Skip to main content

Beneficial Effects of Curcumin on Neurological Disorders

  • Chapter
  • First Online:

Abstract

Curcumin, a hydrophobic polyphenol, is the yellow pigment in the Indian spice turmeric (curry powder). It is derived from the rhizome of the herb Curcuma longa (Anand et al. 2008), which belongs to the family Zingiberaceae. Curcumin is a biphenolic compound with hydroxyl groups at the ortho-position on the two aromatic rings that are connected by a β-diketone bridge, containing two double bonds (dienone), which can undergo Michael addition, critical for some of the effects of curcumin (Weber et al. 2006), but contributing to chemical instability in aqueous solution (Pan et al. 1999). Curcumin is also known as diferuloylmethane (bis-α,β-unsaturated β-diketone) that exhibits keto-enol tautomerism, having a predominant keto form in acidic and neutral solutions and a stable enol form in alkaline media. Curcumin resembles ubiquinols in its structure. It is insoluble in water, but is readily soluble in organic solvents such as dimethylsulfoxide, acetone, and ethanol. It is stable at acidic pH but unstable at neutral and basic pH, under which conditions it is degraded to ferulic acid and feruloylmethane (Wang et al. 1997). Most curcumin (>90 %) is rapidly degraded within 30 min of placement in phosphate buffer systems of pH 7.2 (Wang et al. 1997).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham NG, Drummond GS, Lutton JD, Kappas A (1996) The biological significance and physiological role of heme oxygenase. Cell Physiol Biochem 6:129–168

    CAS  Google Scholar 

  • Agarwal NB, Jain S, Agarwal NK, Mediratta PK, Sharma KK (2011) Modulation of pentylenetetrazole-induced kindling and oxidative stress by curcumin in mice. Phytomedicine 18:756–759

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41:40–59

    PubMed  CAS  Google Scholar 

  • Agnati LF, Genadani S, Rasio G, Galantucci M, Saltini S, Filaferro M, Franco R, Mora F, Ferre S (2005) Studies on homocysteine plasma levels in Alzheimer’s patients for neurodegeneration. J Neural Transm 112:163–169

    PubMed  CAS  Google Scholar 

  • Agrawal R, Mishra B, Tyagi E, Nath C, Shukla R (2010) Effect of curcumin on brain insulin receptors and memory functions in STZ (ICV) induced dementia model of rat. Pharmacol Res 61:247–252

    PubMed  CAS  Google Scholar 

  • Agrawal R, Tyagi E, Shukla R, Nath C (2011) Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol 21:261–273

    PubMed  CAS  Google Scholar 

  • Ammon H, Wahl MA (1991) Pharmacology of curcuma longa. Planta Med 57:1–7

    PubMed  CAS  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharmacol 4:807–818

    CAS  Google Scholar 

  • Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 76:1590–1611

    PubMed  CAS  Google Scholar 

  • Asai A, Miyazawa T (2000) Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci 67:2785–2793

    PubMed  CAS  Google Scholar 

  • Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Ataee R, Moghaddam SN (2010a) Curcumin exerts neuroprotective effects against homocysteine intracerebroventricular injection-induced cognitive impairment and oxidative stress in rat brain. J Med Food 13:821–826

    PubMed  CAS  Google Scholar 

  • Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Kazeminejad B (2010b) Neuroprotective effects of the polyphenolic antioxidant agent, Curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat. Pharmacol Biochem Behav 96:378–385

    PubMed  CAS  Google Scholar 

  • Awasthi S, Sharma R, Yang Y, Singhal SS, Pikula S, Bandorowicz-Pikula J, Singh SV, Zimniak P, Awasthi YC (2002) Transport functions and physiological significance of 76 kDa Ral-binding GTPase activating protein (RLIP76). Acta Biochim Pol 49:855–867

    PubMed  CAS  Google Scholar 

  • Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK (2004) Curcumin, a novel p300/CREBbinding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279:51163–51171

    PubMed  CAS  Google Scholar 

  • Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer disease animal models. J Alzheimers Dis 6:367–377

    PubMed  CAS  Google Scholar 

  • Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, Rock CL, Pruitt MA, Yang F, Hudspeth B, Hu S, Faull KF, Teter B, Cole GM, Frautschy SA (2008) Curcumin structure function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer disease. J Pharmacol Exp Ther 326:196–208

    PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, Di Monte DA, Greenamyre JT (2002) Mechanistic approaches to Parkinson disease pathogenesis. Brain Pathol 12:499–510

    PubMed  CAS  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2008) Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Pharmacol Biochem Behav 88:511–522

    PubMed  CAS  Google Scholar 

  • Bisht S, Maitra A (2009) Systemic delivery of curcumin: 21st century solutions for an ancient conundrum. Curr Drug Discov Technol 6:192–199

    PubMed  CAS  Google Scholar 

  • Bonizzi G, Karin M (2004) The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1995) Staging of Alzheimer disease-related neurofibrillary changes. Neurobiol Aging 16:271–278

    PubMed  CAS  Google Scholar 

  • Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24:133–150

    PubMed  Google Scholar 

  • Bright JJ (2007) Curcumin and autoimmune disease. Adv Exp Med Biol 595:425–451

    PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    PubMed  CAS  Google Scholar 

  • Caughey B, Raymond LD, Raymond GJ, Maxson L, Silveira J, Baron GS (2003) Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J Virol 77:5499–5502

    PubMed  CAS  Google Scholar 

  • Cemil B, Topuz K, Demircan MN, Kurt G, Tun K, Kutlay M, Ipcioglu O, Kucukodaci Z (2010) Curcumin improves early functional results after experimental spinal cord injury. Acta Neurochir (Wien) 152:1583–1590

    Google Scholar 

  • Chan MM, Huang HI, Fenton MR, Fong D (1998) In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55:1955–1962

    PubMed  CAS  Google Scholar 

  • Chandra V, Pandav R, Dodge HH, Johnston JM, Belle SH, DeKosky ST, Ganguli M (2001) Incidence of Alzheimer disease in a rural community in India: the Indo-US study. Neurology 57:985–989

    PubMed  CAS  Google Scholar 

  • Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    PubMed  CAS  Google Scholar 

  • Choi JS, Kim SY, Cha JH, Choi YS, Sung KW, Oh ST, Kim ON, Chung JW, Chun MH, Lee SB, Lee MY (2003) Upregulation of gp130 and STAT3 activation in the rat hippocampus following transient forebrain ischemia. Glia 41:237–246

    PubMed  Google Scholar 

  • Clarke L, Daly K, Robinson E, Naughten E, Cahalane S, Fowler B, Graham I (1991) Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 324:1149–1155

    PubMed  CAS  Google Scholar 

  • Cole GM, Frautschy SA (2007) The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer disease. Exp Gerontol 42:10–21

    PubMed  CAS  Google Scholar 

  • Correale J, Villa A (2004) The neuroprotective role of inflammation in nervous system injuries. J Neurol 251:1304–1316

    PubMed  Google Scholar 

  • Cowen PJ (2002) Cortisol, serotonin and depression: all stressed out? Br J Psychiatry 180:99–100

    PubMed  CAS  Google Scholar 

  • Cryan JF, Slattery DA (2010) GABAB receptors and depression: current status. Adv Pharmacol 58:427–451

    PubMed  CAS  Google Scholar 

  • de Sa JC, Airas L, Bartholome E, Grigoriadis N, Mattle H, Oreja-Guevara C, O’Riordan J, Sellebjerg F, Stankoff B, Vass K, Walczak A, Wiendl H, Kieseier BC (2011) Symptomatic therapy in multiple sclerosis: a review for a multimodal approach in clinical practice. Ther Adv Neurol Disord 4:139–168

    PubMed  Google Scholar 

  • Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19:2628–2637

    PubMed  CAS  Google Scholar 

  • DeGregori J, Johnson DG (2006) Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med 6:739–748

    PubMed  CAS  Google Scholar 

  • Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015

    PubMed  CAS  Google Scholar 

  • Dinan T (2001) Novel approaches to the treatment of depression by modulating the hypothalamic—pituitary—adrenal axis. Hum Psychopharmacol 16:89–93

    PubMed  CAS  Google Scholar 

  • Du P, Li X, Lin HJ, Peng WF, Liu JY, Ma Y, Fan W, Wang X (2009) Curcumin inhibits amygdaloid kindled seizures in rats. Chin Med J (Engl) 122:1435–1438

    CAS  Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Google Scholar 

  • Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Google Scholar 

  • Farooqui AA, Farooqui T (2011) Perspective and direction for research on phytotherapeutics. In: Farooqui AA, Farooqui T (eds) Phytochemicals and human health: molecular and pharmacolical aspects. Nova Science, Hauppauge, pp 501–513

    Google Scholar 

  • Farooqui AA, Horrocks LA (1994) Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int Rev Neurobiol 36:267–323

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in brain. Springer, New York

    Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2006) Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 58:591–620

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer, New York

    Google Scholar 

  • Forman BM, Chen J, Evans RM (1996) The peroxisome proliferator-activated receptors: ligands and activators. Ann N Y Acad Sci 804:266–275

    PubMed  CAS  Google Scholar 

  • Frautschy SA, Cole GM (2010) Why pleiotropic interventions are needed for Alzheimer disease. Mol Neurobiol 41:392–409

    PubMed  CAS  Google Scholar 

  • Garneau H, Paquin MC, Carrier JC, Rivard N (2009) E2F4 expression is required for cell cycle progression of normal intestinal crypt cells and colorectal cancer cells. J Cell Physiol 221:350–358

    PubMed  CAS  Google Scholar 

  • Gautam SC, Gao X, Dutchavsky S (2007) Immunomodulation by curcumin. Adv Exp Med Biol 595:321–341

    PubMed  Google Scholar 

  • Ghoneim AI, Abdel-Naim AB, Khalifa A, El-Denshary ES (2002) Protective effects of curcumin against ischemia/reperfusion insult in rat forebrain. Pharmacol Res 46:273–279

    PubMed  CAS  Google Scholar 

  • Giri RK, Selvaraj SK, Kalra VK (2003) Amyloid peptide-induced cytokine and chemokine expression in THP-1 monocytes is blocked by small inhibitory RNA duplexes for early growth response-1 messenger RNA. J Immunol 170:5281–5294

    PubMed  CAS  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    PubMed  CAS  Google Scholar 

  • Gota VS, Maru GB, Soni TG, Gandhi TR, Kochar N, Agarwal MG (2010) Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J Agric Food Chem 58:2095–2099

    PubMed  CAS  Google Scholar 

  • Grossman A, Zeiler B, Sapirstein V (2003) Prion protein interactions with nucleic acid: possible models for prion disease and prion function. Neurochem Res 28:955–963

    PubMed  CAS  Google Scholar 

  • Gupta YK, Briyal S, Sharma M (2009) Protective effect of curcumin against kainic acid induced seizures and oxidative stress in rats. Indian J Biochem 53:39–46

    CAS  Google Scholar 

  • Hafner-Bratkovic I, Gaspersic J, Smid LM, Bresjanac M, Jerala R (2008) Curcumin binds to the alpha-helical intermediate and to the amyloid form of prion protein - a new mechanism for the inhibition of PrPSc accumulation. J Neurochem 104:1553–1564

    PubMed  CAS  Google Scholar 

  • Hankey GJ, Eikelboom JW (1999) Homocysteine and vascular disease. Lancet 354:407–413

    PubMed  CAS  Google Scholar 

  • Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652

    PubMed  CAS  Google Scholar 

  • Hayes JD, Chanas SA, Henderson CJ, McMahon M, Sun C, Moffat GJ, Wolf CR, Yamamoto M (2000) The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochem Soc Trans 28:33–41

    PubMed  CAS  Google Scholar 

  • He LF, Chen HJ, Qian LH (2010) Curcumin protects pre-oligodendrocytes from activated microglia in vitro and in vivo. Brain Res 1339:60–69

    PubMed  CAS  Google Scholar 

  • Helin K (1998) Regulation of cell proliferation by the E2F transcription factors. Curr Opin Genet Dev 8:28–35

    PubMed  CAS  Google Scholar 

  • Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM (1995) Brain regional correspondence between Alzheimer disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156

    PubMed  CAS  Google Scholar 

  • Hoehle SI, Pfeiffer E, Metzler M (2007) Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Mol Nutr Food Res 51:932–938

    PubMed  CAS  Google Scholar 

  • Horie K, Miyata T, Yasuda T, Takeda A, Yasuda Y, Takeda A, Yasuda Y, Maeda K, Sobue G, Kurokawa K (1997) Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer disease and aged neurons. Biochem Biophys Res Commun 236:327–332

    PubMed  CAS  Google Scholar 

  • Hou ST, MacManus JP (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221:93–148

    PubMed  CAS  Google Scholar 

  • Huang T-S, Lee SC, Lin J-K (1991) Suppression of c-Jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells. Proc Natl Acad Sci USA 88:5292–5296

    PubMed  CAS  Google Scholar 

  • Ireson C, Orr S, Jones DJ, Verschoyle R, Lim CK, Luo JL, Howells L, Plummer S, Jukes R, Williams M, Steward WP, Gescher A (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61:1058–1064

    PubMed  CAS  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    PubMed  CAS  Google Scholar 

  • Jacob A, Wu R, Zhou M, Wang P (2007) Mechanism of the anti-inflammatory effect of Curcumin: PPAR-gamma activation. PPAR Res 2007:89369

    PubMed  Google Scholar 

  • Jacobs MP, Leblanc GG, Brooks-Kayal A, Jensen FE, Lowenstein DH, Noebels JL, Spencer DD, Swann JW (2009) Curing epilepsy: progress and future directions. Epilepsy Behav 14:438–445

    PubMed  Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson disease. Movement Disorder 13:24–34

    Google Scholar 

  • Jenner P, Olanow CW (2006) The pathogenesis of cell death in Parkinson disease. Neurology 66(10 Suppl 4):S24–S36

    PubMed  Google Scholar 

  • Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha Modulation of transcriptional activity by oxygen tension. J Biol Chem 272:19253–19260

    PubMed  CAS  Google Scholar 

  • Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    PubMed  CAS  Google Scholar 

  • Jiang J, Wang W, Sun Y, Hu M, Li F, Zhu DY (2007) Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood–brain barrier damage. Eur J Pharmacol 561:54–62

    PubMed  CAS  Google Scholar 

  • Jiao Y, Wilkinson J, Di X, Wang W, Hatcher H, Kock ND, D’Agostino R Jr (2009) Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 113:462–469

    PubMed  CAS  Google Scholar 

  • Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin—cellular and molecular mechanisms of action. Crit Rev Food Sci Nut 44:97–111

    CAS  Google Scholar 

  • Justicia C, Gabriel C, Planas AM (2000) Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia 30:253–270

    PubMed  CAS  Google Scholar 

  • Jyoti A, Sethi P, Sharma D (2009) Curcumin protects against electrobehavioral progression of seizures in the iron-induced experimental model of epileptogenesis. Epilepsy Behav 14:300–308

    PubMed  Google Scholar 

  • Kaminska B, Pyrzynska B, Ciechomska I, Wisniewska M (2000) Modulation of the composition of AP-1 complex and its impact on transcriptional activity. Acta Neurobiol Exp (Wars) 60:395–402

    CAS  Google Scholar 

  • Kannappan R, Gupta SC, Kim JH, Reuter S, Aggarwal BB (2011) Neuroprotection by spice-derived nutraceuticals: you are what you eat! Mol Neurobiol 44:142–159

    PubMed  CAS  Google Scholar 

  • Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    PubMed  CAS  Google Scholar 

  • Kim HY, Park EJ, Joe EH, Jou I (2003) Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol 17:6072–6079

    Google Scholar 

  • Kim SJ, Son TG, Park HR, Park M, Kim MS, Kim HS, Chung HY, Mattson MP, Lee J (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283:14497–14505

    PubMed  CAS  Google Scholar 

  • Klussmann S, Martin-Villalba A (2005) Molecular targets in spinal cord injury. J Mol Med 83:657–671

    PubMed  CAS  Google Scholar 

  • Koshikawa N, Fujita S, Adachi K (2011) Behavioral pharmacology of orofacial movement disorders. Int Rev Neurobiol 97:1–38

    PubMed  CAS  Google Scholar 

  • Kovarik P, Mangold M, Ramsauer K, Heidari H, Steinborn R, Zotter A, Levy DE, Muller M, Decker T (2001) Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J 20:9–100

    Google Scholar 

  • Kraft AD, Johnson DA, Johnson JA (2004) Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24:1101–1112

    PubMed  CAS  Google Scholar 

  • Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, Epperson CN, Goddard A, Mason GF (2002) Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 7:S71–S80

    PubMed  CAS  Google Scholar 

  • Kulkarni SK, Dhir A (2010) An overview of curcumin in neurological disorders. Ind J Pharmacol Sci 72:149–154

    CAS  Google Scholar 

  • Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 201:435–442

    CAS  Google Scholar 

  • Kulkarni S, Dhir A, Akula KK (2009) Potentials of curcumin as an antidepressant. Scientific World Journal 9:1233–1241

    PubMed  CAS  Google Scholar 

  • Kuner P, Schubenel R, Hertel C (1998) Beta-amyloid binds to p57NTR and activates NFkappaB in human neuroblastoma cells. J Neurosci Res 54:798–804

    PubMed  CAS  Google Scholar 

  • Laird MD, Sukumari-Ramesh S, Swift AE, Meiler SE, Vender JR, Dhandapani KM (2010) Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? J Neurochem 113:637–648

    PubMed  CAS  Google Scholar 

  • Larmet Y, Reibel S, Carnahan J, Nawa H, Marescaux C, Depaulis A (1995) Protective effects of brain-derived neurotrophic factor on the development of hippocampal kindling in the rat. Neuroreport 6:1937–1941

    PubMed  CAS  Google Scholar 

  • Lee JM, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 37:139–143

    PubMed  CAS  Google Scholar 

  • Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12:335–363

    PubMed  CAS  Google Scholar 

  • Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    PubMed  CAS  Google Scholar 

  • Li CJ, Zhang LJ, Dezube BJ, Crumpacker CS, Pardee AB (1993) Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc Natl Acad Sci USA 90:1839–1842

    PubMed  CAS  Google Scholar 

  • Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104:1322–1331

    PubMed  CAS  Google Scholar 

  • Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG (2011) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 11:464–473

    PubMed  CAS  Google Scholar 

  • Lin MS, Sun YY, Chiu WT, Chang CY, Hung CC, Shie FS, Tsai SH, Lin JW, Hung KS, Lee YH (2011a) Curcumin attenuates the expression and secretion of RANTES following spinal cord injury in vivo and lipopolysaccharide-induced astrocyte reactivation in vitro. J Neurotrauma 28(7):1259–1269 [Epub ahead of print]

    PubMed  Google Scholar 

  • Lin MS, Lee YH, Chiu WT, Hung KS (2011b) Curcumin provides neuroprotection after spinal cord injury. J Surg Res 166:280–289

    PubMed  CAS  Google Scholar 

  • Liu A, Lou H, Zhao L, Fan P (2006) Validated LC /MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal 40:720–727

    PubMed  CAS  Google Scholar 

  • Liu Z, Yu Y, Li X, Ross CA, Smith WW (2011) Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol Res 63:439–444

    PubMed  Google Scholar 

  • López-Lázaro M (2008) Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 52(Suppl 1):S103–S127

    PubMed  Google Scholar 

  • Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV, Frautschy SA, Cole GM (2009) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089

    PubMed  CAS  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53

    PubMed  CAS  Google Scholar 

  • Maines MD (2000) The heme oxygenase system and its functions in the brain. Cell Mol Biol 46:573–585

    PubMed  CAS  Google Scholar 

  • Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK (2007) Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 330:155–163

    PubMed  CAS  Google Scholar 

  • Mancuso C, Scapagnini G, Curro D, Stella AMG, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123

    PubMed  CAS  Google Scholar 

  • Mandlekar S, Hong JL, Kong AN (2006) Modulation of metabolic enzymes by dietary phytochemicals: a review of mechanisms underlying beneficial versus unfavorable effects. Curr Drug Metab 7:661–675

    PubMed  CAS  Google Scholar 

  • Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ (2007) Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol 60:171–177

    PubMed  CAS  Google Scholar 

  • Martinez MN, Amidon GL (2002) A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 42:620–643

    PubMed  CAS  Google Scholar 

  • Masuda T, Maekawa T, Hidaka K, Bando H, Takeda Y, Yamaguchi H (2001) Chemical studies on antioxidant mechanisms of curcumin: analysis of oxidative coupling products from curcumin and linoleate. J Agric Food Chem 49:2539–2547

    PubMed  CAS  Google Scholar 

  • Mattson MP, Cheng A (2006) Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 29:632–639

    PubMed  CAS  Google Scholar 

  • Mattson MP, Duan W, Pedersen WA, Culmsee C (2001) Neurodegenerative disorders and ischemic brain diseases. Apoptosis 6:69–81

    PubMed  CAS  Google Scholar 

  • Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650

    PubMed  CAS  Google Scholar 

  • Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

    PubMed  Google Scholar 

  • Moshra S, Mishra M, Seth P, Sharma SK (2011) Tetrahydrocurcumin confers protection against amyloid β-induced toxicity. Neuroreport 22:23–27

    Google Scholar 

  • Muller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E, Prosperini E, Vigo E, Oliner JD, Helin K (2001) E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 15:267–285

    PubMed  CAS  Google Scholar 

  • Nafisi S, Adelzadeh M, Norouzi Z, Sarbolouki MN (2009) Curcumin binding to DNA and RNA. DNA Cell Biol 28:201–208

    PubMed  CAS  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    PubMed  CAS  Google Scholar 

  • NTP (1993) NTP toxicology and carcinogenesis studies of turmeric oleoresin (CAS No. 8024-37-1) (major component 79%–85% Curcumin, CAS No. 458-37-7) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser 427:1–275

    Google Scholar 

  • O’Connor P (2002) Key issues in the diagnosis and treatment of multiple sclerosis. An overview. Neurology 59:S1–S33

    PubMed  Google Scholar 

  • O’Rourke JF, Tian YM, Ratcliffe PJ, Pugh CW (1999) Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1. J Biol Chem 274:2060–2071

    PubMed  Google Scholar 

  • Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer disease. Neurobiol Aging 24:1063–1070

    PubMed  CAS  Google Scholar 

  • Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834

    PubMed  CAS  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Hamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    PubMed  CAS  Google Scholar 

  • Pal R, Cristan EA, Schnittker K, Narayan M (2010) Rescue of ER oxidoreductase function through polyphenolic phytochemical intervention: implications for subcellular traffic and neurodegenerative disorders. Biochem Biophys Res Commun 392:567–571

    PubMed  CAS  Google Scholar 

  • Pan MH, Huang TM, Lin JK (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486–494

    PubMed  CAS  Google Scholar 

  • Pandey N, Strider J, Nolan WC, Yan SX, Galvin JE (2008) Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol 115:479–489

    PubMed  CAS  Google Scholar 

  • Polager S, Kalma Y, Berkovich E, Ginsberg D (2002) E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 21:437–446

    PubMed  CAS  Google Scholar 

  • Prusiner SB (2001) Shattuck lecture–neurodegenerative diseases and prions. N Engl J Med 344:1516–1526

    PubMed  CAS  Google Scholar 

  • Quilty MC, King AE, Gai WP, Pountney DL, West AK, Vickers JC, Dickson TC (2006) Alpha-synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection. Exp Neurol 199:249–256

    PubMed  CAS  Google Scholar 

  • Qureshi IA, Mehler MF (2010) Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. Neurobiol Dis 39:53–60

    PubMed  CAS  Google Scholar 

  • Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    PubMed  Google Scholar 

  • Rajasekaran SA (2011) Therapeutic potential of curcumin in gastrointestinal diseases. World J Gastrointest Pathophysiol 2:1–14

    PubMed  Google Scholar 

  • Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 16:96–99

    PubMed  CAS  Google Scholar 

  • Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5:380–391

    PubMed  CAS  Google Scholar 

  • Ray B, Lahiri DK (2009) Neuroinflammation in Alzheimer disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol 4:434–444

    Google Scholar 

  • Reddy S, Aggarwal BB (1994) Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett 341:19–22

    PubMed  CAS  Google Scholar 

  • Reibel S, Larmet Y, Bt L, Carnahan J, Marescaux C, Depaulis A (2000) Brain-derived neurotrophic factor delays hippocampal kindling in the rat. Neuroscience 100:777–788

    PubMed  CAS  Google Scholar 

  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    PubMed  CAS  Google Scholar 

  • Rinwa P, Kaur B, Jaggi AS, Singh N (2010) Involvement of PPAR-gamma in curcumin-mediated beneficial effects in experimental dementia. Naunyn Schmiedebergs Arch Pharmacol 381:529–539

    PubMed  CAS  Google Scholar 

  • Salvioli S, Sikora E, Cooper EL, Franceschi C (2007) Curcumin in cell death processes: a challenge for CAM of age-related pathologies. Evid Based Complement Alternat Med 4:181–190

    PubMed  CAS  Google Scholar 

  • Sarnico I, Lanzillotta A, Boroni F, Benarese M, Alghisi M, Schwaninger M, Inta I, Battistin L, Spano P, Pizzi M (2009) NF-kappaB p50/RelA and c-Rel-containing dimers: opposite regulators of neuron vulnerability to ischaemia. J Neurochem 108:475–485

    PubMed  CAS  Google Scholar 

  • Scapagnini G, Butterfield DA, Colombrita C, Sultana R, Pascale A, Calabrese V (2004) Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal 6:811–818

    PubMed  CAS  Google Scholar 

  • Scapagnini G, Colombrita C, Amadio M, D’Agata V, Arcelli E, Sapienza M, Quattrone A, Calabrese V (2006) Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid Redox Signal 8:395–403

    PubMed  CAS  Google Scholar 

  • Scapagnini G, Vasto S, Abraham NG, Caruso C, Zella D, Fabio G (2011) Modulation of Nrf2/ARE pathway by food polyphenols: A nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol 44:192–201

    Google Scholar 

  • Schwartz SM, Siscovick DS, Malinow MR, Rosendaal FR, Beverly RK, Hess DL, Psaty BM, Longstreth WT Jr, Koepsell TD, Raghunathan TE, Reitsma PH (1997) Myocardial infarction in young women in relation to plasma total homocysteine, folate, and a common variant in the methylenetetrahydrofolate reductase gene. Circulation 96:412–417

    PubMed  CAS  Google Scholar 

  • Semenza GL (2007) Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 12:853–859

    PubMed  CAS  Google Scholar 

  • Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nature Immunol 6:1191–1197

    CAS  Google Scholar 

  • Shah BH, Nawaz Z, Pertani SA, Roomi A, Mahmood H, Saeed SA, Gilani AH (1999) Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling. Biochem Pharmacol 58:1167–1172

    PubMed  CAS  Google Scholar 

  • Sharma RA, Ireson CR, Verschoyle RD, Hill KA, Williams ML, Leuratti C, Manson MM, Marnett LJ, Steward WP, Gescher A (2001) Effects of dietary curcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: relationship with drug levels. Clin Cancer Res 7:1452–1458

    PubMed  CAS  Google Scholar 

  • Sharma S, Zhuang Y, Ying Z, Wu A, Gomez-Pinilla F (2009) Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neurosci 161:1037–1044

    CAS  Google Scholar 

  • Sharma S, Ying Z, Gomez-Pinilla F (2010a) A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp Neurol 226:191–199

    PubMed  CAS  Google Scholar 

  • Sharma V, Nehru B, Munshi A, Jyothy A (2010b) Antioxidant potential of curcumin against oxidative insult induced by pentylenetetrazol in epileptic rats. Methods Find Exp Clin Pharmacol 32:227–232

    PubMed  CAS  Google Scholar 

  • Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    PubMed  CAS  Google Scholar 

  • Shin HI, Lee JY, Son E, Lee DH, Kim HJ, Kang SS, Pae HO (2007) Curcumin attenuates the kainic acid-induced hippocampal cell death in the mice. Neurosci Lett 416:49–54

    PubMed  CAS  Google Scholar 

  • Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056:206–217

    PubMed  CAS  Google Scholar 

  • Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356

    PubMed  CAS  Google Scholar 

  • Shukla PK, Khanna VK, Khan MY, Srimal RC (2003) Protective effect of curcumin against lead neurotoxicity in rat. Hum Exp Toxicol 22:653–658

    PubMed  CAS  Google Scholar 

  • Siddiqui AM, Cui X, Wu R, Dong W, Zhou M, Hu M, Simms HH, Wang P (2006) The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-γ. Crit Care Med 34:1874–1882

    PubMed  CAS  Google Scholar 

  • Silverstein FS, Jensen FE (2007) Neonatal seizures. Ann Neurol 62:112–120

    PubMed  Google Scholar 

  • Sonnen JA, Larson EB, Haneuse S, Woltjer R, Li G, Crane PK, Craft S, Montine TJ (2009) Neuropathology in the adult changes in thought study: a review. J Alzheimers Dis 18:703–711

    PubMed  Google Scholar 

  • Streck EL, Bavaresco CS, Netto CA, Wyse AT (2004) Chronic hyperhomocysteinemia provokes a memory deficit in rats in the Morris water maze task. Behav Brain Res 53:377–481

    Google Scholar 

  • Stridh MH, Correa F, Nodin C, Weber SG, Blomstrand F, Nilsson M, Sandberg M (2010) Enhanced glutathione efflux from astrocytes in culture by low extracellular Ca2+ and curcumin. Neurochem Res 35:1231–1238

    PubMed  CAS  Google Scholar 

  • Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K (2006) Prevention of kainic acid-induced changes in nitric oxide level and neuronal cell damage in the rat hippocampus by manganese complexes of curcumin and diacetylcurcumin. Life Sci 78:1884–1891

    PubMed  CAS  Google Scholar 

  • Thickbroom GW, Mastaglia FL (2009) Plasticity in neurological disorders and challenges for noninvasive brain stimulation (NBS). J Neuroeng Rehabil 6:4–10

    PubMed  Google Scholar 

  • Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74:969–985

    PubMed  CAS  Google Scholar 

  • Thomas SL, Zhong D, Zhou W, Malik S, Liotta D, Snyder JP, Hamel E, Giannakakou P (2008) EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1. Cell Cycle 7:2409–2417

    PubMed  CAS  Google Scholar 

  • Vargas MR, Johnson DA, Sirkis DW, Messing A, and Johnson JA (2008) Nrf2 activation in ­astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28:13574–13581

    PubMed  CAS  Google Scholar 

  • Venugopal R, Jaiswal AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17:3145–3156

    PubMed  CAS  Google Scholar 

  • Vesely PW, Staber PB, Hoefler G, Kenner L (2009) Translational regulation mechanisms of AP-1 proteins. Mutat Res 682:7–12

    PubMed  CAS  Google Scholar 

  • Wahlström B, Blennow G (1978) A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol 43:86–92

    Google Scholar 

  • Wakade C, King MD, Laird MD, Alleyne CH Jr, Dhandapani KM (2009) Curcumin attenuates vascular inflammation and cerebral vasospasm after subarachnoid hemorrhage in mice. Antioxid Redox Signal 11:35–45

    PubMed  CAS  Google Scholar 

  • Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15:1867–1876

    PubMed  CAS  Google Scholar 

  • Wang Q, Sun AY, Simonyi A, Jensen MD, Shelat PB, Rottinghaus GE, MacDonald RS, Miller DK, Lubahn DE, Weisman GA, Sun GY (2005) Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 82:138–148

    PubMed  CAS  Google Scholar 

  • Wang R, Li YB, Li YH, Xu Y, Wu HL, Li XJ (2008) Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res 1210:84–91

    PubMed  CAS  Google Scholar 

  • Wang MS, Boddapati S, Emadi S, Sierks MR (2010) Curcumin reduces alpha-synuclein induced cytotoxicity in Parkinson disease cell model. BMC Neurosci 11:57

    PubMed  Google Scholar 

  • Weber WM, Hunsaker LA, Gonzales AM, Heynekamp JJ, Orlando RA, Deck LM, Vander Jagt DL (2006) TPA-induced up-regulation of activator protein-1 can be inhibited or enhanced by analogs of the natural product curcumin. Biochem Pharmacol 72:928–940

    PubMed  CAS  Google Scholar 

  • Wood PL (1998) Neuroinflammation: mechanisms and management. Humana, Totowa

    Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2006) Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol 197:309–317

    PubMed  CAS  Google Scholar 

  • Xie L, Li XK, Funeshima-Fuji N, Kimura H, Matsumoto Y, Isaka Y, Takahara S (2009) Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol 9:575–581

    PubMed  CAS  Google Scholar 

  • Xie L, Li XK, Takahara S (2011) Curcumin has bright prospects for the treatment of multiple sclerosis. Int Immunopharmacol 11:323–330

    PubMed  CAS  Google Scholar 

  • Xu Y, Ku BS, Yao HY, Ma X, Zhang YH, Li XJ (2005a) Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 82:200–206

    PubMed  CAS  Google Scholar 

  • Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005b) The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 518:40–46

    PubMed  CAS  Google Scholar 

  • Xu Y, Lin D, Li S, Li G, Shyamala SG, Barish PA, Vernon MM, Pan J, Ogle WO (2009) Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress. Neuropharmacology 57:463–471

    PubMed  CAS  Google Scholar 

  • Xu Y, Li S, Vernon MM, Pan J, Chen L, Barish PA, Zhang Y, Acharya AP, Yu J, Govindarajan SS, Boykin E, Pan X, O’Donnell JM, Ogle WO (2011) Curcumin prevents corticosterone-induced neurotoxicity and abnormalities of neuroplasticity via 5-HT receptor pathway. J Neurochem 118:784–795

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Hanada K, Kawasaki K, Nishijima M (1997) Inhibitory effect on curcumin on mammalian phospholipase D activity. FEBS Lett 417:196–198

    PubMed  CAS  Google Scholar 

  • Yanagisawa D, Shirai N, Amatsubo T, Taguchi H, Hirao K, Urushitani M, Morikawa S, Inubushi T, Kato M, Kato F, Morino K, Kimura H, Nakano I, Yoshida C, Okada T, Sano M, Wada Y, Wada KN, Yamamoto A, Tooyama I (2010) Relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities in the context of therapies for Alzheimer disease. Biomaterials 31:4179–4185

    PubMed  CAS  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    PubMed  CAS  Google Scholar 

  • Yang C, Zhang X, Fan H, Liu Y (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141

    PubMed  CAS  Google Scholar 

  • Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson disease. Free Radic Res 39:1119–1125

    PubMed  CAS  Google Scholar 

  • Zhang JJ, Zhao Y, Chait BT (1998) Ser727-dependent recruitment of MCM5 by stat1alpha in IFN-gamma-induced transcriptional activation. EMBO J 17:6963–6971

    PubMed  CAS  Google Scholar 

  • Zhang C, Browne A, Child D, Tanzi RE (2010) Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J Biol Chem 285:28472–2880

    PubMed  CAS  Google Scholar 

  • Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, Zhao Y (2010) Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res 35:374–379

    PubMed  CAS  Google Scholar 

  • Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12:332–347

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farooqui, A.A. (2013). Beneficial Effects of Curcumin on Neurological Disorders. In: Phytochemicals, Signal Transduction, and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3804-5_6

Download citation

Publish with us

Policies and ethics