of the response to adenosine triphosphate of the blood vessels of the human hand and forearm. J Physiol 125:581–589

    CAS  PubMed  Google Scholar 

  • Duncker DJ, Merkus D (2007) Exercise hyperaemia in the heart: the search for the dilator mechanism. J Physiol 583:847–854

    Article  CAS  PubMed  Google Scholar 

  • Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K et al (2007) Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115:1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Eltzschig HK, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson SC, Colgan SP (2006) ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 99:1100–1108

    Article  CAS  PubMed  Google Scholar 

  • Embden G, Zimmermann M (1927) Z Physiol Chem 167:137

    Article  CAS  Google Scholar 

  • Enjyoji K, Kotani K, Thukral C, Blumel B, Sun X, Wu Y, Imai M, Friedman D, Csizmadia E, Bleibel W et al (2008) Deletion of cd39/entpd1 results in hepatic insulin resistance. Diabetes 57:2311–2320

    Article  CAS  PubMed  Google Scholar 

  • Estler CJ (1976) Stoffwechsel Einzelner Organe. In: Eichler O (ed) Kaffee und Coffein. Springer-Verlag, Berlin, pp 183–213

    Chapter  Google Scholar 

  • Estler CJ, Ammon HP, Herzog C (1978) Swimming capacity of mice after prolonged treatment with psychostimulants. I. Effects of caffeine on swimming performance and cold stress. Psychopharmacology (Berl) 58:161–166

    Article  CAS  Google Scholar 

  • Fain JN (1973a) Biochemical aspects of drug and hormone action on adipose tissue. Pharmacol Rev 25:67–118

    CAS  PubMed  Google Scholar 

  • Fain JN (1973b) Inhibition of adenosine cyclic 3′, 5′-monophosphate accumulation in fat cells by adenosine, N6-(phenylisopropyl) adenosine, and related compounds. Mol Pharmacol 9:595–604

    CAS  PubMed  Google Scholar 

  • Fain JN, Pointer RH, Ward WF (1972) Effects of adenosine nucleosides on adenylate cyclase, phosphodiesterase, cyclic adenosine monophosphate accumulation, and lipolysis in fat cells. J Biol Chem 247:6866–6872

    CAS  PubMed  Google Scholar 

  • Fain JN, Wieser PB (1975) Effects of adenosine deaminase on cyclic adenosine monophosphate accumulation, lipolysis, and glucose metabolism of fat cells. J Biol Chem 250:1027–1034

    CAS  PubMed  Google Scholar 

  • Feigl EO (2004) Berne’s adenosine hypothesis of coronary blood flow control. Am J Physiol Heart Circ Physiol 287:H1891–H1894

    Article  CAS  PubMed  Google Scholar 

  • Feldberg LA, Sherwood PD (1954) Injection of drugs into the lateral ventricle of the cat. J Physiol Lond 123:148–167

    CAS  PubMed  Google Scholar 

  • Ferrans VJ, Hibbs RG, Buja LM (1969) Nucleoside phosphatase activity in atrial and ventricular myocardium of the rat: a light and electron microscopic study. Am J Anat 125:47–85

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB (1974) Vascular and metabolic effects of theophylline, dibuturyl cyclic AMP and dibuturyl cyclic GMP in canine subcutaneous adipose tissue in situ. Acta Physiol Scand 90:226–236

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB (1976) Release of adenosine-like material from isolated perfused dog adipose tissue following sympathetic nerve stimulation and its inhibition by adrenergic alpha-receptor blockade. Acta Physiol Scand 96:122–130

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Dunwiddie TV (1988) How does adenosine inhibit transmitter release? Trends Pharmacol Sci 9:130–134

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Hedqvist P (1978) Release of 3H-purines from [3H]-adenine labelled rabbit kidney following sympathetic nerve stimulation, and its inhibition by alpha-adrenoceptor blockage. Br J Pharmacol 64:239–245

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Hedqvist P (1980) Modulation of neurotransmission by purine nucleotides and nucleosides. Biochem Pharmacol 29:1635–1643

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Lerner U (1982) Metabolism of adenosine and 2′-deoxy-adenosine by fetal mouse calvaria in culture. Med Biol 60:267–271

    CAS  PubMed  Google Scholar 

  • Frick GP, Lowenstein JM (1978) Vectorial production of adenosine by 5′-nucleotidase in the perfused rat heart. J Biol Chem 253:1240–1244

    CAS  PubMed  Google Scholar 

  • Frohlich ED (1963) Local effect of adenosine mono-, di-, and triphosphate vessel resistance. Am J Physiol 204:28–30

    CAS  PubMed  Google Scholar 

  • Gercken G (1961) Glucose, lactic acid, ATP and ADP concentrations in the arterial and venous coronary blood of dogs in oxygen deficiency. Pflugers Arch Gesamte Physiol Menschen Tiere 272:323–335

    Article  CAS  PubMed  Google Scholar 

  • Gerlach E, Deuticke B (1966) Comparative studies on the formation of adenosine in the myocardium of different animal species in oxygen deficiency. Klin Wochenschr 44:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Gerlach E, Deuticke B, Dreisbach RH, Rosarius CW (1963) On the behavior of nucleotides and their dephosphorylation degradation products in the kidney in ischemia and short-term post-ischemic re-establishment of blood circulation. Pflugers Arch Gesamte Physiol Menschen Tiere 278:296–315

    Article  CAS  PubMed  Google Scholar 

  • Gordon GB, Price HM, Blumberg JM (1967) Electron microscopic localization of phosphatase activities within striated muscle fibers. Lab Invest 16:422–435

    CAS  PubMed  Google Scholar 

  • Gordon JS, Torack RM (1967) Inhibition of cerebral adenosinetriphosphatase activity by various aldehyde fixatives. J Neurochem 14:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Gulland JM, Jackson EM (1938) 5-Nucleotidase. Biochem J 32:597–601

    CAS  PubMed  Google Scholar 

  • Hart ML, Henn M, Kohler D, Kloor D, Mittelbronn M, Gorzolla IC, Stahl GL, Eltzschig HK (2008) Role of extracellular nucleotide phosphohydrolysis in intestinal ischemia-reperfusion injury. FASEB J 22:2784–2797

    Article  CAS  PubMed  Google Scholar 

  • Harvey RB (1963) Characteristics of blood flow in branches of the renal artery. Am J Physiol 205:977–981

    CAS  PubMed  Google Scholar 

  • Harvey RB (1964) Effects of adenosinetriphosphate on autoregulation of renal blood flow and glomerular filtration rate. Circ Res 15(Suppl):178–182

    CAS  PubMed  Google Scholar 

  • Hedqvist P, Fredholm BB (1976) Effects of adenosine on adrenergic neurotransmission; prejunctional inhibition and postjunctional enhancement. Naunyn Schmiedebergs Arch Pharmacol 293:217–223

    Article  CAS  PubMed  Google Scholar 

  • Hedqvist P, Fredholm BB, Olundh S (1978) Antagonistic effects of theophylline and adenosine on adrenergic neuroeffector transmission in the rabbit kidney. Circ Res 43:592–598

    Article  CAS  PubMed  Google Scholar 

  • Heller HC, Ruby NF (2004) Sleep and circadian rhythms in mammalian torpor. Annu Rev Physiol 66:275–289

    Article  CAS  PubMed  Google Scholar 

  • Hershfield MS, Krodich NM (1978) S-adenosylhomocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science 202:757–760

    Article  CAS  PubMed  Google Scholar 

  • Hillaire-Buys D, Bertrand G, Gross R, Loubatieres-Mariani MM (1987) Evidence for an inhibitory A1 subtype adenosine receptor on pancreatic insulin-secreting cells. Eur J Pharmacol 136:109–112

    Article  CAS  PubMed  Google Scholar 

  • Hjemdahl P, Fredholm BB (1976) Cyclic AMP-dependent and independent inhibition of lipolysis by adenosine and decreased pH. Acta Physiol Scand 96:170–179

    Article  CAS  PubMed  Google Scholar 

  • Horne J (2009) REM sleep, energy balance and ‘optimal foraging’. Neurosci Biobehav Rev 33:466–474

    Article  PubMed  Google Scholar 

  • Houck CR, Bing RJ et al (1947) Renal hyperemia in the dog after intravenous infusion of adenosine, adenylic acid, or adenosinetriphosphate. Fed Proc 6:132

    Google Scholar 

  • Hynie S, Krishna G, Brodie BB (1966) Theophylline as a tool in studies of the role of cyclic adenosine 3’,5’-monophosphate in hormone-induced lipolysis. J Pharmacol Exp Ther 153:90–96

    CAS  PubMed  Google Scholar 

  • Imai S, Riley AL, Berne RM (1964) Effect of Ischemia on Adenine Nucleotides in Cardiac and Skeletal Muscle. Circ Res 15:443–450

    Article  CAS  PubMed  Google Scholar 

  • Itoh R, Mitsui A, Tsushima K (1967) 5′-nucleotidase of chicken liver. Biochim Biophys Acta 146:151–159

    Article  CAS  PubMed  Google Scholar 

  • Johansson SM, Lindgren E, Yang JN, Herling AW, Fredholm BB (2008) Adenosine A1 receptors regulate lipolysis and lipogenesis in mouse adipose tissue-interactions with insulin. Eur J Pharmacol 597:92–101

    Article  CAS  PubMed  Google Scholar 

  • Johansson SM, Salehi A, Sandstrom ME, Westerblad H, Lundquist I, Carlsson PO, Fredholm BB, Katz A (2007) A1 receptor deficiency causes increased insulin and glucagon secretion in mice. Biochem Pharmacol 74:1628–1635

    Article  CAS  PubMed  Google Scholar 

  • Kakiuchi S, Rall TW, McIlwain H (1969) The effect of electrical stimulation upon the accumulation of adenosine 3′,5′-phosphate in isolated cerebral tissue. J Neurochem 16:485–491

    Article  CAS  PubMed  Google Scholar 

  • Kalckar HM, Lowry OH (1947) The relationship between traumatic shock and the release of adenylic acid compounds. Am J Physiol 149:240–245

    CAS  PubMed  Google Scholar 

  • Katori M, Berne RM (1966) Release of adenosine from anoxic hearts. Relationship to coronary flow. Circ Res 19:420–425

    Article  CAS  PubMed  Google Scholar 

  • Kayser C, Malan A (1963) Central nervous system and hibernation. Experientia 19:441–451

    Article  CAS  PubMed  Google Scholar 

  • Klein W (1935) Experimentelle Studien über den Nucleinstoffwechsel. XXXVII. Über Nucleosidase. Hoppe-Seyler’s Z Physiol Chem 231:125–148

    Article  CAS  Google Scholar 

  • Kovach AG, Bagdy D, Balazs R, Antoni F, Gergely J, Menyhart J, Iranyi M, Kovach E (1952) Traumatic shock and adenosine triphosphate. Acta Physiol Hung 3:330–344

    CAS  PubMed  Google Scholar 

  • Kredich NM, Martin DV Jr (1977) Role of S-adenosylhomocysteine in adenosinemediated toxicity in cultured mouse T lymphoma cells. Cell 12:931–938

    Article  CAS  PubMed  Google Scholar 

  • Kuroda Y, McIlwain H (1974) Uptake and relase of (14 C)adenine derivatives at beds of mammalian cortical synaptosomes in a superfusion system. J Neurochem 22:691–699

    Article  CAS  PubMed  Google Scholar 

  • Lankford AR, Yang JN, Rose’Meyer R, French BA, Matherne GP, Fredholm BB, Yang Z (2006) Effect of modulating cardiac A1 adenosine receptor expression on protection with ischemic preconditioning. Am J Physiol Heart Circ Physiol 290:H1469–H1473

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Hudson R, Kilpatrick K, Graham TE, Ross R (2005) Caffeine ingestion is associated with reductions in glucose uptake independent of obesity and type 2 diabetes before and after exercise training. Diabetes Care 28:566–572

    Article  CAS  PubMed  Google Scholar 

  • Li T, Lan JQ, Fredholm BB, Simon RP, Boison D (2007) Adenosine dysfunction in astrogliosis: cause for seizure generation? Neuron Glia Biol 3:353–366

    Article  PubMed  Google Scholar 

  • Lindner F, Rigler R (1931) Über die Beeinflussung der Weite der Herzkranzgefässe durch Produkte des Zellkernstoffwechsels. Pflugers Arch 226:697–708

    Article  CAS  Google Scholar 

  • Lloyd HG, Lindstrom K, Fredholm BB (1993) Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Neurochem Int 23:173–185

    Article  CAS  PubMed  Google Scholar 

  • Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A 77:2551–2554

    Article  CAS  PubMed  Google Scholar 

  • MacDonald PE, Braun M, Galvanovskis J, Rorsman P (2006) Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab 4:283–290

    Article  CAS  PubMed  Google Scholar 

  • Masino SA, Li T, Theofilas P, Sandau US, Ruskin DN, Fredholm BB, Geiger JD, Aronica E, Boison D (2011) A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J Clin Invest 121:2679–2683

    Article  CAS  PubMed  Google Scholar 

  • Massion WH, Talaat SM, Schilling JA (1965) Protective effects of adenosine triphosphate administration in irreversible hemorrhagic shock. Anesth Analg 44:104–109

    Article  CAS  PubMed  Google Scholar 

  • McManus JF, Lupton CH, Harden G (1952) Histochemical studies of 5 nucleotidase. I. Method and specificity. Lab Invest 1:480–487

    CAS  PubMed  Google Scholar 

  • Mustafa SJ, Berne RM, Rubio R (1975a) Adenosine metabolism in cultured chick-embryo heart cells. Am J Physiol 228:1474–1478

    CAS  PubMed  Google Scholar 

  • Mustafa SJ, Rubio R, Berne RM (1975b) Uptake of adenosine by dispersed chich embryonic cardiac cells. Am J Physiol 228:62–67

    CAS  PubMed  Google Scholar 

  • Newby AC, Worku Y, Holmquist CA (1985) Adenosine formation. Evidence for a direct biochemical link with energy metabolism. Adv Myocardiol 6:273–284

    CAS  PubMed  Google Scholar 

  • Ninomiya H, Buxton RW, Michaelis M (1961a) A note on adenosine and adenylate deaminases in brain and quadriceps muscle of the rat in Noble-Collip drum shock. Bull Sch Med Univ Md 46:61–64

    CAS  PubMed  Google Scholar 

  • Ninomiya H, Buxton RW, Michaelis M (1961b) Observations on rat brain dehydrogenases in tumbling shock. Enzymologia 23:78–84

    CAS  PubMed  Google Scholar 

  • Nunez A, Rodrigo-Angulo ML, Andres ID, Garzon M (2009) Hypocretin/Orexin neuropeptides: participation in the control of sleep-wakefulness cycle and energy homeostasis. Curr Neuropharmacol 7:50–59

    Article  CAS  PubMed  Google Scholar 

  • Okada SF, Nicholas RA, Kreda SM, Lazarowski ER, Boucher RC (2006) Physiological regulation of ATP release at the apical surface of human airway epithelia. J Biol Chem 281:22992–23002

    Article  CAS  PubMed  Google Scholar 

  • Oliver JM, Paterson AR (1971) Nucleoside transport. I. A mediated process in human erythrocytes. Can J Biochem 49:262–270

    Article  CAS  PubMed  Google Scholar 

  • Osswald H (1975) Renal effects of adenosine and their inhibition by theophylline in dogs. Naunyn Schmiedebergs Arch Pharmacol 288:79–86

    Article  CAS  PubMed  Google Scholar 

  • Osswald H, Schmitz HJ, Kemper R (1977) Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and postischemic recirculation. Pflugers Arch 371:45–49

    Article  CAS  PubMed  Google Scholar 

  • Parkinson FE, Damaraju VL, Graham K, Yao SY, Baldwin SA, Cass CE, Young JD (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11:948–972

    Article  CAS  PubMed  Google Scholar 

  • Paterson AR, Kolassa N, Cass CE (1981) Transport of nucleoside drugs in animal cells. Pharmacol Ther 12:515–536

    Article  CAS  PubMed  Google Scholar 

  • Pearse AG, Reis JL (1952) The histochemical demonstration of a specific phosphatase (5-nucleotidase). Biochem J 50:534–536

    CAS  PubMed  Google Scholar 

  • Piorkowski G (1950) Adenylphosphoric acid in the treatment of disorders of the coronary circulation. Ther Ggw 89:314–315

    CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjørkum AA, Greene RW, McCarley RW (1997) Adenosine: A mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    Article  CAS  PubMed  Google Scholar 

  • Pull I, McIlwain H (1972) Output of (14 C)adenine derivatives on electrical excitation of tissues from the brain: calcium ion-sensitivity and an accompanying re-uptake process. Biochem J 127:91P

    CAS  PubMed  Google Scholar 

  • Pull I, McIlwain H (1973) Output of (14 C)adenine nucleotides and their derivatives from cerebral tissues. Tetrodotoxin-resistant and calcium ion-requiring components. Biochem J 136:893–901

    CAS  PubMed  Google Scholar 

  • Radulovacki M, Virus RM, Djuricic-Nedelson M, Green RD (1984) Adenosine analogs and sleep in rats. J Pharmacol Exp Ther 228:268–274

    CAS  PubMed  Google Scholar 

  • Reis JL (1950) Studies on 5-nucleotidase and its distribution in human tissues. Biochem J 2:21–22

    CAS  PubMed  Google Scholar 

  • Resta R, Yamashita Y, Thompson LF (1998) Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol Rev 161:95–109

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JA, Dominguez ML (1978) Mechanisms of depression of neuromuscular transmission by ATP and adenosine. J Physiol (Paris) 74:491–496

    CAS  Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    CAS  PubMed  Google Scholar 

  • Rothmann H (1930) Der Einflub der Adenosinphosphosaure auf die Herztatigkeit. (The effect of adenosine phosphoric acid on cardiac activity.). Naunyn Schmiedeberg’s Arch E xp Path Pharmakol 155:129–138

    Article  CAS  Google Scholar 

  • Rowe GG, Afonso S, Gurtner HP, Chelius CJ, Lowe WC, Castillo CA, Crumpton CW (1962) The systemic and coronary hemodynamic effects of adenosine triphosphate and adenosine. Am Heart J 64:228–234

    Article  CAS  PubMed  Google Scholar 

  • Rubio R, Berne RM (1969) Release of adenosine by the normal myocardium in dogs and its relationship to the regulation of coronary resistance. Circ Res 25:407–415

    Article  CAS  PubMed  Google Scholar 

  • Rubio R, Berne RM, Bockman EL, Curnish RR (1975) Relationship between adenosine concentration and oxygen supply in rat brain. Am J Physiol 228:1896–1902

    CAS  PubMed  Google Scholar 

  • Rubio R, Berne RM, Katori M (1969) Release of adenosine in reactive hyperemia of the dog heart. Am J Physiol 216:56–62

    CAS  PubMed  Google Scholar 

  • Salehi A, Parandeh F, Fredholm BB, Grapengiesser E, Hellman B (2009) Absence of adenosine A1 receptors unmasks pulses of insulin release and prolongs those of glucagon and somatostatin. Life Sci 85:470–476

    Article  CAS  PubMed  Google Scholar 

  • Saper CB (2006) Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog Brain Res 153:243–252

    Article  CAS  PubMed  Google Scholar 

  • Schmidt G (1928) Über fermentative desaminierung im Muskel. (On enzymatic deamination in muscle.). Hoppe-Seyler’s Z Physiol Chem 179:243–282

    Article  CAS  Google Scholar 

  • Schnermann J, Osswald H, Hermle M (1977) Inhibitory effect of methylxanthines on feedback control of glomerular filtration rate in the rat kidney. Pflugers Arch 369:39–48

    Article  CAS  PubMed  Google Scholar 

  • Schrader J, Schutz W, Bardenheuer H (1981) Role of S-adenosylhomocysteine hydrolase in adenosine metabolism in mammalian heart. Biochem J 196:65–70

    CAS  PubMed  Google Scholar 

  • Schutz W, Schrader J, Gerlach E (1981) Different sites of adenosine formation in the heart. Am J Physiol 240:H963–H970

    CAS  PubMed  Google Scholar 

  • Scott NS, Falconer IR (1965) Enzymic assay of adenosine 3’,5’-monophosphate. Anal Biochem 13:71–73

    Article  CAS  PubMed  Google Scholar 

  • Sharma GP, Eiseman B (1966) Protective effect of ATP in experimental hemorrhagic shock. Surgery 59:66–75

    CAS  PubMed  Google Scholar 

  • Smith CM, Henderson JF (1982) Deoxyadenosine triphosphate accumulation in erythrocytes of deoxycoformycin-treated mice. Biochem Pharmacol 31:1545–1551

    Article  CAS  PubMed  Google Scholar 

  • Stoner HB, Green HN (1945a) The action of magnesium and calcium on the enzymic breakdown of certain adenine compounds. Biochem J 39:474–478

    CAS  Google Scholar 

  • Stoner HB, Green HN (1945b) Experimental limb ischaemia in man with especial reference to the role of adenosine triphosphate. Clin Sci 5:159–175

    CAS  PubMed  Google Scholar 

  • Thithapandha A, Maling HM, Gillette JR (1972) Effects of caffeine and theophylline on activity of rats in relation to brain xanthine concentrations. Proc Soc Exp Biol Med 139:582–586

    CAS  PubMed  Google Scholar 

  • Tritsch GL, Paolini NS, Bielat K (1985) Adenosine deaminase activity associated with phagocytic vacuoles. Cytochemical demonstration by electron microscopy. Histochemistry 82:281–285

    Article  CAS  PubMed  Google Scholar 

  • Vallon V, Muhlbauer B, Osswald H (2006) Adenosine and kidney function. Physiol Rev 86:901–940

    Article  CAS  PubMed  Google Scholar 

  • van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  • Vapaatalo H, Bieck P, Westermann E (1972) Actions of various cyclic nucleotides, nucleosides and purine bases on the synthesis of corticosterone in vitro. Naunyn Schmiedebergs Arch Pharmacol 275:435–443

    Article  CAS  PubMed  Google Scholar 

  • Vapaatalo H, Neuvonen PJ, Bieck P, Westermann E (1975a) Actions of various methylxanthines and papaverine on the synthesis of corticosterone in vitro. Arzneimittelforschung 25:1265–1269

    CAS  PubMed  Google Scholar 

  • Vapaatalo H, Onken D, Neuvonen PJ, Westermann E (1975b) Stereospecificity in some central and circulatory effects of phenylisopropyl-adenosine (PIA). Arzneimittelforschung 25:407–410

    CAS  PubMed  Google Scholar 

  • Wohlhueter RM, Plagemann PG (1982) On the functional symmetry of nucleoside transport in mammalian cells. Biochim Biophys Acta 689:249–260

    Article  CAS  PubMed  Google Scholar 

  • Wohlhueter RM, Plagemann PGW (1980) The role of transport and phosphorylation in the uptake of nutrients in cells in culture. Int Rev Cytol 64:171–240

    Article  CAS  PubMed  Google Scholar 

  • Yang SC, Chiu TH, Yang HW, Min MY (2007) Presynaptic adenosine A1 receptors modulate excitatory synaptic transmission in the posterior piriform cortex in rats. Brain Res 1156:67–79

    Article  CAS  PubMed  Google Scholar 

  • Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  CAS  PubMed  Google Scholar 

  • Zydowo M (1959) Deaminases of adenylic acid and adenosine in rat kidney. Nature 184(Suppl 21):1641–1642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

In writing this I have repeatedly consulted an unpublished review by R.A. Olsson, A History of Adenosine Research. I am most grateful to him for letting me read it. I am also grateful to numerous coworkers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertil B. Fredholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fredholm, B.B. (2013). Adenosine and Metabolism—A Brief Historical Note. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_1

Download citation

Publish with us

Policies and ethics