Skip to main content

Linear Models with Heterogeneous Variance

  • Chapter
  • First Online:
Linear Mixed-Effects Models Using R

Part of the book series: Springer Texts in Statistics ((STS))

  • 20k Accesses

Abstract

In Chap. 4, we formulated the classical LM for independent observations. The key assumptions underlying the model are that the observations are independent and normally distributed with a constant, i.e., homogeneous variance, and that the expected value of the observations can be expressed as a linear function of covariates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baayen, R., Davidson, D., & Bates, D. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.

    Article  Google Scholar 

  • Bates, D. (2012). Computational Methods for Mixed Models. R Foundation for Statistical Computing.

    Google Scholar 

  • Bates, D., & Maechler, M. (2012). Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.0–10. http://CRAN.R-project.org/package=Matrix.

  • Bates, D., Maechler, M., & Bolker, B. (2012). Fitting linear mixed-effects models using lme4. Journal of Statistical Software (forthcoming).

    Google Scholar 

  • Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time Series Analysis. Prentice Hall Inc., third ed. Forecasting and control.

    Google Scholar 

  • Cantrell, C. (2000). Modern Mathematical Methods for Physicists and Engineers. Cambridge University Press.

    Google Scholar 

  • Carroll, R., & Ruppert, D. (1988). Transformation and Weighting in Regression. Chapman & Hall/CRC.

    Google Scholar 

  • Chambers, J., & Hastie, T. (1992). Statistical Models in S. Wadsworth & Brooks/Cole Advanced Books & Software.

    Google Scholar 

  • Chatterjee, S., Hadi, A., & Price, B. (2000). The Use of Regression Analysis by Example. John Wiley & Sons.

    Google Scholar 

  • Claflin, D.R., Larkin, L.M., Cederna, P.S., Horowitz, J.F., Alexander, N.B., Cole, N.M., Galecki, A.T., Chen, S., Nyquist, L.V., Carlson, B.M., Faulkner, J.A., & Ashton-Miller, J.A. (2011) Effects of high- and low-velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. Journal of Applied Physiology, 111, 1021–1030.

    Article  Google Scholar 

  • Crainiceanu, C., & Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one variance component. Journal of the Royal Statistical Society: Series B, 66, 165–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie, N., & Hawkins, D. (1980). Robust estimation of the variogram: I. Mathematical Geology, 12(2), 115–125.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. A. C. (1991). Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons.

    Google Scholar 

  • Dahl, D. B. (2009). xtable: Export tables to LaTeX or HTML. R package version 1.5-6. http://CRAN.R-project.org/package=xtable.

  • Dalgaard, P. (2008). Introductory Statistics with R. Springer Verlag.

    Google Scholar 

  • Davidian, M., & Giltinan, D. (1995). Nonlinear Models for Repeated Measurement Data. Chapman & Hall.

    Google Scholar 

  • Demidenko, E. (2004). Mixed Models: Theory and Applications. Wiley-Interscience, first ed.

    Google Scholar 

  • Fai, A., & Cornelius, P. (1996). Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments. Journal of Statistical Computation and Simulation, 54(4), 363–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004). Applied Longitudinal Analysis. Wiley Series in Probability and Statistics. John Wiley & Sons.

    MATH  Google Scholar 

  • Galecki, A. (1994). General class of covariance structures for two or more repeated factors in longitudinal data analysis. Communications in Statistics-Theory and Methods, 23(11), 3105–3119.

    Article  MATH  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian Data Analysis. Texts in Statistical Science Series. Chapman & Hall.

    Google Scholar 

  • Golub, G. H., & Van Loan, C. F. (1989). Matrix Computations, vol. 3 of Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, second ed.

    Google Scholar 

  • Gurka, M. (2006). Selecting the best linear mixed model under REML. The American Statistician, 60(1), 19–26.

    Article  MathSciNet  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer.

    Google Scholar 

  • Helms, R. (1992). Intentionally incomplete longitudinal designs: I. Methodology and comparison of some full span designs. Statistics in Medicine, 11(14-15), 1889–1913.

    Google Scholar 

  • Henderson, C. (1984). Applications of Linear Models in Animal Breeding. University of Guelph.

    Google Scholar 

  • Hill, H., Rowan, B., & Ball, D. (2005). Effect of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42, 371– 406.

    Article  Google Scholar 

  • Janssen, R., Tuerlinckx, F., Meulders, M., & De Boeck, P. (2000). A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 25(3), 285.

    Google Scholar 

  • Jones, R. (1993). Longitudinal Data with Serial Correlation: A State-space Approach. Chapman & Hall/CRC.

    Google Scholar 

  • Kenward, M., & Roger, J. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53(3), 983–997.

    Article  MATH  Google Scholar 

  • Laird, N., & Ware, J. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963–974.

    Article  MATH  Google Scholar 

  • Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate data analysis. In W. HĂ€rdle, & B. Rönz (eds.) Compstat 2002 — Proceedings in Computational Statistics, (pp. 575–580). Physica Verlag, Heidelberg.

    Google Scholar 

  • Lenth, R. (2001). Some practical guidelines for effective sample size determination. The American Statistician, 55(3), 187–193.

    Article  MathSciNet  Google Scholar 

  • Liang, K.-Y., & Self, S. G. (1996). On the asymptotic behaviour of the pseudolikelihood ratio test statistic. Journal of the Royal Statistical Society: Series B, 58(4), 785–796.

    MathSciNet  MATH  Google Scholar 

  • Litell, R., Milliken, G., Stroup, W., Wolfinger, R., & Schabenberger, O. (2006). SAS for Mixed Models. SAS Publishing.

    Google Scholar 

  • Molenberghs, G., & Verbeke, G. (2007). Likelihood ratio, score, and Wald tests in a constrained parameter space. The American Statistician, 61(1), 22–27.

    Article  MathSciNet  Google Scholar 

  • Murrell, P. (2005). R Graphics. Chapman & Hall/CRC.

    Google Scholar 

  • Murrell, P., & Ripley, B. (2006). Non-standard fonts in postscript and pdf graphics. The Newsletter of the R Project, 6(2), 41.

    Google Scholar 

  • Neter, J., Wasserman, W., & Kutner, M. (1990). Applied Linear Statistical Models. Irwin

    Google Scholar 

  • Pharmacological Therapy for Macular Degeneration Study Group (1997). Interferon α-IIA is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration. Results of a prospective randomized placebo-controlled clinical trial. Archives of Ophthalmology, 115, 865–872.

    Google Scholar 

  • Pinheiro, J., & Bates, D. (1996). Unconstrained parametrizations for variance-covariance matrices. Statistics and Computing, 6(3), 289–296.

    Article  Google Scholar 

  • Pinheiro, J., & Bates, D. (2000). Mixed-effects Models in S and S-PLUS. Springer.

    Google Scholar 

  • R Development Core Team (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

    Google Scholar 

  • Rothenberg, T. (1984). Approximate normality of generalized least squares estimates. Econometrica, 52(4), 811–825.

    Article  MathSciNet  MATH  Google Scholar 

  • Santos Nobre, J., & da Motta Singer, J. (2007). Residual analysis for linear mixed models. Biometrical Journal, 49(6), 863–875.

    Article  MathSciNet  Google Scholar 

  • Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer Verlag.

    Google Scholar 

  • Satterthwaite, F. E. (1941). Synthesis of variance. Psychometrika, 6, 309–316.

    Article  MathSciNet  MATH  Google Scholar 

  • Schabenberger, O. (2004). Mixed model influence diagnostics in proceedings of the twenty-ninth annual sas users group international conference. Proceedings of the Twenty-Ninth Annual SAS Users Group International Conference, 189, 29.

    Google Scholar 

  • Schabenberger, O., & Gotway, C. (2005). Statistical Methods for Spatial Data Analysis, vol. 65. Chapman & Hall.

    Google Scholar 

  • Scheipl, F., Greven, S., & Kuechenhoff, H. (2008). Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Computational Statistics & Data Analysis, 52(7), 3283–3299.

    Article  MathSciNet  MATH  Google Scholar 

  • Schluchter, M., & Elashoff, J. (1990). Small-sample adjustments to tests with unbalanced repeated measures assuming several covariance structures. Journal of Statistical Computation and Simulation, 37(1-2), 69–87.

    Article  MATH  Google Scholar 

  • Searle, S., Casella, G., & McCulloch, C. (1992). Variance Components. John Wiley & Sons.

    Google Scholar 

  • Self, S. G., & Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82(398), 605–610.

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro, A. (1985). Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika, 72(1), 133–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Stram, D., & Lee, J. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics, 50(4), 1171–1177.

    Article  MATH  Google Scholar 

  • Tibaldi, F., Verbeke, G., Molenberghs, G., Renard, D., Van den Noortgate, W., & De Boeck, P. (2007). Conditional mixed models with crossed random effects. British Journal of Mathematical and Statistical Psychology, 60(2), 351–365.

    Article  Google Scholar 

  • Van den Noortgate, W., De Boeck, P., & Meulders, M. (2003). Cross-classification multilevel logistic models in psychometrics. Journal of Educational and Behavioral Statistics, 28(4), 369.

    Article  Google Scholar 

  • Venables, W., & Ripley, B. (2010). Modern Applied Statistics with S. Springer.

    Google Scholar 

  • Verbeke, G., & Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. Springer Verlag.

    Google Scholar 

  • Verbeke, G., & Molenberghs, G. (2003). The use of score tests for inference on variance components. Biometrics, 59(2), 254–262.

    Article  MathSciNet  MATH  Google Scholar 

  • Vonesh, E., & Chinchilli, V. (1997). Linear and Nonlinear Models for the Analysis of Repeated Measurements. CRC.

    Google Scholar 

  • West, B. T., Welch, K. B., & GaƂecki, A. T. (2007). Linear Mixed Models: A Practical Guide Using Statistical Software. Chapman and Hall/CRC.

    Google Scholar 

  • Wickham, H. (2007). Reshaping data with the reshape package. Journal of Statistical Software, 21(12).

    Google Scholar 

  • Wilkinson, G., & Rogers, C. (1973). Symbolic description of factorial models for analysis of variance. Applied Statistics, 22, 392–399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

GaƂecki, A., Burzykowski, T. (2013). Linear Models with Heterogeneous Variance. In: Linear Mixed-Effects Models Using R. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3900-4_7

Download citation

Publish with us

Policies and ethics