Skip to main content

Beneficial Effects of Flavonoids on Neurological Disorders

  • Chapter
  • First Online:
Phytochemicals, Signal Transduction, and Neurological Disorders
  • 1021 Accesses

Abstract

Flavonoids are polyphenolic compounds found in fruits, vegetables, and beverages derived from plants. Humans consume about 1–2 g of flavonoids daily. Information about the occurrence of more than 5,000 different flavonoids has been reported in the literature. The six major subclasses of flavonoids include the flavones (e.g., apigenin, luteolin), flavonols (quercetin, myricetin), flavanones (naringenin, hesperidin), catechins or flavanols (epicatechin, gallocatechin), anthocyanidins (cyanidin, pelargonidin), and isoflavones (genistein, daidzein) (Fig. 4.1). Minor dietary flavonoids include dihydroflavonols, flavan-3,4-diols, coumarins, chalcones, dihydrochalcones, and aurones (Crozier et al. 2009). The basic structure of flavonoids consists of two benzene rings (A and B) linked through a heterocyclic pyran or pyrone (with a double bond) ring (C) in the middle. The carbon atoms are identified with ordinary numerals for A- and C-rings and “primed numerals” for the B-ring, although a modified number system is used for chalcones (Fig. 4.2). In vivo and in vitro studies indicate that flavonoids produce antioxidant and anti-inflammatory effects (Middleton et al. 1998; Havsteen 2002). The antioxidant activity of flavonoids depends on the structure and the substituents of the heterocyclic and B-rings, in particular the presence of an o-di-OH structure on the B-ring, a 2,3-double bond in conjugation with a 4-oxo function, and the additional presence of 3- and 5-OH groups on the heterocyclic ring. Thus, flavanones contain a carbonyl group in the C4 position of the C-ring, flavanols possess a hydroxyl group in the C3 position of the C-ring, flavones have a carbonyl group in the C4 and a double bond between C2 and C3 of C-ring, flavonols contain a carbonyl group in the C4, a double bond between C2 and C3, and also a hydroxyl in the C3 position of the C-ring, anthocyanidins have flavylium cation derivatives, and in isoflavonoids the B-ring is bound to the C3 of the C-ring instead of bound to the C2 (Croft 1998; Gutierrez-Merino et al. 2011). The antioxidant activity of flavonoid depends on the arrangement of functional groups on its core structure. It is suggested that both the configuration and total number of hydroxyl groups substantially influence the mechanism of the antioxidant activity (Heim et al. 2002). The B-ring hydroxyl configuration is the most significant determinant of ROS scavenging activity (Burda and Oleszek 2001), whereas substitution of the rings A and C has little impact on superoxide anion radical scavenging rate constants (Burda and Oleszek 2001; Amić et al. 2007). Most of the flavonoids present in plants are attached to sugars (glycosides), although occasionally they are found as aglycones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasmundstad TA, Morland J, Paulsen RE (1995) Distribution of morphine 6-glucuronide and morphine across the blood-brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling. J Pharmacol Exp Ther 275:435–441

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    PubMed  CAS  Google Scholar 

  • Amić D, Davidovič-Amić D, Bešlo D, Rastija V, Lučić B, Trinajstić N (2007) SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem 14:827–845

    PubMed  Google Scholar 

  • Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169

    PubMed  CAS  Google Scholar 

  • Andreadl CK, Howells LM, Atherfold PA, Manson MM (2006) Involvement of Nrf2, p38, B-Raf, and nuclear factor-kappaB, but not phosphatidylinositol-3-kinase, in induction of hemooxoygenase-1 by dietary polyphenols. Mol Pharmacol 69:1033–1040

    Google Scholar 

  • Atmani D, Chaher N, Atmani D, Berboucha M, Debbache N, Boudaoud H (2009) Flavonoids in human health: from structure to biological activity. Curr Nutr Food Sci 5:225–237

    CAS  Google Scholar 

  • Banning A, Deubel S, Kluth D, Zhou Z, Brigelius-Flohe R (2005) The GI-GPx gene is a target for Nrf2. Mol Cell Biol 25:4919–4923

    Google Scholar 

  • Bastianetto S, Dumont Y, Duranton A, Vercauteren F, Breton L, Quirion R (2010) Protective action of resveratrol in human skin: possible involvement of specific receptor binding sites. PLoS One 5:e12935

    PubMed  Google Scholar 

  • Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta 1366:211–223

    PubMed  CAS  Google Scholar 

  • Bhat NR, Zhang P, Lee JC, Hogan EL (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18:1633–1641

    PubMed  CAS  Google Scholar 

  • Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA 107:7710–7715

    PubMed  CAS  Google Scholar 

  • Bodesheim U, Holzl J (1997) Isolation and receptor binding properties of alkaloids and lignans from Valeriana officialis L. Pharmazie 52:386–391

    PubMed  CAS  Google Scholar 

  • Boyle SP, Dobson VL, Duthie SJ, Hinselwood DC, Kyle JA, Collins AR (2000) Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur J Clin Nutr 54:774–782

    PubMed  CAS  Google Scholar 

  • Brigelius-Flohe R, Banning A (2006) Part of the series: from dietary antioxidants to regulators in cellular signalling and gene regulation. Free Radic Biol Med 40:775–787

    CAS  Google Scholar 

  • Bucki R, Pastore JJ, Giraud F, Sulpice JC, Janmey PA (2003) Flavonoid inhibition of platelet proagulant activity and phosphoinositide synthesis. J Thromb Haemost 1:1820–1828

    PubMed  CAS  Google Scholar 

  • Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 49:2774–2779

    PubMed  CAS  Google Scholar 

  • Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50:3337–3340

    PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Schapira T, Dinkova Kostova AT, Rizzarelli E (2008) Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 33:2444–2471

    PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Mancuso C, Barone E, Calafato S, Bates T, Rizzarelli E, Kostova AT (2009) Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front Biosci 14:376–397

    PubMed  CAS  Google Scholar 

  • Caltagirone S, Ranelletti FO, Rinelli A, Maggiano N, Colasante A, Musiani P, Aiello FB, Piantelli M (1997) Interaction with type II estrogen binding sites and antiproliferative activity of tamoxifen and quercetin in human non-small-cell lung cancer. Am J Respir Cell Mol Biol 17:51–59

    PubMed  CAS  Google Scholar 

  • Casadesus G, Shukitt-Hale B, Stellwagen HM, Zhu X, Lee HG, Smith MA, Joseph JA (2004) Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 7:309–316

    PubMed  CAS  Google Scholar 

  • Casini ML, Marelli G, Papaleo E, Ferrari A, D’Ambrosio F, Unfer V (2006) Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: a randomized, double-blind, crossover, placebo-controlled study. Fertil Steril 85:972–978

    PubMed  CAS  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    PubMed  CAS  Google Scholar 

  • Chen JC, Ho FM, Pei-Dawn LC, Chen CP, Jeng KC, Hsu HB, Lee ST, Wen Tung Wu, Lin WW (2005) Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521:9–20

    PubMed  CAS  Google Scholar 

  • Chyu KY, Babbidge SM, Zhao X, Dandillaya R, Rietveld AG, Yano J, Dimayuga P, Cercek B, Shah PK (2004) Differential effects of green tea-derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice. Circulation 109:2448–2453

    PubMed  CAS  Google Scholar 

  • Croft KD (1998) The chemistry and biological effect of flavonoids and phenolic acids. Ann N Y Acad Sci 854:435–442

    PubMed  CAS  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    PubMed  CAS  Google Scholar 

  • Culbert AA, Skaper SD, Howlett DR, Evans NA, Facci L, Soden PE, Seymour ZM, Guillot F, Gaestel M, Richardson JC (2006) MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem 281:23658–23667

    PubMed  CAS  Google Scholar 

  • Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    PubMed  CAS  Google Scholar 

  • Cushnie TP, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38:99–107

    PubMed  CAS  Google Scholar 

  • Dehmlow C, Murawski N, de Groot H (1996) Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. Life Sci 58:1591–1600

    PubMed  CAS  Google Scholar 

  • Dirscherl K, Karlstetter M, Ebert S, Kraus D, Hlawatsch J, Walczak Y, Moehle C, Fuchschofer R, Langmann T (2010) Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation 7:3

    PubMed  Google Scholar 

  • Dreiseitel A, Oosterhuis B, Vukman KV, Schreier P, Oehme A, Locher S, Hajak G, Sand PG (2009) Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1. Br J Pharmacol 158:1942–1950

    PubMed  CAS  Google Scholar 

  • Duarte J, Perez-Palencia R, Vargas F, Ocete MA, Perez-Vizcaino F, Zarzuelo A, Tamargo J (2001) Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 133:117–124

    PubMed  CAS  Google Scholar 

  • Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137:2405–2411

    PubMed  CAS  Google Scholar 

  • Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    PubMed  CAS  Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Google Scholar 

  • Farooqui AA, Horrocks LA (1994) Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int Rev Neurobiol 36:267–323

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in brain. Springer, New York

    Google Scholar 

  • Farooqui AA, Farooqui T, Panza F, Frisardi V (2012) Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 69(5):741–762

    PubMed  CAS  Google Scholar 

  • Felgines C, Talavéra S, Gonthier MP, Texier O, Scalbert A, Lamaison JL, Rémésy C (2003) Strawberry anthocyanins are recovered in urine as glucuro- and sulfoconjugates in humans. J Nutr 133:1296–1301

    PubMed  CAS  Google Scholar 

  • Finkbeiner S, Tavazoie S, Maloratsky A, Jacobs K, Harris K, Greenberg M (1997) CREB: A major mediator of neuronal neurotrophin responses. Neuron 19:1031–1047

    PubMed  CAS  Google Scholar 

  • Fisher ND, Sorond FA, Hollenberg NK (2006) Cocoa flavanols and brain perfusion. J Cardiovasc Pharmacol 47(Suppl 2):S210–S214

    PubMed  CAS  Google Scholar 

  • Fraga CG, Galleano M, Verstraeten SV, Oteiza PI (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med 31:435–445

    PubMed  CAS  Google Scholar 

  • Fraga CG, Litterio MC, Prince PD, Calabró V, Piotrkowski B, Galleano M (2011) Cocoa flavanols: effects on vascular nitric oxide and blood pressure. J Clin Biochem Nutr 48:63–67

    PubMed  CAS  Google Scholar 

  • Francis ST, Head K, Morris PG, Macdonald IA (2006) The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J Cardiovasc Pharmacol 47(Suppl 2):S215–S220

    PubMed  CAS  Google Scholar 

  • Gamet-Payrastre L, Manenti S, Gratacap M-P, Tulliez J, Chap H, Payrastre B (1999) Flavonoids and the inhibition of PKC and PI 3-kinase. Gen Pharmacol 32:279–286

    PubMed  CAS  Google Scholar 

  • García-Mediavilla V, Crespo I, Collado PS, Esteller A, Sánchez-Campos S, Tuñón MJ, González-Gallego J (2007) The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur J Pharmacol 557:221–229

    PubMed  Google Scholar 

  • Gerlach M, Double KL, Youdim MB, Riederer P (2006) Potential sources of increased iron in the substantia nigra of parkinsonian patients. J Neural Transm Suppl 70:133–142

    PubMed  CAS  Google Scholar 

  • Gomes A, Fernandes E, Lima JL, Mira L, Corvo ML (2008) Molecular mechanisms of anti-inflammatory activity mediated by flavonoids. Curr Med Chem 15:1586–1605

    PubMed  CAS  Google Scholar 

  • González R, Ballester I, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, De Medina FS (2011) Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 51:331–362

    PubMed  Google Scholar 

  • González-Gallego J, Sánchez-Campos Y, Tuñón MJ (2007) Anti-inflammatory properties of dietary flavonoids. Nutr Hosp 22:287–293

    PubMed  Google Scholar 

  • Goyarzu P, Malin DH, Lau FC, Taglialatela G, Moon WD, Jennings R, Moy E, Moy D, Lippold S, Shukitt-Hale B, Joseph JA (2004) Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr Neurosci 7:75–83

    PubMed  Google Scholar 

  • Graeber MB, Moran LB (2002) Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol 12:385–390

    PubMed  Google Scholar 

  • Gutierrez-Merino C, Lopez-Sanchez C, Lagoa R, Samhan-Arias AK, Bueno C, Garcia-Martinez V (2011) Neuroprotective actions of flavonoids. Curr Med Chem 18:1195–1212

    PubMed  CAS  Google Scholar 

  • Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007:45673

    PubMed  Google Scholar 

  • Hammerstone JF, Lazarus SA, Mitchell AE, Rucker R, Schmitz HH (1999) Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 47:490–496

    PubMed  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer disease: progress and problems on the road to therapeutics. Science 297:353–356

    PubMed  CAS  Google Scholar 

  • Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    PubMed  CAS  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584

    PubMed  CAS  Google Scholar 

  • Hendricks JJA, de Vries HE, van der Pol SMA, van der Berg TK, van Tol EAF, Dijkstra CD (2003) Flavonoids inhibit myelin phagocytosis by macrophages; a structure-activity relationship study. Biochem Pharmacol 65:877–885

    Google Scholar 

  • Ho L, Yemul S, Wang J, Pasinetti GM (2009) Grape seed polyphenolic extract as a potential novel therapeutic agent in tauopathies. J Alzheimers Dis 16:433–439

    PubMed  CAS  Google Scholar 

  • Hodgson JM, Croft KD (2010) Tea flavonoids and cardiovascular health. Mol Aspects Med 31:495–502

    PubMed  CAS  Google Scholar 

  • Hodgson JM, Devine A, Puddey IB, Beilby J, Prince RL (2006) Drinking tea is associated with lower plasma total homocysteine in older women. Asia Pac J Clin Nutr 15:253–258

    PubMed  CAS  Google Scholar 

  • Hollman PC, Geelen A, Kromhout D (2010) Dietary flavonol intake may lower stroke risk in men and women. J Nutr 140:600–604

    PubMed  CAS  Google Scholar 

  • Hou ST, MacManus JP (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221:93–148

    PubMed  CAS  Google Scholar 

  • Hu M, Chen J, Lin H (2003) Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J Pharmacol Exp Ther 307:314–321

    PubMed  CAS  Google Scholar 

  • Huber A, Burkle A, Munch G (2007) Degenerative diseases in nervous system. In: Lajtha AY, Riederer P, Mandel SA, BattiStin L (eds) Handbook of neurochemistry and molecular biology. Springer, Berlin, pp 77–102

    Google Scholar 

  • Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514

    PubMed  CAS  Google Scholar 

  • Inanami O, Watanabe Y, Syuto B, Nakano M, Tsuji M, Kuwabara M (1998) Oral administration of (-)catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil. Free Radic Res 29:359–365

    PubMed  CAS  Google Scholar 

  • Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446

    PubMed  CAS  Google Scholar 

  • Jang S, Johnson RW (2010) Can consuming flavonoids restore old microglia to their youthful state? Nutr Rev 68:719–728

    PubMed  Google Scholar 

  • Jang S, Kelley KW, Johnson RW (2008) Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA 105:7534–7539

    PubMed  CAS  Google Scholar 

  • Jenner P, Olanow CW (2006) The pathogenesis of cell death in Parkinson disease. Neurology 66(10 Suppl 4):S24–S36

    PubMed  Google Scholar 

  • Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB (1999) Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J Immunol 63:3474–3483

    Google Scholar 

  • Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, Bickford PC (1999) Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19:8114–8121

    PubMed  CAS  Google Scholar 

  • Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. In Vivo 19:895–909

    PubMed  Google Scholar 

  • Kandinov B, Giladi N, Korczyn AD (2009) Smoking and tea consumption delay onset of Parkinson disease. Parkinsonism Relat Disord 15:41–46

    PubMed  Google Scholar 

  • Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT (2010) Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS One 5:e11951

    PubMed  Google Scholar 

  • Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their strucrure-activity relationships. Biochem Pharmacol 58:579–765

    Google Scholar 

  • Kim H, Kim YS, Kim SY, Suk K (2001) The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production. Neurosci Lett 309:67–71

    PubMed  CAS  Google Scholar 

  • Kim HP, Son KH, Chang HW, Kang SS (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmcol Sci 96:229–245

    CAS  Google Scholar 

  • Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer disease. J Neurochem 112:1415–1430

    PubMed  CAS  Google Scholar 

  • Korhonen R, Lahti A, Kankaanranta H, Moilanen E (2005) Nitric oxide production and signaling in inflammation. Curr Drug Targets 4:471–479

    CAS  Google Scholar 

  • Ksiezak-Reding H, Ho L, Santa-Maria I, Diaz-Ruiz C, Wang J, Pasinetti GM (2010) Ultrastructural alterations of Alzheimer disease paired helical filaments by grape seed-derived polyphenols. Neurobiol Aging. doi:10.1016/j

    Google Scholar 

  • Kusano A, Nikaido T, Kuge T, Ohmoto T, Delle MG, Botta B, Botta M, Saitoh T (1991) Inhibition of adenosine 3′,5′-cyclic monophosphate phosphodiesterase by flavonoids from licorice roots and 4-arylcoumarins. Chem Pharm Bull (Tokyo) 39:930–933

    CAS  Google Scholar 

  • Lambert JD, Sang S, Yang CS (2007) Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol Pharm 4:819–825

    PubMed  CAS  Google Scholar 

  • Lau FC, Shukitt-Hale B, Joseph JA (2005) The beneficial effects of fruit polyphenols on brain aging. Neurobiol Aging 1:128–132

    Google Scholar 

  • Laughton MJ, Halliwel B, Evans PJ, Hoult JRS (1989) Antioxidant and pro-oxidant action of the plant phenolics quercetin, gossypol and myricetin. Biochem Pharmacol 38:2859–2865

    PubMed  CAS  Google Scholar 

  • Lee ES, Lee HE, Shin JY, Yoon S, Moon JO (2003) The flavonoid quercetin inhibits dimethylnitrosamine-induced liver damage in rats. J Pharm Pharmacol 55:1169–1174

    PubMed  CAS  Google Scholar 

  • Lee YB, Lee HJ, Sohn HS (2005) Soy isoflavones and cognitive function. J Nutr Biochem 16:641–649

    PubMed  CAS  Google Scholar 

  • Leonarduzzi G, Testa G, Sottero B, Gamba P, Poli G (2010) Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids. Curr Med Chem 17:74–95

    PubMed  CAS  Google Scholar 

  • Lim BO (2003) Effects of wogonin, wogonoside, and 3,5,7,20,60- pentahydroxyflavone on chemical mediator production in peritoneal exudates cells and immunoglobulin E of rat mesenteric lymph node lymphocytes. J Ethnopharmacol 84:23–29

    PubMed  CAS  Google Scholar 

  • Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98

    PubMed  CAS  Google Scholar 

  • Lin N, Sato T, Takayama Y, Minaki Y, Sashida Y, Yano M, Ito A (2003) Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol 65:2065–2071

    PubMed  CAS  Google Scholar 

  • Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156:445–453

    PubMed  Google Scholar 

  • Loito SB, Frei B (2006) Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure-function relationships and activity after first pass metabolism. J Biol Chem 281:37102–37110

    Google Scholar 

  • Loke YK, Trivedi AN, Singh S (2008) Meta-analysis: gastrointestinal bleeding due to interaction between selective serotonin uptake inhibitors and non-steroidal anti-inflammatory drugs. Aliment Pharmacol Ther 27:31–40

    PubMed  CAS  Google Scholar 

  • Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF, Shan Q, Zheng ZH, Liu CM, Wang YJ (2010) Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. J Pathol 222:199–212

    PubMed  CAS  Google Scholar 

  • Luchsinger JA, Tang MX, Siddiqui M, Shea S, Mayeux R (2004) Alcohol intake and risk of dementia. J Am Geriatr Soc 52:540–546

    PubMed  Google Scholar 

  • Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer disease amyloid-beta peptides. J Biol Chem 280:37377–37382

    PubMed  CAS  Google Scholar 

  • Marder M, Paladini AC (2002) GABA(A)-receptor ligands of flavonoid structure. Curr Top Med Chem 8:853–867

    Google Scholar 

  • Marder M, Viola H, Wasowski C, Fernandez S, Medina JH, Paladini AC (2003) 6-Methylapigenin and hesperidin: new valeriana flavonoids with activity on the CNS. Pharmacol Biochem Behav 75:537–745

    PubMed  CAS  Google Scholar 

  • Mattson MP, Son TG, Camandola S (2007) Viewpoint: mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose-Response 5:174–186

    PubMed  CAS  Google Scholar 

  • Meng X, Munishkina LA, Fink AL, Uversky VN (2009) Molecular mechanisms underlying the flavonoid-induced inhibition of alpha-synuclein fibrillation. Biochemistry 48:8206–8224

    PubMed  CAS  Google Scholar 

  • Middleton E Jr (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:178–182

    Google Scholar 

  • Middleton E Jr, Kandaswami C (1992) Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 43:1167–1179

    PubMed  CAS  Google Scholar 

  • Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    PubMed  CAS  Google Scholar 

  • Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208

    PubMed  CAS  Google Scholar 

  • Mulabagal V, Lang GA, DeWitt DL, Dalavoy SS, Nair MG (2009) Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J Agric Food Chem 57:1239–1246

    PubMed  CAS  Google Scholar 

  • Muthian G, Bright JJ (2004) Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. J Clin Immunol 24:542–552

    PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    PubMed  CAS  Google Scholar 

  • O’Dell TJ, Kandel ER, Grant SG (1991) Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353:558–560

    PubMed  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    PubMed  CAS  Google Scholar 

  • Oteiza PI, Erlejman AG, Verstraeten SV, Keen CL, Fraga CG (2005) Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin Dev Immunol 12:19–25

    PubMed  CAS  Google Scholar 

  • Pacifici GM (2004) Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals: a review of the literature. Int J Clin Pharmacol Ther 42:488–495

    PubMed  CAS  Google Scholar 

  • Pannala AS, Rice-Evans CA, Halliwell B, Singh S (1997) Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem Biophys Res Commun 232:164–168

    PubMed  CAS  Google Scholar 

  • Parachikova A, Green KN, Hendrix C, LaFerla FM (2010) Formulation of a medical food cocktail for Alzheimer disease: beneficial effects on cognition and neuropathology in a mouse model of the disease. PLoS One 5:e14015

    PubMed  Google Scholar 

  • Park JW, Hong JS, Lee KS, Kim HY, Lee JJ, Lee SR (2010) Green tea polyphenol (-)-epigallocatechin gallate reduces matrix metalloproteinase-9 activity following transient focal cerebral ischemia. J Nutr Biochem 21:1038–1044

    PubMed  CAS  Google Scholar 

  • Pasinetti GM, Ksiezak-Reding H, Santa-Maria I, Wang J, Ho L (2010) Development of a grape seed polyphenolic extract with anti-oligomeric activity as a novel treatment in progressive supranuclear palsy and other tauopathies. J Neurochem 114:1557–1568

    PubMed  CAS  Google Scholar 

  • Pedotti R, De Voss JJ, Steinman L, Galli SJ (2003) Involvement of both ‘allergic’ and ‘autoimmune’ mechanisms in EAE, MS and other autoimmune diseases. Trends Immunol 24:479–484

    PubMed  CAS  Google Scholar 

  • Perez-Vizcaino F, Duarte J (2010) Flavonols and cardiovascular disease. Mol Aspects Med 31:478–494

    PubMed  CAS  Google Scholar 

  • Perez-Vizcaino F, Bishop-Bailley D, Lodi F, Duarte J, Cogolludo A, Moreno L, Bosca L, Mitchell JA, Warner TD (2006) The flavonoid quercetin induces apoptosis and inhibits JNK activation in intimal vascular smooth muscle cells. Biochem Biophys Res Commun 346:919–925

    PubMed  CAS  Google Scholar 

  • Ramirez MR, Izquierdo I, do Carmo Bassols RM, Zuanazzi JA, Barros D, Henriques AT (2005) Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats. Pharmacol Res 52:457–462

    PubMed  Google Scholar 

  • Rassaf T, Kelm M (2008) Cocoa flavanols and the nitric oxide-pathway: targeting endothelial dysfunction by dietary intervention. Drug Discov Today Dis Mech 5:e273–e278

    Google Scholar 

  • Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K (2009) Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets 8:229–235

    PubMed  CAS  Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814

    PubMed  CAS  Google Scholar 

  • Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Merino C (2004) Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis. Free Radic Biol Med 37:48–61

    PubMed  CAS  Google Scholar 

  • Schneider I, Bucar F (2005) Lipoxygenase inhibitors from natural plant sources. Part 1: medicinal plants with inhibitory activity on arachidonate 5-lipoxygenase and 5-lipoxygenase [sol] cyclooxygenase. Phytother Res 19:81–102

    PubMed  CAS  Google Scholar 

  • Schroeter H, Boyd C, Spencer JP, Williams RJ, Cadenas E, Rice-Evans C (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 23:861–880

    PubMed  CAS  Google Scholar 

  • Shih CM, Lin H, Liang YC, Lee WS, Bi WF, Juan SH (2004) Concentration-dependent differential effects of quercetin on rat aortic smooth muscle cells. Eur J Pharmacol 496:41–48

    PubMed  CAS  Google Scholar 

  • Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H (2008a) Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport. 19:1329–1333

    PubMed  CAS  Google Scholar 

  • Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H (2008b) Flavonols and flavones as BACE-1 inhibitors: structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta. 1780:819–825

    PubMed  CAS  Google Scholar 

  • Shukitt-Hale B, Carey A, Simon L, Mark DA, Joseph JA (2006) Effects of Concord grape juice on cognitive and motor deficits in aging. Nutrition 22:295–302

    PubMed  CAS  Google Scholar 

  • Simonyi A, Wang Q, Miller RL, Yusof M, Shelat PB, Sun AY, Sun GY (2005) Polyphenols in cerebral ischemia: novel targets for neuroprotection. Mol Neurobiol 31:135–147

    PubMed  CAS  Google Scholar 

  • Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C (2008) Challenges for research on polyphenols from foods in Alzheimer disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 56:4855–4873

    PubMed  CAS  Google Scholar 

  • Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD (2010) Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer disease. Int J Pharm 389:207–212

    PubMed  CAS  Google Scholar 

  • Soliman KF, Mazzio EA (1998) In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc Soc Exp Biol Med 218:390–397

    PubMed  CAS  Google Scholar 

  • Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65:184–189

    PubMed  Google Scholar 

  • Spencer JP (2008) Flavonoids: modulators of brain function? Br J Nutr 99 E(Suppl 1):ES60–ES77

    PubMed  Google Scholar 

  • Spencer JPE (2009) The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev 38:1152–1161

    PubMed  CAS  Google Scholar 

  • Spencer JPE, Kuhnle GG, Williams RJ, Rice-Evans C (2003) Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem J 372:173–181

    PubMed  CAS  Google Scholar 

  • Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139

    PubMed  Google Scholar 

  • Sutherland BA, Rahman RM, Appleton I (2006) Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem 17:291–306

    PubMed  CAS  Google Scholar 

  • Taniguchi S, Suzuki N, Masuda M, Hisanaga S, Iwatsubo T, Goedert M, Hasegawa M (2005) Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 280:7614–7623

    PubMed  CAS  Google Scholar 

  • Theoharides TC (2009) Luteolin as a therapeutic option for multiple sclerosis. J Neuroinflammation 6:29–32

    PubMed  Google Scholar 

  • Truelsen T, Thudium D, Gronbaek M (2002) Amount and type of alcohol and risk of dementia: the Copenhagen City Heart Study. Neurology 59:1313–1319

    PubMed  Google Scholar 

  • Van Hoom DE, Niveldt RJ, Van Leeuwen PA, Hofman Z, M’Rabet L, De Bont DB, Van Norren K (2002) Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur J Pharmacol 451:111–118

    Google Scholar 

  • van Praag H, Lucero MJ, Yeo GW, Stecker K, Heivand N, Zhao C, Yip E, Afanador M, Schroeter H, Hammerstone J, Gage FH (2007) Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 27:5869–5878

    PubMed  Google Scholar 

  • Viskupičová J, Ondrejovič M, Šturdík E (2008) Bioavailability and metabolism of flavonoids. J Food Nutr Res 47:151–162

    Google Scholar 

  • Walle T (2004) Absorption and metabolism of flavonoids. Free Radic Biol Med 36:829–837

    PubMed  CAS  Google Scholar 

  • Wang JY, Wen LL, Huang YN, Chen YT, Ku MC (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des 12:3521–3533

    PubMed  CAS  Google Scholar 

  • Wang Z, Fernandez-Seara M, Alsop DC, Liu WC, Flax JF, Benasich AA, Detre JA (2008) Assessment of functional development in normal infant brain using arterial spin labeled perfusion MRI. NeuroImage 39:973–978

    PubMed  Google Scholar 

  • Wang J, Santa-Maria I, Ho L, Ksiezak-Reding H, Ono K, TeplowD B, Pasinetti GM (2010) Grape derived polyphenols attenuate tau neuropathology in a mouse model of Alzheimer disease. J Alzheimers Dis 22:653–661

    PubMed  Google Scholar 

  • Williams RJ, Spencer JP (2012) Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 52:35–45

    PubMed  CAS  Google Scholar 

  • Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signaling molecules? Free Radic Biol Med 36:838–849

    PubMed  CAS  Google Scholar 

  • Williams CM, El Mohsen MA, Vauzour D, Rendeiro C, Butler LT, Ellis JA, Whiteman M, Spencer JP (2008) Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 45:295–305

    PubMed  CAS  Google Scholar 

  • Wishart TM, Parson SH, Gillingwater TH (2006) Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol 65:733–739

    PubMed  CAS  Google Scholar 

  • Woo ER, Lee JY, Cho IJ, Kim SG, Kang KW (2005) Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-kappaB activation in macrophages. Pharmacol Res 51:539–546

    PubMed  CAS  Google Scholar 

  • Xue X, Qu XJ, Yang Y, Sheng XH, Cheng F, Jiang EN, Wang JH, Bu W, Liu ZP (2010) Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor κB p65 activation. Biochem Biophys Res Commun 403:398–404

    PubMed  CAS  Google Scholar 

  • Yazawa K, Kihara T, Shen H, Shimmyo Y, Niidome T, Sugimoto H (2006) Distinct mechanisms underlie distinct polyphenol-induced neuroprotection. FEBS Lett 580:6623–6628

    PubMed  CAS  Google Scholar 

  • Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C (2003) Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem 85:180–192

    PubMed  CAS  Google Scholar 

  • Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ (2004) Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med 36:1342–1348

    CAS  Google Scholar 

  • Zhang K, Lu J, Mori T, Smith-Powell L, Synold TW, Chen S, Wen W (2011) Baicalin increases VEGF expression and angiogenesis by activating the ERR{alpha}/PGC-1{alpha} pathway. Cardiovasc Res 89:426–435

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farooqui, A.A. (2013). Beneficial Effects of Flavonoids on Neurological Disorders. In: Phytochemicals, Signal Transduction, and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3804-5_4

Download citation

Publish with us

Policies and ethics